
www.sharexxx.net - free books & magazines

Artificial Intelligence
Illuminated

Ben Coppin

JONES AND BARTLETT PUBLISHERS

Copyright © 2004 by Jones and Bartlett Publishers, Inc.

Cover image © Photodisc

Library of Congress Cataloging-in-Publication Data

Coppin, Ben.
Artificial intelligence illuminated / by Ben Coppin.--1st ed.

p. cm.
Includes bibliographical references and index.

ISBN 0-7637-3230-3
1. Artificial intelligence. I. Title.

Q335.C586 2004
006.3--dc22

2003020604
3382

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form, electronic or mechanical, including photocopying,
recording, or any information storage or retrieval system, without written permission
from the copyright owner.

Acquisitions Editor: Stephen Solomon
Production Manager: Amy Rose
Marketing Manager: Matthew Bennett
Editorial Assistant: Caroline Senay
Manufacturing Buyer: Therese Bräuer
Cover Design: Kristin E. Ohlin
Text Design: Kristin E. Ohlin
Composition: Northeast Compositors
Technical Artist: George Nichols
Printing and Binding: Malloy, Inc.
Cover Printing: Malloy, Inc.

Printed in the United States of America
08 07 06 05 04 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada

2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International

Barb House, Barb Mews
London W6 7PA
UK

www.jbpub.com

For Erin

This page intentionally left blank

Preface

Who Should Read This Book

This book is intended for students of computer science at the college level,
or students of other subjects that cover Artificial Intelligence. It also is
intended to be an interesting and relevant introduction to the subject for
other students or individuals who simply have an interest in the subject.

The book assumes very little knowledge of computer science, but does
assume some familiarity with basic concepts of algorithms and computer
systems. Data structures such as trees, graphs, and stacks are explained
briefly in this book, but if you do not already have some familiarity with
these concepts, you should probably seek out a suitable book on algorithms
or data structures.

It would be an advantage to have some experience in a programming lan-
guage such as C++ or Java, or one of the languages commonly used in Arti-
ficial Intelligence research, such as PROLOG and LISP, but this experience
is neither necessary nor assumed.

Many of the chapters include practical exercises that require the reader to
develop an algorithm or program in a programming language of his or her
choice. Most readers should have no difficulty with these exercises. How-
ever, if any reader does not have the necessary skills he or she simply should
describe in words (or in pseudocode) how his or her programs work, giving
as much detail as possible.

How to Read This Book

This book can be read in several ways. Some readers will choose to read the
chapters through in order from Chapter 1 through Chapter 21. Any chapter
that uses material which is presented in another chapter gives a clear refer-
ence to that chapter, and readers following the book from start to finish
should not need to jump forward at any point, as the chapter dependencies
tend to work in a forward direction.

Another perfectly reasonable way to use this book is as a reference. When a
reader needs to know more about a particular subject, he or she can pick up
this book and select the appropriate chapter or chapters, and can be illumi-
nated on the subject (at least, that is the author’s intent!)

Chapter 12 contains a diagram that shows how the dependencies between
chapters work (Section 12.6.2). This diagram shows, for example, that if a
reader wants to read Chapter 8, it would be a good idea to already have read
Chapter 7.

This book is divided into six parts, each of which is further divided into a
number of chapters. The chapters are laid out as follows:

Part 1: Introduction to Artificial Intelligence

Chapter 1: A Brief History of Artificial Intelligence

Chapter 2: Uses and Limitations

Chapter 3: Knowledge Representation

Part 2: Search

Chapter 4: Search Methodologies

Chapter 5: Advanced Search

Chapter 6: Game Playing

Part 3: Logic

Chapter 7: Propositional and Predicate Logic

Chapter 8: Inference and Resolution for Problem Solving

Chapter 9: Rules and Expert Systems

vi Preface

Part 4: Machine Learning

Chapter 10: Introduction to Machine Learning

Chapter 11: Neural Networks

Chapter 12: Probabilistic Reasoning and Bayesian Belief Networks

Chapter 13: Artificial Life: Learning through Emergent Behavior

Chapter 14: Genetic Algorithms

Part 5: Planning

Chapter 15: Introduction to Planning

Chapter 16: Planning Methods

Part 6: Advanced Topics

Chapter 17: Advanced Knowledge Representation

Chapter 18: Fuzzy Reasoning

Chapter 19: Intelligent Agents

Chapter 20: Understanding Language

Chapter 21: Machine Vision

Each chapter includes an introduction that explains what the chapter cov-
ers, a summary of the chapter, some exercises and review questions, and
some suggestions for further reading. There is a complete bibliography at
the back of the book.

This book also has a glossary, which includes a brief definition of most of
the important terms used in this book. When a new term is introduced in
the text it is highlighted in bold, and most of these words are included in
the glossary. The only such terms that are not included in the glossary are
the ones that are defined in the text, but that are not used elsewhere in the
book.

The use of third person pronouns is always a contentious issue for authors
of text books, and this author has chosen to use he and she interchangeably.
In some cases the word “he” is used, and in other cases “she.” This is not
intended to follow any particular pattern, or to make any representations
about the genders, but simply is in the interests of balance.

Preface vii

The first few chapters of this book provide introductory material, explain-
ing the nature of Artificial Intelligence and providing a historical back-
ground, as well as describing some of the connections with other
disciplines. Some readers will prefer to skip these chapters, but it is advis-
able to at least glance through Chapter 3 to ensure that you are familiar
with the concepts of that chapter, as they are vital to the understanding of
most of the rest of the book.

Acknowledgments

Although I wrote this book single-handedly, it was not without help. I
would like to thank, in chronological order, Frank Abelson; Neil Salkind
and everyone at Studio B; Michael Stranz, Caroline Senay, Stephen
Solomon, and Tracey Chapman at Jones & Bartlett; also a number of peo-
ple who read chapters of the book: Martin Charlesworth, Patrick Coyle,
Peter and Petra Farrell, Robert Kealey, Geoffrey Price, Nick Pycraft, Chris
Swannack, Edwin Young, my parents, Tony and Frances, and of course
Erin—better late than never.

Thanks also to:

The MIT Press for the excerpt from ‘Learning in Multiagent Systems’ by
Sandip Sen and Gerhard Weiss, © 2001, The MIT Press.

The MIT Press for the excerpt from ‘Adaptation in Natural and Artificial
Systems’ by John H. Holland, © 1992, The MIT Press.

The MIT Press for the excerpt from ‘The Artificial Life Roots of Artificial
Intelligence’ by Luc Steels, © 1994, the Massachusetts Institute of Technol-
ogy.

The IEEE for the excerpt from ‘Steps Towards Artificial Intelligence’ by
Marvin Minsky, © 2001, IEEE.

I have attempted to contact the copyright holders of all copyrighted quotes
used in this book. If I have used any quotes without permission, then this
was inadvertent, and I apologize. I will take all measures possible to rectify
the situation in future printings of the book.

viii Preface

Contents

Preface v

P A R T 1 Introduction to Artificial Intelligence 1

Chapter 1 A Brief History of Artificial Intelligence 3
1.1 Introduction 3

1.2 What Is Artificial Intelligence? 4

1.3 Strong Methods and Weak Methods 5

1.4 From Aristotle to Babbage 6

1.5 Alan Turing and the 1950s 7

1.6 The 1960s to the 1990s 9

1.7 Philosophy 10

1.8 Linguistics 11

1.9 Human Psychology and Biology 12

1.10 All Programming Languages 12

1.10.1 PROLOG 13

1.10.2 LISP 14

1.11 Chapter Summary 15

1.12 Review Questions 16

1.13 Further Reading 17

Chapter 2 Uses and Limitations 19
2.1 Introduction 19

2.2 The Chinese Room 20

2.3 HAL—Fantasy or Reality? 21

2.4 AI in the 21st Century 23

2.5 Chapter Summary 24

2.6 Review Questions 24

2.7 Further Reading 25

Chapter 3 Knowledge Representation 27
3.1 Introduction 27

3.2 The Need for a Good Representation 28

3.3 Semantic Nets 29

3.4 Inheritance 31

3.5 Frames 32

3.5.1 Why Are Frames Useful? 34

3.5.2 Inheritance 34

3.5.3 Slots as Frames 35

3.5.4 Multiple Inheritance 36

3.5.5 Procedures 37

3.5.6 Demons 38

3.5.7 Implementation 38

3.5.8 Combining Frames with Rules 40

3.5.9 Representational Adequacy 40

3.6 Object-Oriented Programming 41

3.7 Search Spaces 42

3.8 Semantic Trees 44

3.9 Search Trees 46

3.9.1 Example 1: Missionaries and Cannibals 47

3.9.2 Improving the Representation 49

3.9.3 Example 2: The Traveling Salesman 50

3.9.4 Example 3: The Towers of Hanoi 54

3.9.5 Example 4: Describe and Match 56

3.10 Combinatorial Explosion 57

3.11 Problem Reduction 57

x Contents

3.12 Goal Trees 58

3.12.1 Top Down or Bottom Up? 60

3.12.2 Uses of Goal Trees 61

Example 1: Map Coloring

Example 2: Proving Theorems

Example 3: Parsing Sentences 63

Example 4: Games

3.13 Chapter Summary 64

3.14 Review Questions 65

3.15 Exercises 65

3.16 Further Reading 66

P A R T 2 Search 69

Chapter 4 Search Methodologies 71
4.1 Introduction 71

4.2 Problem Solving as Search 72

4.3 Data-Driven or Goal-Driven Search 73

4.4 Generate and Test 74

4.5 Depth-First Search 75

4.6 Breadth-First Search 76

4.7 Properties of Search Methods 78

4.7.1 Complexity 78

4.7.2 Completeness 79

4.7.3 Optimality 79

4.7.4 Irrevocability 80

4.8 Why Humans Use Depth-First Search? 80

4.8.1 Example 1: Traversing a Maze 81

4.8.2 Example 2: Searching for a Gift 81

4.9 Implementing Depth-First and Breadth-First Search 83

4.10 Example: Web Spidering 88

4.11 Depth-First Iterative Deepening 88

4.12 Using Heuristics for Search 90

4.12.1 Informed and Uninformed Methods 91

4.12.2 Choosing a Good Heuristic 92

4.12.3 The 8-Puzzle 92

Contents xi

4.12.4 Monotonicity 95

4.12.5 Example: The Modified Traveling Salesman
Problem 96

4.13 Hill Climbing 98

4.13.1 Steepest Ascent Hill Climbing 98

4.13.2 Foothills, Plateaus, and Ridges 101

4.14 Best-First Search 104

4.15 Beam Search 106

4.16 Identifying Optimal Paths 107

4.16.1 A* Algorithms 108

4.16.2 Uniform Cost Search 110

4.16.3 Greedy Search 111

4.16.4 Example: The Knapsack Problem 111

4.17 Chapter Summary 113

4.18 Review Questions 114

4.19 Exercises 115

4.20 Further Reading 116

Chapter 5 Advanced Search 117
5.1 Introduction 117

5.2 Constraint Satisfaction Search 118

5.3 Forward Checking 121

5.4 Most-Constrained Variables 121

5.5 Example: Cryptographic Problems 122

5.6 Heuristic Repair 123

5.7 Combinatorial Optimization Problems 125

5.8 Local Search and Metaheuristics 126

5.8.1 Exchanging Heuristics 126

5.8.2 Iterated Local Search 127

5.8.3 Tabu Search 127

5.8.4 Ant Colony Optimization 128

5.9 Simulated Annealing 128

5.9.1 Uses of Simulated Annealing 130

5.10 Genetic Algorithms for Search 131

5.11 Real-Time A* 131

xii Contents

5.12 Iterative-Deepening A* (IDA*) 132

5.13 Parallel Search 132

5.13.1 Task Distribution 134

5.13.2 Tree Ordering 135

5.13.3 Search Engines 135

5.14 Bidirectional Search 136

5.15 Nondeterministic Search 136

5.16 Island-Driven Search 137

5.17 Nonchronological Backtracking 137

5.18 Chapter Summary 138

5.19 Review Questions 139

5.20 Exercises 140

5.21 Further Reading 141

Chapter 6 Game Playing 143
6.1 Introduction 143

6.2 Game Trees 144

6.2.1 Rationality, Zero Sum, and Other
Assumptions 145

6.2.2 Evaluation Functions 146

6.2.3 Searching Game Trees 148

6.3 Minimax 149

6.3.1 Bounded Lookahead 151

6.4 Alpha-Beta Pruning 153

6.4.1 The Effectiveness of Alpha-Beta Pruning 154

6.4.2 Implementation 155

6.5 Checkers 159

6.5.1 Chinook 160

6.5.2 Chinook’s Databases 161

6.5.3 Chinook’s Evaluation Function 162

6.5.4 Forward Pruning 163

6.5.5 Limitations of Minimax 163

6.5.6 Blondie 24 164

6.6 Chess 164

Contents xiii

6.7 Go 165

6.7.1 Go-Moku 166

6.8 Othello (Reversi) 166

6.9 Games of Chance 166

6.9.1 Expectiminimax 167

6.10 Chapter Summary 167

6.11 Review Questions 168

6.12 Exercises 169

6.13 Further Reading 170

P A R T 3 Knowledge Representation and Automated
Reasoning 173

Chapter 7 Propositional and Predicate Logic 175
7.1 Introduction 175

7.2 What Is Logic? 176

7.3 Why Logic Is Used in Artificial Intelligence 176

7.4 Logical Operators 177

7.5 Translating between English and Logic Notation 178

7.6 Truth Tables 181

7.6.1 Not 181

7.6.2 And 182

7.6.3 Or 182

7.6.4 Implies 183

7.6.5 iff 184

7.7 Complex Truth Tables 184

7.8 Tautology 186

7.9 Equivalence 187

7.10 Propositional Logic 189

7.10.1 Syntax 189

7.10.2 Semantics 190

7.11 Deduction 191

7.11.1 ^-Introduction 191

7.11.2 ^-Eliminations 191

7.11.3 Or-Introduction 192

7.11.4 ?Elimination 192

xiv Contents

7.11.5 Reductio Ad Absurdum 192

7.11.6 ?Introduction 193

7.11.7 ¬¬Elimination 193

7.11.8 Example 1 193

7.11.9 Example 2 194

7.11.10 Example 3 194

7.11.11 Example 4 195

7.12 The Deduction Theorem 195

7.13 Predicate Calculus 196

7.13.1 Syntax 196

7.13.2 Relationships between " and $ 197

7.13.3 Functions 199

7.14 First-Order Predicate Logic 199

7.15 Soundness 200

7.16 Completeness 200

7.17 Decidability 200

7.18 Monotonicity 201

7.19 Abduction and Inductive Reasoning 201

7.20 Modal Logics and Possible Worlds 203

7.20.1 Reasoning in Modal Logic 204

7.21 Dealing with Change 205

7.22 Chapter Summary 205

7.23 Review Questions 205

7.24 Exercises 206

7.25 Further Reading 208

Chapter 8 Inference and Resolution for Problem Solving 209
8.1 Introduction 209

8.2 Resolution in Propositional Logic 210

8.2.1 Normal Forms 210

8.2.2 The Resolution Rule 212

8.2.3 Resolution Refutation 213

8.2.4 Proof by Refutation 214

8.3 Applications of Resolution 216

8.4 Resolution in Predicate Logic 218

Contents xv

8.5 Normal Forms for Predicate Logic 219

8.6 Skolemization 220

8.6.1 Example of Skolemization 221

8.6.2 Second Example of Skolemization 222

8.6.3 Unification 222

8.6.4 Most General Unifiers 224

8.6.5 Unification Algorithm 224

8.6.6 Unification Example 225

8.7 Resolution Algorithm 226

8.8 Horn Clauses and PROLOG 227

8.9 Herbrand Universes 229

8.9.1 The Herbrand Base 230

8.9.2 Herbrand Interpretations 231

8.9.3 Example 232

8.10 Resolution for Problem Solving 233

8.11 Chapter Summary 237

8.12 Review Questions 238

8.13 Exercises 238

8.14 Further Reading 239

Chapter 9 Rules and Expert Systems 241
9.1 Introduction 241

9.2 Rules for Knowledge Representation 242

9.3 Rule-Based Systems 243

9.3.1 Forward Chaining 244

9.3.2 Conflict Resolution 246

9.3.3 Meta Rules 247

9.3.4 Backward Chaining 248

9.3.5 Comparing Forward and Backward Chaining 249

9.4 Rule-Based Expert Systems 251

9.4.1 The People Involved in an Expert System 251

9.4.2 Architecture of an Expert System 252

9.4.3 The Expert Shell System 253

9.4.4 The Rete Algorithm 253

9.4.5 Knowledge Engineering 254

9.5 CLIPS (C Language Integrated Production System) 255

xvi Contents

9.6 Backward Chaining in Rule-Based Expert Systems 257

9.7 CYC 259

9.8 Chapter Summary 260

9.9 Review Questions 261

9.10 Exercises 261

9.11 Further Reading 261

P A R T 4 Machine Learning 265

Chapter 10 Introduction to Machine Learning 267
10.1 Introduction 267

10.2 Training 268

10.3 Rote Learning 270

10.4 Learning Concepts 270

10.5 General-to-Specific Ordering 272

10.5.1 A Simple Learning Algorithm 273

10.6 Version Spaces 274

10.7 Candidate Elimination 275

10.8 Inductive Bias 276

10.9 Decision-Tree Induction 276

10.9.1 Information Gain 278

10.9.2 Example 279

10.9.3 Inductive Bias of ID3 281

10.10 The Problem of Overfitting 282

10.11 The Nearest Neighbor Algorithm 283

10.12 Learning Neural Networks 284

10.13 Supervised Learning 285

10.14 Unsupervised Learning 285

10.15 Reinforcement Learning 286

10.16 Chapter Summary 286

10.17 Review Questions 287

10.18 Exercises 288

10.19 Further Reading 288

Chapter 11 Neural Networks 291
11.1 Introduction 291

11.2 Neurons 292

Contents xvii

11.2.1 Biological Neurons 292

11.2.2 Artificial Neurons 293

11.3 Perceptrons 295

11.4 Multilayer Neural Networks 300

11.4.1 Backpropagation 302

11.4.2 Improving the Performance of
Backpropagation 305

11.5 Recurrent Networks 306

11.5.1 Hopfield Networks 307

11.5.2 Bidirectional Associative Memories (BAMs) 314

11.6 Unsupervised Learning Networks 317

11.6.1 Kohonen Maps 317

11.6.2 Kohonen Map Example 319

11.6.3 Hebbian Learning 321

11.7 Evolving Neural Networks 322

11.8 Chapter Summary 323

11.9 Review Questions 324

11.10 Exercises 325

11.11 Further Reading 326

Chapter 12 Probabilistic Reasoning and Bayesian Belief
Networks 327

12.1 Introduction 327

12.2 Probabilistic Reasoning 328

12.3 Joint Probability Distributions 330

12.4 Bayes’ Theorem 330

12.4.1 Example: Medical Diagnosis 331

12.4.2 Example: Witness Reliability 332

12.4.3 Comparing Conditional Probabilities 334

12.4.4 Normalization 335

12.5 Simple Bayesian Concept Learning 337

12.6 Bayesian Belief Networks 339

12.6.1 Example: Life at College 342

12.6.2 Example: Chapter Dependencies 346

12.7 The Noisy-V Function 346

xviii Contents

12.8 Bayes’ Optimal Classifier 349

12.9 The Naïve Bayes Classifier 351

12.10 Collaborative Filtering 356

12.11 Chapter Summary 357

12.12 Review Questions 358

12.13 Exercises 359

12.14 Further Reading 359

Chapter 13 Artificial Life: Learning through Emergent
Behavior 363

13.1 Introduction 363

13.2 What Is Life? 364

13.3 Emergent Behavior 365

13.4 Finite State Automata 366

13.5 Cellular Automata 368

13.5.1 Conway’s Life 368

13.5.2 One-Dimensional Cellular Automata 370

13.6 Self-Reproducing Systems 371

13.7 Evolution 372

13.7.1 Ramps 373

13.8 Evolution Strategies 373

13.9 Genetic Programming 374

13.10 Evolutionary Programming 375

13.11 L-Systems 376

13.12 Classifier Systems 377

13.13 Artificial Immune Systems 381

13.14 Chapter Summary 382

13.15 Review Questions 382

13.16 Further Reading 383

Chapter 14 Genetic Algorithms 387
14.1 Introduction 387

14.2 Representations 388

14.3 The Algorithm 389

14.4 Fitness 390

Contents xix

14.5 Crossover 390

14.6 Mutation 392

14.7 Termination Criteria 392

14.8 Optimization of a Mathematic Function 393

14.9 Why Genetic Algorithms Work 396

14.9.1 Schemata 397

14.9.2 How Reproduction Affects Schemata 399

14.9.3 How Mutation and Crossover Affect
Schemata 401

14.9.4 The Building-Block Hypothesis 403

14.9.5 Deception 404

14.10 Messy Genetic Algorithms 405

14.11 Prisoner’s Dilemma 406

14.11.1 Strategy Representation 407

14.11.2 Possible Strategies 408

14.11.3 Evolution of Strategies 410

14.11.4 Choice of Opponents 410

14.12 Diversity 411

14.13 Evolving Pictures 412

14.14 Predators and Coevolution 413

14.15 Other Problems 414

14.16 Chapter Summary 414

14.17 Review Questions 415

14.18 Exercises 416

14.19 Further Reading 417

P A R T 5 Planning 419

Chapter 15 Introduction to Planning 421
15.1 Introduction 421

15.2 Planning as Search 423

15.3 Situation Calculus 426

15.4 The Frame Problem 427

15.5 Means-Ends Analysis 428

15.6 Chapter Summary 430

xx Contents

15.7 Review Questions 431

15.8 Exercises 431

15.9 Further Reading 432

Chapter 16 Planning Methods 433
16.1 Introduction 433

16.2 STRIPS 434

16.2.1 Planning and Executing 435

16.2.2 Operators 436

16.2.3 Implementation of STRIPS 437

16.2.4 Example: STRIPS 438

16.2.5 Example: STRIPS and Resolution 441

16.3 The Sussman Anomaly 443

16.4 Partial Order Planning 444

16.5 The Principle of Least Commitment 447

16.6 Propositional Planning 448

16.7 SAT Planning 450

16.8 Planning Graphs 451

16.8.1 GraphPlan 454

16.8.2 Mutex Conditions 455

16.9 ADL and PDDL 455

16.10 Probabilistic Planning 456

16.11 Dynamic World Planning 456

16.12 Case-Based Planning Systems 457

16.13 Planning and Scheduling 458

16.14 Chapter Summary 459

16.15 Review Questions 460

16.16 Exercises 461

16.17 Further Reading 461

P A R T 6 Advanced Topics 463

Chapter 17 Advanced Knowledge Representation 465
17.1 Introduction 465

17.2 Representations and Semantics 468

Contents xxi

17.3 The Blackboard Architecture 469

17.3.1 Implementation 471

17.3.2 HEARSAY 472

17.4 Scripts 472

17.5 Copycat Architecture 474

17.6 Nonmonotonic Reasoning 476

17.6.1 Nonmonotonic Logic with the Modal
Operator 477

17.6.2 Default Reasoning 477

17.6.3 Truth Maintenance Systems 478

17.6.4 Closed-World Assumption 480

17.6.5 The Ramification Problem 480

17.6.6 Circumscription 480

17.6.7 Abductive Reasoning 482

17.6.8 The Dempster-Shafer Theory 483

17.6.9 MYCIN and Certainty Factors 485

17.7 Reasoning about Change 487

17.7.1 Temporal Logic 487

17.7.2 Using Temporal Logic 488

17.7.3 Event Calculus 490

17.7.4 Mental Situation Calculus 492

17.8 Knowledge Engineering 494

17.9 Case-Based Reasoning 495

17.10 Chapter Summary 496

17.11 Review Questions 497

17.12 Exercises 498

17.13 Further Reading 500

Chapter 18 Fuzzy Reasoning 503
18.1 Introduction 503

18.2 Bivalent and Multivalent Logics 504

18.3 Linguistic Variables 504

18.4 Fuzzy Sets 505

18.4.1 Fuzzy Set Membership Functions 507

18.4.2 Fuzzy Set Operators 508

xxii Contents

18.4.3 Hedges 510

18.5 Fuzzy Logic 511

18.6 Fuzzy Logic as Applied to Traditional Logical
Paradoxes 515

18.7 Fuzzy Rules 516

18.8 Fuzzy Inference 516

18.9 Fuzzy Expert Systems 522

18.9.1 Defining the Fuzzy Sets 523

18.9.2 Defining Fuzzy Rules 527

18.9.3 Relating Observations to Fuzzy Sets 528

18.9.4 Evaluating Each Case for the Fuzzy Rules 530

18.9.5 Defuzzification 531

18.10 Fuzzy Systems that Learn 534

18.10.1 Neuro-fuzzy Systems 534

18.10.2 Layer 1: The Input Layer 536

18.10.3 Layer 2: The Fuzzification Layer 536

18.10.4 Layer 3: The Fuzzy Rule Layer 537

18.10.5 Layer 4: The Output Membership Function
Layer 537

18.10.6 Layer 5: The Defuzzification Layer 538

18.10.7 How the System Learns 538

18.11 Chapter Summary 539

18.12 Review Questions 539

18.13 Exercises 540

18.14 Further Reading 540

Chapter 19 Intelligent Agents 543
19.1 Introduction 543

19.2 Properties of Agents 544

19.2.1 Intelligence 544

19.2.2 Autonomy 545

19.2.3 Ability to Learn 545

19.2.4 Cooperation 545

19.2.5 Other Agent Properties 546

19.3 Agent Classification 546

Contents xxiii

19.4 Reactive Agents 547

19.4.1 Goal-based Agents 548

19.4.2 Utility-based Agents 549

19.4.3 Utility Functions 549

19.5 Interface Agents 551

19.6 Mobile Agents 552

19.7 Information Agents 553

19.8 Multiagent Systems 554

19.9 Collaborative Agents 556

19.10 Agent Architectures 556

19.10.1 Subsumption Architecture 556

19.10.2 BDI Architectures 558

19.10.3 Other Architectures 558

19.11 Accessibility 560

19.12 Learning Agents 561

19.12.1 Multiagent Learning 562

19.13 Robotic Agents 562

19.14 Braitenberg Vehicles 563

19.15 Chapter Summary 565

19.16 Review Questions 566

19.17 Exercises 567

19.18 Further Reading 567

Chapter 20 Understanding Language 571
20.1 Introduction 571

20.2 Natural Language Processing 573

20.2.1 Morphologic Analysis 574

20.2.2 BNF 575

20.2.3 Grammers 579

20.2.4 Parsing: Syntactic Analysis 581

20.2.5 Transition Networks 582

20.2.6 Augmented Transition Networks 585

20.2.7 Chart Parsing 585

20.2.8 Semantic Analysis 588

20.2.9 Ambiguity and Pragmatic Analysis 589

xxiv Contents

20.3 Machine Translation 592

20.3.1 Language Identification 593

20.4 Information Retrieval 594

20.4.1 Stemming 596

20.4.2 Precision and Recall 598

20.5 Chapter Summary 599

20.6 Review Questions 600

20.7 Exercises 600

20.8 Further Reading 601

Chapter 21 Machine Vision 605
21.1 Introduction 605

21.2 Human Vision 606

21.3 Image Processing 608

21.3.1 Edge Detection 609

21.3.2 Convolution and the Canny Edge Detector 611

21.3.3 Segmentation 612

21.3.4 Classifying Edges in Line Drawings 613

21.4 Using Texture 616

21.4.1 Identifying Textures 616

21.4.2 Structural Texture Analysis 620

21.4.3 Determining Shape and Orientation from
Texture 620

21.5 Interpreting Motion 623

21.6 Making Use of Vision 625

21.7 Face Recognition 627

21.8 Chapter Summary 628

21.9 Review Questions 629

21.10 Exercises 630

21.11 Further Reading 630

Glossary 633

Bibliography 697

Index 719

Contents xxv

This page intentionally left blank

Introduction to Artificial
Intelligence

1
Introduction to Part 1

Part 1 is divided into three chapters.

A Brief History of Artificial Intelligence

This chapter provides a brief overview of the history of the
study of Artificial Intelligence. It also provides background
from philosophy, psychology, biology, and linguistics and
explains how these subjects have contributed to the subject.

Uses and Limitations

The second chapter discusses the prevalence of Artificial
Intelligence in our world today, at the beginning of the 21st
century. It also looks at the limitations of Artificial Intelli-
gence and discusses some of the arguments against the
principle of strong AI, which claims that a machine that
can behave in an intelligent way is actually capable of hav-
ing mental states, much like a human being.

Knowledge Representation

This chapter introduces an idea that is used throughout
this book: knowledge representation. It explains why repre-
sentation is so important and why it is vital to choose the
right representation to solve a problem.

It also explains some common representational methods
used in Artificial Intelligence, such as frames, semantic
nets, and search trees, which are used more extensively in
Chapters 4 and 5.

This chapter also provides a number of example problems
and explains how to use the representational methods
introduced to solve the problems.

PART
1

CHAPTER

2
CHAPTER

3
CHAPTER

This page intentionally left blank

1CHAPTER
A Brief History of Artificial
Intelligence

What is all knowledge too but recorded experience, and a product of history; of
which, therefore, reasoning and belief, no less than action and passion, are
essential materials?

—Thomas Carlyle, Critical and Miscellaneous Essays

History is Philosophy from Examples.

—Dionysius, Ars Rhetorica

Science is built upon facts, as a house is built of stones; but an accumulation of
facts is no more a science than a heap of stones is a house.

—Henri Poincaré, Science and Hypothesis

You seek for knowledge and wisdom as I once did; and I ardently hope that the
gratification of your wishes may not be a serpent to sting you, as mine has been.

—Mary Shelley, Frankenstein

1.1 Introduction

Although Artificial Intelligence is one of the newest fields of intellectual
research, its foundations began thousands of years ago. In studying Artifi-
cial Intelligence, it is useful to have an understanding of the background of
a number of other subjects, primarily philosophy, linguistics, psychology,
and biology.

This chapter will present a selected history of the thinking and research
that led up to the present state of what we now call Artificial Intelligence.

4 CHAPTER 1 A Brief History of Artificial Intelligence

In this chapter, we will look at the contributions made by philosophy, lin-
guistics, psychology, and biology to Artificial Intelligence. We will also look
at the difference between the claims made by proponents of weak AI (AI is
a commonly used abbreviation for Artificial Intelligence) compared with
those who support strong AI, as well as look at the difference between
strong methods and weak methods in Artificial Intelligence.

We will begin by looking at Artificial Intelligence itself and trying to find a
definition for the subject.

1.2 What Is Artificial Intelligence?

Perhaps a better starting point would be to ask, “What is intelligence?” This
is a complex question with no well-defined answer that has puzzled biolo-
gists, psychologists, and philosophers for centuries. In Chapter 13 we pose
a similar question when we ask, “What is life?” in order to help us under-
stand what Artificial Life, a branch of Artificial Intelligence, is.

One could certainly define intelligence by the properties it exhibits: an abil-
ity to deal with new situations; the ability to solve problems, to answer
questions, to devise plans, and so on. It is perhaps harder to define the dif-
ference between the intelligence exhibited by humans and that exhibited by
dolphins or apes.

For now we will confine ourselves, then, to the somewhat simpler question
that is posed by the title of this section: What Is Artificial Intelligence?

A simple definition might be as follows:

Artificial intelligence is the study of systems that act in a way that to any
observer would appear to be intelligent.

This definition is fine, but in fact it does not cover the whole of Artificial
Intelligence. In many cases, Artificial Intelligence techniques are used to
solve relatively simple problems or complex problems that are internal to
more complex systems. For example, the search techniques described in
Chapter 4 are rarely used to provide a robot with the ability to find its way
out of a maze, but are frequently used for much more prosaic problems.

This may lead us to another definition of Artificial Intelligence, as follows:

Artificial Intelligence involves using methods based on the intelligent behavior
of humans and other animals to solve complex problems.

1.3 Strong Methods and Weak Methods 5

Hence, in Chapter 20, we look at systems that are able to “understand”
human speech, or at least are able to extract some meaning from human
utterances, and carry out actions based on those utterances. Such systems
may not be designed to behave in an intelligent way, but simply to provide
some useful function. The methods they use, however, are based on the
intelligent behavior of humans.

This distinction is brought into sharper contrast when we look at the dif-
ference between so-called strong AI and weak AI.

The followers of strong AI believe that by giving a computer program suffi-
cient processing power, and by providing it with enough intelligence, one
can create a computer that can literally think and is conscious in the same
way that a human is conscious.

Many philosophers and Artificial Intelligence researchers consider this view
to be false, and even ludicrous. The possibility of creating a robot with emo-
tions and real consciousness is one that is often explored in the realms of
science fiction but is rarely considered to be a goal of Artificial Intelligence.

Weak AI, in contrast, is simply the view that intelligent behavior can be
modeled and used by computers to solve complex problems. This point of
view argues that just because a computer behaves intelligently does not
prove that it is actually intelligent in the way that a human is. We will exam-
ine this argument in more detail in Chapter 2, when we look at the Chinese
Room thought experiment and the arguments around it.

1.3 Strong Methods and Weak Methods

We have discussed the difference between the claims of weak AI and strong
AI. This difference is not to be confused with the difference between strong
methods and weak methods.

Weak methods in Artificial Intelligence use systems such as logic, auto-
mated reasoning, and other general structures that can be applied to a wide
range of problems but that do not necessarily incorporate any real knowl-
edge about the world of the problem that is being solved.

In contrast, strong method problem solving depends on a system being
given a great deal of knowledge about its world and the problems that it
might encounter. Strong method problem solving depends on the weak

6 CHAPTER 1 A Brief History of Artificial Intelligence

methods because a system with knowledge is useless without some
methodology for handling that knowledge.

Hence, the production systems we will examine in Chapter 9 are based on
the weak method expert system shells but use strong method rules to
encode their knowledge.

The earliest research in Artificial Intelligence focused on weak methods.
Newell and Simon’s General Problem Solver (GPS), which is discussed in
Chapter 15, was an attempt to use weak methods to build a system that
could solve a wide range of general problems. That this approach ulti-
mately failed led to a realization that more was needed than simple repre-
sentations and algorithms to make Artificial Intelligence work: knowledge
was the key ingredient.

A great number of the subjects covered in this book are weak methods.
This does not mean that they are not worth studying, or even that they are
not useful. In many situations, weak methods are ideal for solving prob-
lems. However, the addition of knowledge is almost always essential to
build systems that are able to deal intelligently with new problems; if our
aim is to build systems that appear to behave intelligently, then strong
methods are certainly essential.

1.4 From Aristotle to Babbage

In Chapter 7 of this book, we present the propositional and predicate log-
ics. These systems for logical reasoning are based on the logic invented by
Aristotle, a philosopher from ancient Greece, who lived from 384 to 322
B.C. and who studied under Plato during that time. The writings of Aristo-
tle (on this and many other subjects) have formed the basis for a great deal
of our modern scientific thinking.

From the point of view of Artificial Intelligence, the most interesting aspect
of Aristotle’s work is his study of logic. He invented the idea of the syllo-
gism, which he defined as follows:

“A discourse in which certain things having been stated, something else
follows of necessity from their being so.”

Aristotle’s logic was developed and expanded on by later philosophers,
mathematicians, and logicians. The first real steps in the study of logic after
Aristotle took place in the 12th century, when Peter Abelard (who lived

1.5 Alan Turing and the 1950s 7

from 1079 to 1142 A.D.) wrote Dialectica, a treatise on logic. In the follow-
ing centuries, more work was carried out, but the greatest developments
were made in the last few centuries.

In the late 17th to early 18th centuries, Gottfried Leibniz, the German
mathematician and philosopher who along with Isaac Newton had a part
in the invention of the calculus used by mathematicians today, invented the
idea of developing a formal mathematical language for reasoning. His uni-
versal language would allow us to express with great precision problems of
all kinds, and then go about solving them. Leibniz did not succeed in creat-
ing this universal language, but his work provided the basis for the propo-
sitional and predicate logics that are so important to Artificial Intelligence
research today.

In the 19th century, George Boole, an English mathematician, who lived
from 1815 to 1864, developed Boolean algebra, the logical system we still
use as part of propositional and predicate logics. Boolean algebra is widely
used by electronics engineers in developing logical gates for silicon chips
and is also used by computer scientists. Boolean algebra provides a language
for expressing concepts such as “A is true” and “A is true but B is false.”

Around the same time that Boole was inventing his algebra, Charles Babbage
invented the world’s first computer—the Analytic Engine. He didn’t ever
manage to build the computer, but his designs were later used to build a work-
ing model. The designs of computers in the 20th century didn’t bear much
resemblance to Babbage’s computer, but they certainly owed a great deal to it.

Babbage’s idea of a digital computer remained a dream until around the
middle of the 20th century. By the 1950s, a number of working computers
had been built. Unlike Babbage’s mechanical engines, these computers were
electronic. The very first electromechanical computers were soon replaced
by computers based on vacuum tubes.

1.5 Alan Turing and the 1950s

One of the great figures in the history of Artificial Intelligence is Alan Tur-
ing. During World War II, Turing famously worked in Bletchley Park, help-
ing to solve the Germans’ codes. After the war, he began to work on the idea
of the possibility of building a computer that could think. His paper pub-
lished in 1950, Computing Machinery & Intelligence, was one of the first
papers to be written on this subject.

8 CHAPTER 1 A Brief History of Artificial Intelligence

The Turing test was designed by Turing as a way to judge the success or
otherwise of an attempt to produce a thinking computer. More specifically,
it was based on the idea that if a person who interrogated the computer
could not tell if it was a human or a computer, then to all intents and pur-
poses, Turing said, it is intelligent.

The test is designed as follows:

The interrogator is given access to two individuals, one of whom is a
human and the other of whom is a computer. The interrogator can ask the
two individuals questions, but cannot directly interact with them. Probably
the questions are entered into a computer via a keyboard, and the responses
appear on the computer screen.

The human is intended to attempt to help the interrogator, but if the com-
puter is really intelligent enough, it should be able to fool the interrogator
into being uncertain about which is the computer and which is the human.

The human can give answers such as “I’m the human—the other one is the
computer,” but of course, so can the computer. The real way in which the
human proves his or her humanity is by giving complex answers that a
computer could not be expected to comprehend. Of course, the inventors
of the truly intelligent computer program would have given their program
the ability to anticipate all such complexities.

Turing’s test has resulted in a number of computer programs (such as
Weizenbaum’s ELIZA, designed in 1965) that were designed to mimic
human conversation. Of course, this in itself is not a particularly useful
function, but the attempt has led to improvements in understanding of
areas such as natural language processing. To date, no program has passed
the Turing test, although cash prizes are regularly offered to the inventor of
the first computer program to do so.

Later in the 1950s computer programs began to be developed that could
play games such as checkers and chess (see Chapter 6), and also the first
work was carried out into developing computer programs that could
understand human language (Chapter 20).

A great deal of work at this stage was done in computer translation. It was,
indeed, widely believed that computers could eventually be programmed to
translate accurately from one human language to another. It has since been
found that the task of machine translation is actually an extremely difficult

1.6 The 1960s to the 1990s 9

one, and not one that has yet been completely solved. This subject is dis-
cussed in more detail in Chapter 20.

In 1956, the term Artificial Intelligence was first used by John McCarthy at
a conference in Dartmouth College, in Hanover, New Hampshire.

In 1957, Newell and Simon invented the idea of the GPS, whose purpose
was, as the name suggests, to solve almost any logical problem. The program
used a methodology known as means ends analysis, which is based on the
idea of determining what needs to be done and then working out a way to
do it. This works well enough for simple problems, but AI researchers soon
realized that this kind of method could not be applied in such a general
way—the GPS could solve some fairly specific problems for which it was
ideally suited, but its name was really a misnomer.

At this time there was a great deal of optimism about Artificial Intelligence.
Predictions that with hindsight appear rash were widespread. Many com-
mentators were predicting that it would be only a few years before comput-
ers could be designed that would be at least as intelligent as real human
beings and able to perform such tasks as beating the world champion at
chess, translating from Russian into English, and navigating a car through a
busy street. Some success has been made in the past 50 years with these
problems and other similar ones, but no one has yet designed a computer
that anyone would describe reasonably as being intelligent.

In 1958, McCarthy invented the LISP programming language, which is still
widely used today in Artificial Intelligence research.

1.6 The 1960s to the 1990s

Since the 1950s, a great deal of the original optimism has gone out of Arti-
ficial Intelligence and has been replaced with a degree of realism.

The aim of the study of Artificial Intelligence is no longer to create a robot
as intelligent as a human, but rather to use algorithms, heuristics, and
methodologies based on the ways in which the human brain solves prob-
lems. Hence, systems have been designed such as Thomas Evans’ Analogy
and Melanie Mitchell’s Copycat Architecture, which were designed to be
able to solve problems that involve analogies. Mitchell’s Copycat, for exam-
ple, can solve problems such as “ABC is to CBA as DEF is to ???.”

10 CHAPTER 1 A Brief History of Artificial Intelligence

The ability to solve problems of this kind does not represent intelligence, but
the development of systems that can solve such problems is the mainstay of
Artificial Intelligence research and arguably an extremely useful step along
the way to producing more and more useful computer software systems.

In Chapter 2, we will discuss the subject of whether a computer program
can really be “intelligent.”

In the most recent decades, the study of Artificial Intelligence has flour-
ished. Areas of particular importance include the following:

■ machine learning

■ multi-agent systems

■ artificial life

■ computer vision

■ planning

■ playing games (chess in particular)

In Chapter 2, we will look at the prevalence of Artificial Intelligence in
the world today. This prevalence has more than justified the work of the
past 50 years.

1.7 Philosophy

The philosophy of great thinkers, from Plato to Descartes and to Daniel
Dennett, has had a great deal of influence on the modern study of Artificial
Intelligence.

The influence of Aristotle has already been mentioned, but it has been
argued (Dreyfus, 1972) that the history of Artificial Intelligence begins
when Plato wrote that his teacher Socrates said, “I want to know what is
characteristic of piety which makes all actions pious. . . that I may have it to
turn to, and to use as a standard whereby to judge your actions and those of
other men.”

Socrates was claiming that an algorithm could be defined that described
the behavior of humans and determined whether a person’s behavior was
good or bad.

This leads us to a fundamental question that has been asked by philoso-
phers and students of Artificial Intelligence for many years: Is there more to

1.8 Linguistics 11

the mind than simply a collection of neurons? Or, to put it another way, if
each neuron in the human brain was replaced by an equivalent computa-
tional device, would the resultant be the same person? Would it indeed be
capable of intelligent thought?

This kind of question is regularly debated by modern philosophers such as
Daniel Dennett, and while the answer is far from clear, it is an instructive
debate to follow, and its implications for Artificial Intelligence are enormous.

In the 17th century, the great philosopher René Descartes was a strong believer
in dualism, the idea that the universe consists of two entirely separate things:
mind and matter. Descartes’s view was that the mind (or soul) was entirely
separate from the physical body and not constrained by it in any way.

Importantly, Descartes did not believe that this dualism extended to ani-
mals. In other words, in his view a cat or a dog is simply a machine: a highly
complex machine, but a machine nonetheless. This view gives hope to the
proponents of Artificial Intelligence who believe that by simply putting
enough computing power together and programming it in the correct way,
a machine could be made to behave in the same way as an animal, or even a
human being.

1.8 Linguistics

The study of human language has a vital role to play in Artificial Intelli-
gence. As is discussed in some detail in Chapter 20, compared with com-
puter languages such as Java and LISP, human languages are extraordinarily
complex and are full of pitfalls that almost seem designed to trap anyone
(human or computer) inexperienced in the use of the language.

This complexity, combined with a sense of optimism, may well have been
part of the reason that natural language processing was such a popular
research area in the early days of Artificial Intelligence.

Some of the optimism surrounding Natural Language Processing came
from the writings of Noam Chomsky, who in the 1950s proposed his the-
ory of Syntactic Structures, which was a formal theory of the structure of
human language. His theory also attempted to provide a structure for
human knowledge, based on the knowledge of language.

This idea of knowledge representation is at the very core of Artificial Intel-
ligence and is a recurring theme throughout this book.

12 CHAPTER 1 A Brief History of Artificial Intelligence

Almost all of the techniques described in this book depend on a formal
method of representation for knowledge that enables a computer to use
information from the world, or concerning the problems it is to solve,
without necessarily needing to understand that knowledge.

There is a close relationship between linguistics and Artificial Intelligence,
and the two fields join together in the study of natural language processing,
which is discussed in some detail in Chapter 20.

1.9 Human Psychology and Biology

Some of the techniques, such as search algorithms, described in this book
do not clearly map onto any specific biological or psychological function of
human beings. On the other hand, many of them do. For example, McCul-
loch and Pitts’s electronic neurons, which are used today to build neural
networks, are directly based on the way in which neurons in the human
brain function.

In a similar way, much research in Artificial Intelligence has been related to
cognitive psychology, which is based on the idea that the human brain
uses knowledge or information that it is capable of processing in order to
solve problems, make decisions, draw conclusions, and carry out other
intelligent acts.

This form of psychology was in contrast to behaviorism, which prevailed
for much of the first half of the 20th century. Behaviorism relates behavior
directly to stimuli, without taking into account knowledge or information
that might be contained in the brain. This is the kind of psychology that
Pavlov was demonstrating in his famous experiment with dogs.

Psychology is certainly useful to the study of Artificial Intelligence in one
respect: it helps to answer the important question, “What is intelligence?”
As we have seen already, this is a difficult question to answer, but in study-
ing it, psychologists give us a great deal of information that is useful in
forming the ideas behind Artificial Intelligence.

1.10 AI Programming Languages

A number of programming languages exist that are used to build Artificial
Intelligence systems. General programming languages such as C++ and
Java are often used because these are the languages with which most com-

1.10 AI Programming Languages 13

puter scientists have experience. There also exist two programming lan-
guages that have features that make them particularly useful for program-
ming Artificial Intelligence projects—PROLOG and LISP.

We will now provide a brief overview of these two languages and explain
how they are used in Artificial Intelligence research. Of course, a number of
other programming languages exist that are also widely used for Artificial
Intelligence, but we will focus on PROLOG and LISP because these are cer-
tainly the most widely used and the ones on which there is the widest range
of relevant literature.

1.10.1 PROLOG

PROLOG (PROgramming in LOGic) is a language designed to enable pro-
grammers to build a database of facts and rules, and then to have the sys-
tem answer questions by a process of logical deduction using the facts and
rules in the database.

Facts entered into a PROLOG database might look as follows:

tasty (cheese).
made_from (cheese, milk).
contains (milk, calcium).

These facts can be expressed as the following English statements:

Cheese is tasty.

Cheese is made from milk.

Milk contains calcium.

We can also specify rules in a similar way, which express relationships between
objects and also provide the instructions that the PROLOG theorem prover
will use to answer queries. The following is an example of a rule in PROLOG:

contains (X, Y) :- made_from (X, Z), contains (Z, Y).

This rule is made up of two main parts, separated by the symbol “:-”.

The rule thus takes the form:

B :- A

which means “if A is true, then B is true,” or “A implies B.”

Hence, the rule given above can be translated as “If X is made from Z and Z
contains Y then X contains Y.”

14 CHAPTER 1 A Brief History of Artificial Intelligence

In Chapters 7, 8, and 9, we make a great deal of use of rules of this kind.

Having entered the three facts and one rule given above, the user might
want to ask the system a question:

?- contains (cheese, calcium).

Using a process known as resolution (which is described in detail in Chap-
ter 8), the PROLOG system is able to use the rule and the facts to determine
that because cheese is made from milk, and because milk contains calcium,
therefore cheese does contain calcium. It thus responds:

yes

It would also be possible to ask the system to name everything that con-
tains calcium:

?- contains (X, calcium)

The system will use the same rules and facts to deduce that milk and cheese
both contain calcium, and so will respond:

X=milk.
X=cheese.

This has been a very simple example, but it should serve to illustrate how
PROLOG works. Far more complex databases of facts and rules are rou-
tinely built using PROLOG, and in some cases simple databases are built
that are able to solve complex mathematical problems.

PROLOG is not an efficient programming language, and so for many prob-
lems a language such as C++ would be more appropriate. In cases where
logical deduction is all that is required, and the interactive nature of the
PROLOG interface is suitable, then PROLOG is the clear choice. PROLOG
provides a way for programmers to manipulate data in the form of rules
and facts without needing to select algorithms or methodologies for han-
dling those data.

1.10.2 LISP

LISP (LISt Programming) is a language that more closely resembles the
imperative programming languages such as C++ and Pascal than does
PROLOG. As its name suggests, LISP is based around handling of lists of
data. A list in LISP is contained within brackets, such as:

[A B C]

Chapter Summary 15

This is a list of three items. LISP uses lists to represent data, but also to rep-
resent programs. Hence, a program in LISP can be treated as data. This
introduces the possibility of writing self-modifying programs in LISP, and
as we see in Chapter 13, it also allows us to use evolutionary techniques to
“evolve” better LISP programs.

LISP is a far more complex language syntactically than PROLOG, and so we
will not present any detail on its syntax here. It provides the usual kinds of
mechanisms that other programming languages provide, such as assign-
ment, looping, evaluating functions, and conditional control
(if. . . then. . .). It also provides a great deal of list manipulation functions,
such as car and cdr, which are used to return the first entry in a list and all
the entries except for the first entry, respectively.

1.11 Chapter Summary

■ Intelligence is difficult to define, and as a result Artificial Intelli-
gence is also hard to define.

■ One definition of Artificial Intelligence is:

Artificial intelligence is the study of systems that act in a way that to
any observer would appear to be intelligent.

■ Proponents of strong AI believe that a computer that behaves in an
intelligent way is capable of possessing mental states and, there-
fore, of being truly conscious and intelligent in the same way that
humans are.

■ Weak AI is a less controversial idea—that computers can be pro-
grammed to behave in intelligent ways in order to solve specific
problems. This book is concerned with the methods of weak AI.

■ Weak and strong AI are not to be confused with weak and
strong methods.

■ Weak methods are those that do not rely on any knowledge or
understanding of the world and the problems being solved. Most
of the techniques described in this book are weak methods.

■ Strong methods are those that use knowledge about the world and
about the problem being solved. The strong method approach is
essential for solving many complex real world problems using Arti-
ficial Intelligence.

16 CHAPTER 1 A Brief History of Artificial Intelligence

■ In studying Artificial Intelligence, it is extremely useful to understand
the background of philosophy, linguistics, biology, and psychology.

■ Philosophers, from Plato and Aristotle to Searle and Dennett, have
asked questions and provided opinions concerning the nature of
intelligence and the ability to define it in a way that would enable
us to program a computer with real intelligence.

■ The 1950s were a time of great optimism in Artificial Intelligence
and also a time of great progress in the field.

■ Turing’s test is a way to determine if a computer is truly intelligent,
by seeing if it could fool a human in conversation into thinking
that it too was human. It is widely believed today that even if a
computer could pass the Turing test, it would still not truly be con-
scious or intelligent in the way that humans are.

■ In 1956 the term Artificial Intelligence was coined by John McCarthy.

■ Since the 1950s, the study of Artificial Intelligence has been fla-
vored with a great deal more realism. The progress in recent years
has been phenomenal.

1.12 Review Questions

1.1 What is intelligence?

1.2 What is Artificial Intelligence? What do you hope to learn by read-
ing this book?

1.3 Is Artificial Intelligence a branch of computer science or an alter-
native to computer science?

1.4 Why is Artificial Intelligence a worthwhile subject to study?

1.5 Explain the difference between strong and weak methods in Artifi-
cial Intelligence. Explain how this dichotomy differs from the dif-
ference between strong and weak AI.

1.6 Why are PROLOG and LISP so well suited to Artificial Intelligence
research? Do you think languages such as C++ and Java could also
be used for such research?

1.7 What do you think led mankind to embark upon the study of Arti-
ficial Intelligence? Which fields of study particularly fed into it?

Further Reading 17

What human desires did the study of Artificial Intelligence seek to
satisfy?

1.8 When did Artificial Intelligence first begin to be studied? Your
answer should be more detailed than a simple date.

1.13 Further Reading

Crevier (1999) gives a fascinating history of the subject of Artificial
Intelligence.

Throughout this book, details are given of other books that can be refer-
enced to learn more about the material covered herein. The following
books are general Artificial Intelligence texts that cover almost all of the
topics covered by this book and also provide excellent introductions to the
subject as a whole.

Each of these books takes a different approach to the material, and it is
worth selecting the text that best fits your personal preferences in studying
this subject.

For example, Russell and Norvig present the material in terms of intelligent
agents. Winston explains his material with a great deal of examples but
tends not to go into a great deal of detail, while Luger goes into greater
depth, but with fewer examples. Schalkoff gives a good coverage of Artifi-
cial Intelligence using examples in PROLOG and LISP; it also therefore
serves as a useful text in those languages.

Computation & Intelligence, edited by George Luger, contains a number of
extremely important papers collected from the whole history of Artificial
Intelligence. It includes papers by such pioneers of the subject as Alan Tur-
ing, Marvin Minsky, John McCarthy, Allen Newell, and Herbert Simon.

The Handbook of Artificial Intelligence, edited by A. Barr and E. Feigenbaum
(1989 – William Kaufman)

The Essence of Artificial Intelligence, by Alison Cawsey (1998 – Prentice Hall)

Introduction to Artificial Intelligence, by Eugene Charniak and Drew
McDermott (1985 – Addison Wesley; out of print)

The Computational Brain, by Patricia S. Churchland and Terrence J.
Sejnowski (1992 – The MIT Press)

AI: The Tumultuous History of the Search for Artificial Intelligence, by Daniel
Crevier (1999 – Basic Books)

18 CHAPTER 1 A Brief History of Artificial Intelligence

Understanding Artificial Intelligence (Science Made Accessible), compiled by
Sandy Fritz (2002 – Warner Books)

The Anatomy of Programming Languages, by Alice E. Fischer and Frances S.
Grodzinsky (1993 – Prentice Hall)

Introduction to Artificial Intelligence, by Philip C. Jackson (1985 – Dover
Publications)

AI Application Programming, by M. Tim Jones (2003 – Charles River Media)

Artificial Intelligence: Structures and Strategies for Complex Problem-Solving,
by George F. Luger (2002 – Addison Wesley)

Computation & Intelligence: Collected Readings, edited by George F. Luger
(1995 – The AAAI Press / The MIT Press)

Artificial Intelligence: A Guide to Intelligent Systems, by Michael Negnevitsky
(2002 – Addison Wesley)

Artificial Intelligence: A New Synthesis, by N.J. Nilsson (1998 – Morgan
Kauffman)

Artificial Intelligence: A Modern Approach, by Stuart Russell and Peter
Norvig (1995 – Prentice Hall)

The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of
Physics, by Roger Penrose (1989 – Oxford University Press)

Understanding Intelligence, by Rolf Pfeiffer and Christian Scheier (2000 –
The MIT Press)

Artificial Intelligence: An Engineering Approach, by Robert J. Schalkoff (1990
– McGraw Hill)

The Encyclopedia of Artificial Intelligence, edited by S.C. Shapiro (1992 - Wiley)

Artificial Intelligence, by Patrick Henry Winston (1992 – Addison Wesley)

2CHAPTER
Uses and Limitations

The limits of my language mean the limits of my world.

—Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Why, sometimes I’ve believed as many as six impossible things before breakfast.

—Lewis Carroll, Through the Looking Glass

Who hath put wisdom in the inward parts? Or who hath given understanding
to the heart?

—The Book of Job, Chapter 38, Verse 36

2.1 Introduction

As was explained in Chapter 1, the early history of Artificial Intelligence
was filled with a great deal of optimism—optimism that today seems at
best to have been unfounded. In this chapter, we look at some of the argu-
ments against strong AI (the belief that a computer is capable of having
mental states) and also look at the prevalence of Artificial Intelligence
today and explain why it has become such a vital area of study.

We will also look at the extent to which the Artificial Intelligence commu-
nity has been successful so far in achieving the goals that were believed to
be possible decades ago. In particular, we will look at whether the computer
HAL in the science fiction film 2001: A Space Odyssey is a possibility with
today’s technologies.

We will also look at the prevalence of Artificial Intelligence, and how it is
used in the world today, the 21st century.

20 CHAPTER 2 Uses and Limitations

2.2 The Chinese Room

We will start by examining philosophical objections to strong AI, in partic-
ular the Chinese Room argument of John Searle.

The American philosopher John Searle has argued strongly against the pro-
ponents of strong AI who believe that a computer that behaves sufficiently
intelligently could in fact be intelligent and have consciousness, or mental
states, in much the same way that a human does.

One example of this is that it is possible using data structures called scripts
(see Chapter 17) to produce a system that can be given a story (for example,
a story about a man having dinner in a restaurant) and then answer ques-
tions (some of which involve a degree of subtlety) about the story. Propo-
nents of strong AI would claim that systems that can extend this ability to
deal with arbitrary stories and other problems would be intelligent.

Searle’s Chinese Room experiment was based on this idea and is described
as follows:

An English-speaking human is placed inside a room. This human does not
speak any language other than English and in particular has no ability to
read, speak, or understand Chinese.

Inside the room with the human are a set of cards, upon which are printed
Chinese symbols, and a set of instructions that are written in English.

A story, in Chinese, is fed into the room through a slot, along with a set of
questions about the story. By following the instructions that he has, the
human is able to construct answers to the questions from the cards with
Chinese symbols and pass them back out through the slot to the questioner.

If the system were set up properly, the answers to the questions would be suf-
ficient that the questioner would believe that the room (or the person inside
the room) truly understood the story, the questions, and the answers it gave.

Searle’s argument is now a simple one. The man in the room does not
understand Chinese. The pieces of card do not understand Chinese. The
room itself does not understand Chinese, and yet the system as a whole is
able to exhibit properties that lead an observer to believe that the system
(or some part of it) does understand Chinese.

2.3 HAL—Fantasy or Reality? 21

In other words, running a computer program that behaves in an intelligent
way does not necessarily produce understanding, consciousness, or real
intelligence.

This argument clearly contrasts with Turing’s view that a computer system
that could fool a human into thinking it was human too would actually be
intelligent.

One response to Searle’s Chinese Room argument, the Systems Reply,
claims that although the human in the room does not understand Chinese,
the room itself does. In other words, the combination of the room, the
human, the cards with Chinese characters, and the instructions form a sys-
tem that in some sense is capable of understanding Chinese stories. There
have been a great number of other objections to Searle’s argument, and the
debate continues.

There are other objections to the ideas of strong AI. The Halting Problem and
Gödel’s incompleteness theorem tell us that there are some functions that a
computer cannot be programmed to compute, and as a result, it would seem to
be impossible to program a computer to perform all the computations needed
for real consciousness. This is a difficult argument, and one potential response
to it is to claim that the human brain is in fact a computer, and that although it
must also be limited by the Halting Problem, it is still capable of intelligence.

This claim that the human brain is a computer is an interesting one. Upon it
is based the idea of neural networks. By combining the processing power of
individual neurons, we are able to produce artificial neural networks that are
capable of solving extremely complex problems, such as recognizing faces.
Proponents of strong AI might argue that such successes are steps along the
way to producing an electronic human being, whereas objectors would point
out that this is simply a way to solve one small set of problems—not only
does it not solve the whole range of problems that humans are capable of,
but it also does not in any way exhibit anything approaching consciousness.

2.3 HAL—Fantasy or Reality?

One of the most famous fictional accounts of Artificial Intelligence comes
in the film 2001: A Space Odyssey, based on the story by Arthur C. Clarke.

One of the main characters in the film is HAL, a Heuristically programmed
ALgorithmic computer. In the film, HAL behaves, speaks, and interacts

22 CHAPTER 2 Uses and Limitations

with humans in much the same way that a human would (albeit in a dis-
embodied form). In fact, this humanity is taken to extremes by the fact that
HAL eventually goes mad.

In the film, HAL played chess, worked out what people were saying by read-
ing their lips, and engaged in conversation with other humans. How many
of these tasks are computers capable of today?

We shall see in Chapter 6 that there has been a great deal of success with
developing computers that can play chess. In 1997, a computer, Deep Blue,
beat the chess world champion Garry Kasparov. As we discuss in Chapter 6,
this was not the end of supremacy at chess for mankind, however. The vic-
tory was not a particularly convincing one and has not been repeated.
Chess-playing computers are certainly capable of beating most human
chess players, but those who predicted that chess computers would be
vastly superior to even the best human players by now were clearly wrong.

In some games, such as Go, the best computers in the world are able to play
only at the level of a reasonably accomplished amateur human player. The
game is so complex that even the best heuristics and Artificial Intelligence
techniques are not able to empower a computer with the ability to come
close to matching the capabilities of the best human players.

In Chapter 20, we look at techniques that are used to enable computers to
understand human language and in theory to enable them to engage in
conversation. Clearly no computer program has yet been designed that is
able to pass the Turing test and engage fully in conversation in such a way
that would be indistinguishable from a human, and there is no sign that
any such program will be designed in the near future.

The ability to interpret spoken words by examining the movement of lips is
one that only a few humans have. It combines a number of complex prob-
lems: first, the visual problem of identifying sounds from the shape of lips.
In Chapter 21, we will see how computers can be programmed to interpret
visual information in the same kinds of ways that humans do. Interpreting
the shape of human lips would probably not be impossible, and it is likely
that a neural network could be trained to solve such a problem. The next
problem is to combine the sounds together into words—again, not a diffi-
cult problem given a suitably large lexicon of words. Finally, HAL would
have needed to be able to interpret and understand the words in the same
way that he would have done when listening to spoken words.

2.4 AI in the 21st Century 23

HAL, as portrayed in the film, did have some capabilities that Artificial
Intelligence has given to computers today, but it is certainly not the case
that computers exist with the breadth of capabilities and in particular the
ability to communicate in so human a manner. Finally, the likelihood of a
computer becoming insane is a rather remote one, although it is of course
possible that a malfunction of some kind could cause a computer to exhibit
properties not unlike insanity!

Artificial Intelligence has been widely represented in other films. The Stephen
Spielberg film AI: Artificial Intelligence is a good example. In this film, a cou-
ple buy a robotic boy to replace their lost son. The audience’s sympathies are
for the boy who feels emotions and is clearly as intelligent (if not more so) as
a human being. This is strong AI, and while it may be the ultimate goal of
some Artificial Intelligence research, even the most optimistic proponents of
strong AI would agree that it is not likely to be achieved in the next century.

2.4 AI in the 21st Century

Artificial Intelligence is all around us. The techniques described in this
book are used in a staggering array of machines and systems that we use
every day. Fuzzy logic, for example, is widely used in washing machines,
cars, and elevator control mechanisms. (Note that no one would claim that
as a result those machines were intelligent, or anything like it! They are
simply using techniques that enable them to behave in a more intelligent
way than a simpler control mechanism would allow.)

Intelligent agents, which are described in Chapter 19, are widely used. For
example, there are agents that help us to solve problems while using our
computers and agents that traverse the Internet, helping us to find docu-
ments that might be of interest. The physical embodiment of agents,
robots, are also becoming more widely used. Robots are used to explore the
oceans and other worlds, being able to travel in environments inhospitable
to humans. It is still not the case, as was once predicted, that robots are
widely used by households, for example, to carry shopping items or to play
with children, although the AIBO robotic dog produced by Sony and other
similar toys are a step in this direction.

Expert systems are used by doctors to help with symptoms that are hard to
diagnose or to prescribe treatments in cases where even human experts
have difficulty.

24 CHAPTER 2 Uses and Limitations

Artificial Intelligence systems are used in a wide range of industries, from
helping travel agents select suitable holidays to enabling factories to sched-
ule machines.

Artificial Intelligence is particularly useful in situations where traditional
methods would be too slow. Combinatorial problems, such as scheduling
teachers and pupils to classrooms, are not well solved by traditional com-
puter science techniques. In such cases, the heuristics and techniques pro-
vided by Artificial Intelligence can provide excellent solutions.

Many computer games have been designed based on Artificial Intelligence.
In order to provide more realistic play, the computer game Republic: The
Revolution, launched in 2003, contained a million individual Artificial
Intelligences, each capable of interacting with the world and with the player
of the game, as well as capable of being manipulated by the player.

It is likely that Artificial Intelligence will become more prevalent in our
society. And whether or not we eventually create an Artificial Intelligence
that is truly intelligent, we are likely to find computers, machines, and other
objects appearing to become more intelligent—at least in terms of the way
they behave.

2.5 Chapter Summary

■ The Chinese Room argument is a thought experiment designed by
John Searle, which is designed to refute strong AI.

■ The computer HAL, as described in the film 2001: A Space Odyssey,
is not strictly possible using today’s technology, but many of its
capabilities are not entirely unrealistic today.

■ The computer program, Deep Blue, beat world chess champion
Garry Kasparov in a six-game chess match in 1997. This feat has
not been repeated, and it does not yet represent the end of human
supremacy at this game.

■ Artificial Intelligence is all around us and is widely used in indus-
try, computer games, cars, and other devices, as well as being a
valuable tool used in many computer software programs.

2.6 Review Questions

2.1 Explain the difference between strong AI and weak AI. Which of
the two do you think this book will be about? Why?

Further Reading 25

2.2 Are there any tasks that a human can do that you think a computer
could never be programmed to do? Why?

2.3 What kinds of problems that humans find difficult do you think
computers are particularly well suited to solve? Are there any such
problems that you know of that computers cannot currently solve
but which you believe computers will one day be able to solve?
What advances in technology or understanding are necessary
before those problems can be solved?

2.4 Explain the Chinese Room argument, and present some of the
arguments against it, and the counter-arguments. Which do you
find most convincing? How does this affect your view on the over-
all worth of the study of Artificial Intelligence?

2.5 If a computer passed the Turing Test, what would that prove? What
conditions would you want to be sure had been observed in setting
up the test?

2.6 If you replaced each of the neurons in your brain one by one with
electronic neurons (take on trust for now that electronic neurons
are possible), what do you think would be the effect? How would
your perceptions of the world change during the process? At the
end of the process, would you still be you? Would you still be con-
scious? Would you still be capable of having mental states and
emotions? (Note: there are no right answers to these questions. The
purpose in asking them is to make you think about them and
hopefully to inspire you to read more about the subject.)

2.7 Further Reading

The works of Dreyfus and Dennett provide a great introduction to the
philosophical arguments surrounding strong AI. The opposing view can be
found thoroughly explored in Kurzweil’s works, among others. The origi-
nal Chinese Room argument can be found in Searle (1980).

A number of other books give good coverage of the popularity of Artificial
Intelligence in the modern world. Challoner (2002) is probably too basic
for most readers but does provide an entertaining introduction to the sub-
ject that would make a good introduction for a younger relative who was
interested in learning more about the subject.

Cambrian Intelligence: The Early History of the New AI, by Rodney A.
Brooks (1999 – MIT Press)

26 CHAPTER 2 Uses and Limitations

Artificial Intelligence, by Jack Challoner (2002 – Dorling Kindersley, Essen-
tial Science)

The Turing Test and the Frame Problem: AI’s Mistaken Understanding of
Intelligence, by Larry J. Crockett (1994 – Intellect)

Brainstorms: Philosophical Essays on Mind and Psychology, by Daniel Den-
nett (1978 – Bradford)

Consciousness Explained, by Daniel Dennett (1992 – Little, Brown & Co.)

What Computers Still Can’t Do, by Hubert L. Dreyfus (1999 – The MIT Press)

Artificial Intelligence: The Very Idea, by J. Haugeland (1985 – The MIT Press)

The Age of Spiritual Machines, by Ray Kurzweil (1999 – Viking Penguin)

The Society of Mind, by Marvin Minsky (1988 – Simon & Schuster)

Robot: Mere Machine to Transcendent Mind, by Hans P. Moravec (2000 –
Oxford University Press)

Views into the Chinese Room: New Essays on Searle and Artificial Intelligence,
edited by John Preston and Mark Bishop (2002 – Oxford University Press)

Are We Spiritual Machines?: Ray Kurzweil vs. the Critics of Strong A.I., edited
by Jay W. Richards (2002 – Discovery Institute)

The Turing Test: The Elusive Standard of Artificial Intelligence, edited by
James H. Moor (2003 – Kluwer Academic Publishers)

Minds, Brains, and Programs, by John R. Searle (1980 – in The Behavioral
and Brain Sciences, vol. 3, Cambridge University Press)

Minds, Brains and Science, by John R. Searle (1986 – Harvard University Press)

In the Mind of the Machine: The Breakthrough in Artificial Intelligence, by
Kevin Warwick (1998 – Random House)

Arguing A. I.: The Battle for Twenty-First Century Science, by Sam Williams
(2002 – Random House)

3CHAPTER
Knowledge Representation

If, for a given problem, we have a means of checking a proposed solution, then
we can solve the problem by testing all possible answers. But this always takes
much too long to be of practical interest. Any device that can reduce this search
may be of value.

—Marvin Minsky, Steps Toward Artificial Intelligence

Study is like the heaven’s glorious sun,
That will not be deep-search’d with saucy looks;
Small have continual plodders ever won,
Save base authority from others’ books.
These earthly godfathers of Heaven’s lights
That give a name to every fixed star,
Have no more profit of their shining nights
Than those that walk and wot not what they are.

—William Shakespeare, Love’s Labours Lost

Better the rudest work that tells a story or records a fact, than the richest with-
out meaning.

—John Ruskin, Seven Lamps of Architecture

3.1 Introduction

Throughout this book we will be discussing representations. The reason for
this is that in order for a computer to solve a problem that relates to the real
world, it first needs some way to represent the real world internally. In dealing
with that internal representation, the computer is then able to solve problems.

28 CHAPTER 3 Knowledge Representation

This chapter introduces a number of representations that are used else-
where in this book, such as semantic nets, goal trees, and search trees, and
explains why these representations provide such a powerful way to solve a
wide range of problems.

This chapter also introduces frames and the way in which inheritance can
be used to provide a powerful representational system.

This chapter is illustrated with a number of problems and suitable repre-
sentations that can be used to solve those problems.

3.2 The Need for a Good Representation

As we will see elsewhere in this book, the representation that is used to repre-
sent a problem is very important. In other words, the way in which the com-
puter represents a problem, the variables it uses, and the operators it applies
to those variables can make the difference between an efficient algorithm
and an algorithm that doesn’t work at all. This is true of all Artificial Intelli-
gence problems, and as we see in the following chapters, it is vital for search.

Imagine that you are looking for a contact lens that you dropped on a foot-
ball field. You will probably use some knowledge about where you were on
the field to help you look for it. If you spent time in only half of the field,
you do not need to waste time looking in the other half.

Now let us suppose that you are having a computer search the field for the
contact lens, and let us further suppose that the computer has access to an
omniscient oracle that will answer questions about the field and can accu-
rately identify whether the contact lens is in a particular spot.

Now we must choose a representation for the computer to use so that it can
formulate the correct questions to ask.

One representation might be to have the computer divide the field into
four equal squares and ask the oracle for each square, “Is the lens in this
square?” This will identify the location on the field of the lens but will not
really be very helpful to you because you will still have a large area to search
once you find which quarter of the field the lens is in.

Another representation might be for the computer to have a grid con-
taining a representation of every atom contained in the field. For each

3.3 Semantic Nets 29

atom, the computer could ask its oracle, “Is the lens in contact with this
atom?”

This would give a very accurate answer indeed, but would be an extremely
inefficient way of finding the lens. Even an extremely powerful computer
would take a very long time indeed to locate the lens.

Perhaps a better representation would be to divide the field up into a grid
where each square is one foot by one foot and to eliminate all the squares
from the grid that you know are nowhere near where you were when you
lost the lens. This representation would be much more helpful.

In fact, the representations we have described for the contact lens problem
are all really the same representation, but at different levels of granularity.
The more difficult problem is to determine the data structure that will be
used to represent the problem we are exploring. As we will see throughout
this book, there are a wide range of representations used in Artificial
Intelligence.

When applying Artificial Intelligence to search problems, a useful, efficient,
and meaningful representation is essential. In other words, the representa-
tion should be such that the computer does not waste too much time on
pointless computations, it should be such that the representation really
does relate to the problem that is being solved, and it should provide a
means by which the computer can actually solve the problem.

In this chapter, we look at a number of representations that are used in
search, and in particular we will look at search trees, which are used
throughout this part of the book.

3.3 Semantic Nets

The semantic net is a commonly used representation in Artificial Intelli-
gence. A semantic net is a graph consisting of nodes that are connected by
edges. The nodes represent objects, and the links between nodes represent
relationships between those objects. The links are usually labeled to indi-
cate the nature of the relationship.

30 CHAPTER 3 Knowledge Representation

chases

chases

Dog

Cat

Fido

Bob

Cheese

Builder

Fang
Mice

owns

is a

is a

is a

eats

eat
Figure 3.1
A simple semantic net

A simple example of a semantic net is shown in Figure 3.1.

Note that in this semantic net, the links are arrows, meaning that they have
a direction. In this way, we can tell from the diagram that Fido chases Fang,
not that Fang chases Fido. It may be that Fang does chase Fido as well, but
this information is not presented in this diagram.

Semantic nets provide a very intuitive way to represent knowledge about
objects and the relationships that exist between those objects. The data in
semantic nets can be reasoned about in order to produce systems that have
knowledge about a particular domain. Semantic nets do have limitations,
such as the inability to represent negations: “Fido is not a cat.” As we see in
Chapter 7, this kind of fact can be expressed easily in first-order predicate
logic and can also be managed by rule-based systems.

Note that in our semantic net we have represented some specific individu-
als, such as Fang, Bob, and Fido, and have also represented some general
classes of things, such as cats and dogs. The specific objects are generally
referred to as instances of a particular class. Fido is an instance of the class
dog. Bob is an instance of the class Builder.

It is a little unclear from Figure 3.1 whether cheese is a class or an instance of
a class. This information would need to be derived by the system that is
manipulating the semantic net in some way. For example, the system might
have a rule that says “any object that does not have an ‘is-a’ relationship to a
class is considered to represent a class of objects.” Rules such as this must be
applied with caution and must be remembered when building a semantic net.

3.4 Inheritance 31

An important feature of semantic nets is that they convey meaning. That is
to say, the relationship between nodes and edges in the net conveys infor-
mation about some real-world situation. A good example of a semantic net
is a family tree diagram. Usually, nodes in these diagrams represent people,
and there are edges that represent parental relationships, as well as relation-
ships by marriage.

Each node in a semantic net has a label that identifies what the node repre-
sents. Edges are also labeled. Edges represent connections or relationships
between nodes. In the case of searching a dictionary for a page that con-
tains a particular word, each node might represent a single page, and each
edge would represent a way of getting from one page to another.

The particular choice of semantic net representation for a problem will
have great bearing on how the problem is solved. A simple representation
for searching for a word in a dictionary would be to have the nodes
arranged in a chain with one connection from the first node to the second,
and then from the second to the third, and so on. Clearly, any method that
attempts to search this graph will be fairly inefficient because it means vis-
iting each node in turn until the desired node is found. This is equivalent
to flicking through the pages of the dictionary in order until the desired
page is found.

As we see in Section 3.7, representing the dictionary by a different data
structure can give much more efficient ways of searching.

3.4 Inheritance

Inheritance is a relationship that can be particularly useful in AI and in
programming. The idea of inheritance is one that is easily understood
intuitively. For example, if we say that all mammals give birth to live
babies, and we also say that all dogs are mammals, and that Fido is a dog,
then we can conclude that Fido gives birth to live mammals. Of course,
this particular piece of reasoning does not take into account the fact that
Fido might be male, or if Fido is female, might be too young or too old to
give birth.

So, inheritance allows us to specify properties of a superclass and then to
define a subclass, which inherits the properties of the superclass. In our

32 CHAPTER 3 Knowledge Representation

example, mammals are the superclass of dogs and Fido. Dogs are the sub-
class of mammals and the superclass of Fido.

If you have programmed with an object-oriented programming language
such as C++ or Java, then you will be familiar with the concept of inheri-
tance and will appreciate its power. Object-oriented programming is dis-
cussed further in Section 3.6.

As has been shown, although inheritance is a useful way to express general-
ities about a class of objects, in some cases we need to express exceptions to
those generalities (such as, “Male animals do not give birth” or “Female
dogs below the age of six months do not give birth”). In such cases, we say
that the default value has been overridden in the subclass.

As we will see, it is usually useful to be able to express in our chosen repre-
sentation which values can be overridden and which cannot.

3.5 Frames

Frame-based representation is a development of semantic nets and allows
us to express the idea of inheritance.

As with semantic nets, a frame system consists of a set of frames (or
nodes), which are connected together by relations. Each frame describes
either an instance (an instance frame) or a class (a class frame).

Thus far, we have said that instances are “objects” without really saying
what an object is. In this context, an object can be a physical object, but it
does not have to be. An object can be a property (such as a color or a
shape), or it can be a place, or a situation, or a feeling. This idea of objects
is the same that is used in object-oriented programming languages, such as
C++ and Java. Frames are thus an object-oriented representation that can
be used to build expert systems. Object-oriented programming is further
discussed in Section 3.6.

Each frame has one or more slots, which are assigned slot values. This is
the way in which the frame system network is built up. Rather than simply
having links between frames, each relationship is expressed by a value being
placed in a slot. For example, the semantic net in Figure 3.1 might be repre-
sented by the following frames:

3.5 Frames 33

Is a

Owns

Eats

Builder

Fido

Cheese

Bob

Is a

Chases

Dog

Fang

Fido

Figure 3.2
Partial representation for
a frame system for the
semantic net shown in Fig-
ure 3.1

Frame Name Slot Slot Value

Bob is a Builder

owns Fido

eats Cheese

Fido is a Dog

chases Fang

Fang is a Cat

chases Mice

Mice eat Cheese

Cheese

Builder

Dog

Cat

We can also represent this frame system in a diagrammatic form using rep-
resentations such as those shown in Figure 3.2.

When we say, “Fido is a dog,” we really mean, “Fido is an instance of the
class dog,” or “Fido is a member of the class of dogs.” Hence, the “is-a” rela-
tionship is very important in frame-based representations because it
enables us to express membership of classes. This relationship is also
known as generalization because referring to the class of mammals is more
general than referring to the class of dogs, and referring to the class of dogs
is more general than referring to Fido.

34 CHAPTER 3 Knowledge Representation

It is also useful to be able to talk about one object being a part of another
object. For example, Fido has a tail, and so the tail is part of Fido. This rela-
tionship is known as aggregation because Fido can be considered an aggre-
gate of dog parts.

Other relationships are known as association. An example of such a relation-
ship is the “chases” relationship. This explains how Fido and Fang are related
or associated with each other. Note that association relationships have mean-
ing in two directions. The fact that Fido chases Fang means that Fang is chased
by Fido, so we are really expressing two relationships in one association.

3.5.1 Why Are Frames Useful?

Frames can be used as a data structure by Expert Systems, which are dis-
cussed in more detail in Chapter 9.

The main advantage of using frame-based systems for expert systems over
the rule-based approach is that all the information about a particular
object is stored in one place. In a rule-based system, information about
Fido might be stored in a number of otherwise unrelated rules, and so if
Fido changes, or a deduction needs to be made about Fido, time may be
wasted examining irrelevant rules and facts in the system, whereas with the
frame system, the Fido frame could be quickly examined.

This difference becomes particularly clear when we consider frames that
have a very large number of slots and where a large number of relationships
exist between frames (i.e., a situation in which objects have a lot of proper-
ties, and a lot of objects are related to each other). Clearly, many real-world
situations have these properties.

3.5.2 Inheritance

We might extend our frame system with the following additional information:

Dogs chase cats

Cats chase mice

In expressing these pieces of information, we now do not need to state
explicitly that Fido chases Fang or that Fang chases mice. In this case, we
can inherit this information because Fang is an instance of the class Cats,
and Fido is an instance of the class Dogs.

We might also add the following additional information:

3.5 Frames 35

Mammals breathe

Dogs are mammals

Cats are mammals

Hence, we have now created a new superclass, mammals, of which dogs and
cats are subclasses. In this way, we do not need to express explicitly that cats
and dogs breathe because we can inherit this information. Similarly, we do
not need to express explicitly that Fido and Fang breathe—they are
instances of the classes Dogs and Cats, and therefore they inherit from
those classes’ superclasses.

Now let us add the following fact:

Mammals have four legs

Of course, this is not true, because humans do not have four legs, for exam-
ple. In a frame-based system, we can express that this fact is the default
value and that it may be overridden. Let us imagine that in fact Fido has
had an unfortunate accident and now has only three legs. This information
might be expressed as follows:

Frame Name Slot Slot Value

Mammal *number of legs four

Dog subclass Mammal

Cat subclass Mammal

Fido is a Dog
number of legs three

Fang is a Cat

Here we have used an asterisk (*) to indicate that the value for the “number
of legs” slot for the Mammal class is a default value and can be overridden,
as has been done for Fido.

3.5.3 Slots as Frames

It is also possible to express a range of values that a slot can take—for
example, the number of legs slot might be allowed a number between 1 and
4 (although, for the insects class, it might be allowed 6).

36 CHAPTER 3 Knowledge Representation

One way to express this kind of restriction is by allowing slots to be frames.
In other words, the number of legs slot can be represented as a frame,
which includes information about what range of values it can take:

Frame Name Slot Slot Value

Number of legs minimum value 1

maximum value 4

In this way, we can also express more complex ideas about slots, such as the
inverse of a slot (e.g., the “chases” slot has an inverse, which is the “chased
by” slot). We can also place further limitations on a slot, such as to specify
whether or not it can take multiple values (e.g., the “number of legs” slot
should probably only take one value, whereas the “eats” slot should be
allowed to take many values).

3.5.4 Multiple Inheritance

It is possible for a frame to inherit properties from more than one other
frame. In other words, a class can be a subclass of two superclasses, and an
object can be an instance of more than one class. This is known as multiple
inheritance.

For example, we might add the following frames to our system:

Frame Name Slot Slot Value

Human Subclass Mammal

Number of legs two

Builder Builds houses

Bob is a Human

From this, we can see that Bob is a human, as well as being a builder. Hence,
we can inherit the following information about Bob:

He has two legs

He builds houses

3.5 Frames 37

In some cases, we will encounter conflicts, where multiple inheritance
leads us to conclude contradictory information about a frame. For exam-
ple, let us consider the following simple frame system:

Frame Name Slot Slot Value

Cheese is smelly

Thing wrapped in foil is not smelly

Cheddar is a Cheese

is a Thing wrapped in foil

(Note: the slot “is” might be more accurately named “has property.” We
have named it “is” to make the example clearer.)

Here we can see that cheddar is a type of cheese and that it comes wrapped
in foil. Cheddar should inherit its smelliness from the Cheese class, but it
also inherits nonsmelliness from the Thing wrapped in foil class. In this
case, we need a mechanism to decide which features to inherit from which
superclasses. One simple method is to simply say that conflicts are resolved
by the order in which they appear. So if a fact is established by inheritance,
and then that fact is contradicted by inheritance, the first fact is kept
because it appeared first, and the contradiction is discarded.

This is clearly rather arbitrary, and it would almost certainly be better to
build the frame system such that conflicts of this kind cannot occur.

Multiple inheritance is a key feature of most object-oriented programming
languages. This is discussed in more detail in Section 3.6.

3.5.5 Procedures

In object-oriented programming languages such as C++ or Java, classes
(and hence objects) have methods associated with them. This is also true
with frames. Frames have methods associated with them, which are called
procedures. Procedures associated with frames are also called procedural
attachments.

A procedure is a set of instructions associated with a frame that can be exe-
cuted on request. For example, a slot reader procedure might return the
value of a particular slot within the frame. Another procedure might insert

38 CHAPTER 3 Knowledge Representation

a value into a slot (a slot writer). Another important procedure is the
instance constructor, which creates an instance of a class.

Such procedures are called when needed and so are called WHEN-
NEEDED procedures. Other procedures can be set up that are called auto-
matically when something changes.

3.5.6 Demons

A demon is a particular type of procedure that is run automatically when-
ever a particular value changes or when a particular event occurs.

Some demons act when a particular value is read. In other words, they are
called automatically when the user of the system, or the system itself, wants
to know what value is placed in a particular slot. Such demons are called
WHEN-READ procedures. In this way, complex calculations can be made
that calculate a value to return to the user, rather than simply giving back
static data that are contained within the slot. This could be useful, for
example, in a large financial system with a large number of slots because it
would mean that the system would not necessarily need to calculate every
value for every slot. It would need to calculate some values only when they
were requested.

WHEN-CHANGED procedures (also known as WHEN-WRITTEN pro-
cedures) are run automatically when the value of a slot is changed. This
type of function can be particularly useful, for example, for ensuring that
the values assigned to a slot fit within a set of constraints. For example, in
our example above, a WHEN-WRITTEN procedure might run to ensure
that the “number of legs” slot never has a value greater than 4 or less than 1.
If a value of 7 is entered, a system message might be produced, telling the
user that he or she has entered an incorrect value and that he or she should
enter a different value.

3.5.7 Implementation

With the addition of procedures and demons, a frame system becomes a
very powerful tool for reasoning about objects and relationships. The sys-
tem has procedural semantics as opposed to declarative semantics, which

3.5 Frames 39

means that the order in which things occur affects the results that the sys-
tem produces. In some cases, this can cause problems and can make it
harder to understand how the system will behave in a given situation.

This lack of clarity is usually compensated for by the level of flexibility
allowed by demons and the other features that frame systems possess.

Frame systems can be implemented by a very simple algorithm if we do not
allow multiple inheritance. The following algorithm allows us to find the
value of a slot S, for a frame F. In this algorithm definition, we will use the
notation F[S] to indicate the value of slot S in frame F. We also use the nota-
tion instance (F1, F2) to indicate that frame F1 is an instance of frame F2
and subclass (F1, F2) to indicate that frame F1 is a subclass of frame F2.

Function find_slot_value (S, F)
{

if F[S] == V // if the slot contains
then return V // a value, return it.

else if instance (F, F’)
then return find_slot_value (S, F’)

else if subclass (F, Fs)
then return find_slot_value (S, Fs)

else return FAILURE;
}

In other words, the slot value of a frame F will either be contained within
that frame, or a superclass of F, or another frame of which F is an instance.
If none of these provides a value, then the algorithm fails.

Clearly, frames could also be represented in an object-oriented program-
ming language such as C++ or Java.

A frame-based expert system can be implemented in a similar way to the
rule-based systems, which we examine in Chapter 9. To answer questions
about an object, the system can simply examine that object’s slots or the
slots of classes of which the object is an instance or a subclass.

If the system needs additional information to proceed, it can ask the user
questions in order to fill in additional information. In the same way as with
rule-based systems, WHEN-CHANGED procedures can be set up that

40 CHAPTER 3 Knowledge Representation

monitor the values of slots, and when a particular set of values is identified,
this can be used by the system to derive a conclusion and thus recommend
an action or deliver an explanation for something.

3.5.8 Combining Frames with Rules

It is possible to combine frames with rules, and, in fact, many frame-based
expert systems use rules in much the same way that rule-based systems do,
with the addition of pattern matching clauses, which are used to identify
values that match a set of conditions from all the frames in the system.

Typically, a frame-based system with rules will use rules to try to derive
conclusions, and in some cases where it cannot find a value for a particular
slot, a WHEN-NEEDED procedure will run to determine the value for that
slot. If no value is found from that procedure, then the user will be asked to
supply a value.

3.5.9 Representational Adequacy

We can represent the kinds of relationships that we can describe with
frames in first-order predicate logic. For example:

�x Dog(x) → Mammal(x)

First-order predicate logic is discussed in detail in Chapter 7. For now, you
simply need to know how to read that expression. It is read as follows:

“For all x’s, if x is a dog, then x is a mammal.”

This can be rendered in more natural English as:

“All dogs are mammals.”

In fact, we can also express this relationship by the introduction of a new
symbol, which more closely mirrors the meaning encompassed by the idea
of inheritance:

Almost anything that can be expressed using frames can be expressed using
first-order predicate logic (FPOL). The same is not true in reverse. For
example, it is not easy to represent negativity (“Fido is not a cat”) or quan-
tification (“there is a cat that has only one leg”). We say that FOPL has
greater representational adequacy than frame-based representations.

Dog Mammal
subset →

3.6 Object-Oriented Programming 41

In fact, frame-based representations do have some aspects that cannot be
easily represented in FOPL. The most significant of these is the idea of
exceptions, or overriding default values.

Allowing exceptions to override default values for slots means that the
frame-based system is not monotonic (monotonicity is discussed in Chap-
ter 7). In other words, conclusions can be changed by adding new facts to
the system.

In this section, we have discussed three main representational methods:
logic, rules, and frames (or semantic nets). Each of these has advantages
and disadvantages, and each is preferable over the others in different situa-
tions. The important thing is that in solving a particular problem, the cor-
rect representation must be chosen.

3.6 Object-Oriented Programming

We now briefly explore some of the ideas used in object-oriented program-
ming, and, in particular, we see how they relate to some of the ideas we have
seen in Sections 3.4 and 3.5 on inheritance and frames.

Two of the best-known object-oriented programming languages are Java
and C++. These two languages use a similar syntax to define classes and
objects that are instantiations of those classes.

A typical class in these languages might be defined as:

class animal
{

animal ();
Eye *eyes;
Leg *legs;
Head head;
Tail tail;

}

This defines a class called animal that has a number of fields, which are the
various body parts. It also has a constructor, which is a function that is
called when an instantiation of the class is called. Classes can have other
functions too, and these functions are equivalent to the procedures we saw
in Section 3.5.5.

We can create an instance of the class animal as follows:

animal an_animal = new animal ();

42 CHAPTER 3 Knowledge Representation

This creates an instance of the class animal. The instance, which is an object,
is called “an_animal”. In creating it, the constructor animal () is called.

We can also create a subclass of animal:

Class dog : animal
{

bark ();
}

Here we have created a subclass of animal called dog. Dog has inherited all of
the properties of animal and also has a new function of its own called bark ().

In some object-oriented programming languages, it is possible to use mul-
tiple inheritance. This means that one class inherits properties from more
than one parent class. While C++ does allow multiple inheritance, Java,
which itself inherited many features from C++, does not allow multiple
inheritance. This is because multiple inheritance was seen by the develop-
ers of Java as an “unclean” idea—one that creates unnecessarily compli-
cated object-oriented structures. Additionally, it is always possible to
achieve the same results using single inheritance as it is with multiple
inheritance.

Object-oriented programming languages such as Java and C++ use the
principles that were invented for the frames structure. There are also
object-oriented programming languages such as IBM’s APL2 that use a
frame-based structure.

The ideas explored in Sections 3.4 and 3.5 of this book are thus very rele-
vant to object-oriented programming, as well as being an important part of
Artificial Intelligence research.

3.7 Search Spaces

Many problems in Artificial Intelligence can be represented as search
spaces. In simple terms, a search space is a representation of the set of pos-
sible choices in a given problem, one or more of which are the solution to
the problem.

For example, attempting to find a particular word in a dictionary with 100
pages, a search space will consist of each of the 100 pages. The page that is
being searched for is called a goal, and it can be identified by seeing

3.7 Search Spaces 43

State 1
Robot in room A.
Block in room A.

State 2
Robot in room B.
Block in room A.

State 3
Robot in room C.
Block in room A.

State 4
Robot in room A.
Block in room B.

State 5
Robot in room B.
Block in room B.

State 6
Robot in room C.
Block in room B.

State 7
Robot in room A.
Block in room C.

State 8
Robot in room B.
Block in room C.

State 9
Robot in room C.
Block in room C. Figure 3.3

A simple state-space
diagram

whether the word we are looking for is on the page or not. (In fact, this
identification might be a search problem in itself, but for this example we
will assume that this is a simple, atomic action.)

The aim of most search procedures is to identify one or more goals and,
usually, to identify one or more paths to those goals (often the shortest
path, or path with least cost).

Because a search space consists of a set of states, connected by paths that
represent actions, they are also known as state spaces. Many search prob-
lems can be represented by a state space, where the aim is to start with the
world in one state and to end with the world in another, more desirable
state. In the missionaries and cannibals problem that is discussed later in
this chapter, the start state has all missionaries and cannibals on one side of
the river, and the goal state has them on the other side. The state space for
the problem consists of all possible states in between.

Figure 3.3 shows a very simple state-space diagram for a robot that lives in
an environment with three rooms (room A, room B, and room C) and with

44 CHAPTER 3 Knowledge Representation

A A

B

B

C

C

GFE

E

D
D

Figure 3.4
A semantic net and a
semantic tree

a block that he can move from room to room. Each state consists of a pos-
sible arrangement of the robot and the block. Hence, for example, in state
1, both the robot and the block are in room A. Note that this diagram does
not explain how the robot gets from one room to another or how the block
is moved. This kind of representation assumes that the robot has a repre-
sentation of a number of actions that it can take. To determine how to get
from one state to another state, the robot needs to use a process called
planning, which is covered in detail in Part 5 of this book.

In Figure 3.3, the arrows between states represent state transitions. Note
that there are not transitions between every pair of states. For example, it is
not possible to go from state 1 to state 4 without going through state 5. This
is because the block cannot move on its own and can only be moved to a
room if the robot moves there. Hence, a state-space diagram is a valuable
way to represent the possible actions that can be taken in a given state and
thus to represent the possible solutions to a problem.

3.8 Semantic Trees

A semantic tree is a kind of semantic net that has the following properties:

■ Each node (except for the root node, described below) has exactly
one predecessor (parent) and one or more successors (children).
In the semantic tree in Figure 3.4, node A is the predecessor of
node B: node A connects by one edge to node B and comes before
it in the tree. The successors of node B, nodes D and E, connect
directly (by one edge each) to node B and come after it in the tree.
We can write these relationships as: succ (B) = D and pred (B) = A.

3.8 Semantic Trees 45

The nonsymmetric nature of this relationship means that a seman-
tic tree is a directed graph. By contrast, nondirected graphs are
ones where there is no difference between an arc from A to B and
an arc from B to A.

■ One node has no predecessors. This node is called the root
node. In general, when searching a semantic tree, we start at the
root node. This is because the root node typically represents a
starting point of the problem. For example, when we look at
game trees in Chapter 6, we will see that the game tree for a
game of chess represents all the possible moves of the game,
starting from the initial position in which neither player has
made a move. This initial position corresponds to the root node
in the game tree.

■ Some nodes have no successors. These nodes are called leaf nodes.
One or more leaf nodes are called goal nodes. These are the nodes
that represent a state where the search has succeeded.

■ Apart from leaf nodes, all nodes have one or more successors.
Apart from the root node, all nodes have exactly one predecessor.

■ An ancestor of a node is a node further up the tree in some path. A
descendent comes after a node in a path in the tree.

A path is a route through the semantic tree, which may consist of just one
node (a path of length 0). A path of length 1 consists of a node, a branch
that leads from that node, and the successor node to which that branch
leads. A path that leads from the root node to a goal node is called a com-
plete path. A path that leads from the root node to a leaf node that is not a
goal node is called a partial path.

When comparing semantic nets and semantic trees visually, one of the
most obvious differences is that semantic nets can contain cycles, but
semantic trees cannot. A cycle is a path through the net that visits the same
node more than once. Figure 3.4 shows a semantic net and a semantic tree.
In the semantic net, the path A, B, C, D, A. . . is a cycle.

In semantic trees, an edge that connects two nodes is called a branch. If a
node has n successors, that node is said to have a branching factor of n. A
tree is often said to have a branching factor of n if the average branching
factor of all the nodes in the tree is n.

46 CHAPTER 3 Knowledge Representation

A

B E EC C

A

EC D

D B

A

D

B E E

A

D

A

C

The root node of a tree is said to be at level 0, and the successors of the root
node are at level 1. Successors of nodes at level n are at level n + 1.

3.9 Search Trees

Searching a semantic net involves traversing the net systematically (or in
some cases, not so systematically), examining nodes, looking for a goal
node. Clearly following a cyclic path through the net is pointless because
following A,B,C,D,A will not lead to any solution that could not be reached
just by starting from A. We can represent the possible paths through a
semantic net as a search tree, which is a type of semantic tree.

The search tree shown in Figure 3.5 represents the possible paths through
the semantic net shown in Figure 3.4. Each node in the tree represents a
path, with successive layers in the tree representing longer and longer paths.
Note that we do not include cyclical paths, which means that some
branches in the search tree end on leaf nodes that are not goal nodes. Also
note that we label each node in the search tree with a single letter, which

Figure 3.5
A search tree representa-
tion for the semantic net
in Figure 3.4.

3.9 Search Trees 47

represents the path from the root node to that node in the semantic net in
Figure 3.4.

Hence, searching for a node in a search tree corresponds to searching for a
complete path in a semantic net.

3.9.1 Example 1: Missionaries and Cannibals

The Missionaries and Cannibals problem is a well-known problem that is
often used to illustrate AI techniques. The problem is as follows:

Three missionaries and three cannibals are on one side of a river, with a canoe.
They all want to get to the other side of the river. The canoe can only hold one
or two people at a time. At no time should there be more cannibals than mis-
sionaries on either side of the river, as this would probably result in the mis-
sionaries being eaten.

To solve this problem, we need to use a suitable representation.

First of all, we can consider a state in the solving of the problem to consist
of a certain number of cannibals and a certain number of missionaries on
each side of the river, with the boat on one side or the other. We could rep-
resent this, for example, as

3, 3, 1 0, 0, 0

The left-hand set of numbers represents the number of cannibals, mission-
aries, and canoes on one side of the river, and the right-hand side repre-
sents what is on the other side.

Because the number that is on one side is entirely dependent on the num-
ber that is on the other side, we can in fact just show how many of each are
on the finishing side, meaning that the starting state is represented as

0, 0, 0

and the goal state is

3, 3, 1

An example of a state that must be avoided is

2, 1, 1

Here, there are two cannibals, one canoe, and just one missionary on the
other side of the river. This missionary will probably not last very long.

48 CHAPTER 3 Knowledge Representation

0,0,0

0,0,0 0,0,01,0,0 1,0,0

1,1,11,0,1 2,0,1

1 1 2 3

21 5

Figure 3.6
A partial search tree for
the missionaries and can-
nibals problem

To get from one state to another, we need to apply an operator. The opera-
tors that we have available are the following:

1. Move one cannibal to the other side

2. Move two cannibals to the other side

3. Move one missionary to the other side

4. Move two missionaries to the other side

5. Move one cannibal and one missionary to the other side

So if we apply operator 5 to the state represented by 1, 1, 0, then we would
result in state 2, 2, 1. One cannibal, one missionary, and the canoe have now
moved over to the other side. Applying operator 3 to this state would lead
to an illegal state: 2, 1, 0.

We consider rules such as this to be constraints, which limit the possible
operators that can be applied in each state. If we design our representation
correctly, the constraints are built in, meaning we do not ever need to
examine illegal states.

We need to have a test that can identify if we have reached the goal
state—3, 3, 1.

We will consider the cost of the path that is chosen to be the number of steps
that are taken, or the number of times an operator is applied. In some cases,
as we will see later, it is desirable to find a solution that minimizes cost.

The first three levels of the search tree for the missionaries and cannibals
problem is shown in Figure 3.6 (arcs are marked with which operator has
been applied).

Now, by extending this tree to include all possible paths, and the states
those paths lead to, a solution can be found. A solution to the problem
would be represented as a path from the root node to a goal node.

3.9 Search Trees 49

This tree represents the presence of a cycle in the search space. Note that the
use of search trees to represent the search space means that our representa-
tion never contains any cycles, even when a cyclical path is being followed
through the search space.

By applying operator 1 (moving one cannibal to the other side) as the first
action, and then applying the same operator again, we return to the start
state. This is a perfectly valid way to try to solve the problem, but not a very
efficient one.

3.9.2 Improving the Representation

A more effective representation for the problem would be one that did not
include any cycles. Figure 3.7 is an extended version of the search tree for
the problem that omits cycles and includes goal nodes.

Note that in this tree, we have omitted most repeated states. For example,
from the state 1,0,0, operator 2 is the only one shown. In fact, operators 1
and 3 can also be applied, leading to states 2,0,1 and 1,1,1 respectively. Nei-
ther of these transitions is shown because those states have already
appeared in the tree.

As well as avoiding cycles, we have thus removed suboptimal paths from
the tree. If a path of length 2 reaches a particular state, s, and another path
of length 3 also reaches that state, it is not worth pursuing the longer path
because it cannot possibly lead to a shorter path to the goal node than the
first path.

Hence, the two paths that can be followed in the tree in Figure 3.7 to the
goal node are the shortest routes (the paths with the least cost) to the goal,
but they are by no means the only paths. Many longer paths also exist.

By choosing a suitable representation, we are thus able to improve the effi-
ciency of our search method. Of course, in actual implementations, things
may not be so simple. To produce the search tree without repeated states, a
memory is required that can store states in order to avoid revisiting them. It
is likely that for most problems this memory requirement is a worthwhile
tradeoff for the saving in time, particularly if the search space being
explored has many repeated states and cycles.

Solving the Missionaries and Cannibals problem involves searching the
search tree. As we will see, search is an extremely useful method for solving
problems and is widely used in Artificial Intelligence.

50 CHAPTER 3 Knowledge Representation

0,0,0

1,1,11,0,1 2,0,1

2,2,1

1,3,1

3,3,13,3,1

0,3,0

2,3,1

2,2,01,3,0

2,0,0

3,0,1

1,0,0 3

1,0,0

1,1,0

2

1

2

2

2 5

1

1

4

4

5

1 5

1 3

Figure 3.7
Search tree without cycles

3.9.3 Example 2: The Traveling Salesman

The Traveling Salesman problem is another classic problem in Artificial
Intelligence and is NP-Complete, meaning that for large instances of the
problem, it can be very difficult for a computer program to solve in a rea-
sonable period of time. A problem is defined as being in the class P if it can
be solved in polynomial time. This means that as the size of the problem
increases, the time it will take a deterministic computer to solve the prob-

3.9 Search Trees 51

lem will increase by some polynomial function of the size. Problems that
are NP can be solved nondeterministically in polynomial time. This means
that if a possible solution to the problem is presented to the computer, it
will be able to determine whether it is a solution or not in polynomial time.
The hardest NP problems are termed NP-Complete. It was shown by
Stephen Cook that a particular group of problems could be transformed
into the satisfiability problem (see Chapter 16). These problems are defined
as being NP-Complete. This means that if one can solve the satisfiability
problem (for which solutions certainly do exist), then one can solve any
NP-Complete problem. It also means that NP-Complete problems take a
great deal of computation to solve.

The Traveling Salesman problem is defined as follows:

A salesman must visit each of a set of cities and then return home. The aim of
the problem is to find the shortest path that lets the salesman visit each city.

Let us imagine that our salesman is touring the following American cities:

A Atlanta

B Boston

C Chicago

D Dallas

E El Paso

Our salesman lives in Atlanta and must visit all of the other four cities
before returning home. Let us imagine that our salesman is traveling by
plane and that the cost of each flight is directly proportional to distance
being traveled and that direct flights are possible between any pair of cities.

Hence, the distances can be shown on a graph as in Figure 3.8.

(Note: The distances shown are not intended to accurately represent the
true locations of these cities but have been approximated for the purposes
of this illustration.)

The graph in Figure 3.8 shows the relationships between the cities. We
could use this graph to attempt to solve the problem. Certainly, we can use
it to find possible paths: One possible path is A,B,C,E,D,A, which has a
length of 4500 miles.

52 CHAPTER 3 Knowledge Representation

800

1500
700

700

1700

1100

1000

600

600

900

A

BC

E

D

Figure 3.8
Simplified map showing
Traveling Salesman prob-
lem with five cities

To solve the problem using search, a different representation would be
needed, based on this graph. Figure 3.9 shows a part of the search tree that
represents the possible paths through the search space in this problem.
Each node is marked with a letter that represents the city that has been
reached by the path up to that point. Hence, in fact, each node represents
the path from city A to the city named at that node. The root node of the
graph thus represents the path of length 0, which consists simply of the city
A. As with the previous example, cyclical paths have been excluded from
the tree, but unlike the tree for the missionaries and cannibals problem, the
tree does allow repeated states. This is because in this problem each state
must be visited once, and so a complete path must include all states. In the
Missionaries and Cannibals problem, the aim was to reach a particular
state by the shortest path that could be found. Hence, including a path such
as A,B,C,D where a path A,D had already been found would be wasteful
because it could not possibly lead to a shorter path than A,D. With the
Traveling Salesman problem, this does not apply, and we need to examine
every possible path that includes each node once, with the start node at the
beginning and the end.

Figure 3.9 is only a part of the search tree, but it shows two complete paths:
A,B,C,D,E,A and A,B,C,E,D,A. The total path costs of these two paths are
4000 miles and 4500 miles, respectively.

In total there will be (n � 1)! possible paths for a Traveling Salesman prob-
lem with n cities. This is because we are constrained in our starting city

3.9 Search Trees 53

1,000

A

B E

EC

E

E

A A

CC D

D

D

D BB

C D

900

600

800800 700

700

700 600

600600

7001000

6001500

1500

1700

700

Figure 3.9
Partial search tree for Traveling Salesman problem with five cities

and, thereafter, have a choice of any combination of (n � 1) cities. In prob-
lems with small numbers of cities, such as 5 or even 10, this means that the
complete search tree can be evaluated by a computer program without
much difficulty; but if the problem consists of 40 cities, there would be 40!
paths, which is roughly 1048, a ludicrously large number. As we see in the
next chapter, methods that try to examine all of these paths are called
brute-force search methods. To solve search problems with large trees,
knowledge about the problem needs to be applied in the form of heuris-
tics, which enable us to find more efficient ways to solve the problem. A
heuristic is a rule or piece of information that is used to make search or
another problem-solving method more effective or more efficient. The use
of heuristics for search is explained in more detail in Chapters 4 and 5.

For example, a heuristic search approach to solving the Traveling Salesman
problem might be: rather than examining every possible path, we simply
extend the path by moving to the city closest to our current position that
has not yet been examined. This is called the nearest neighbor heuristic. In
our example above, this would lead to the path A,C,D,E,B,A, which has a
total cost of 4500 miles. This is certainly not the best possible path, as we

54 CHAPTER 3 Knowledge Representation

1 2 3 1 2 3

Figure 3.10
Two states in the Towers of
Hanoi problem

have already seen one path (A,B,C,D,E,A) that has a cost of 4000 miles. This
illustrates the point that although heuristics may well make search more
efficient, they will not necessarily give the best results. We will see methods
in the next chapters that illustrate this and will also discuss ways of choos-
ing heuristics that usually do give the best result.

3.9.4 Example 3: The Towers of Hanoi

The Towers of Hanoi problem is defined as follows:

We have three pegs and a number of disks of different sizes. The aim is to
move from the starting state where all the disks are on the first peg, in size
order (smallest at the top) to the goal state where all the pegs are on the
third peg, also in size order. We are allowed to move one disk at a time, as
long as there are no disks on top of it, and as long as we do not move it on
top of a peg that is smaller than it.

Figure 3.10 shows the start state and a state after one disk has been moved
from peg 1 to peg 2 for a Towers of Hanoi problem with three disks.

Now that we know what our start state and goal state look like, we need to
come up with a set of operators:

Op1 Move disk from peg 1 to peg 2

Op2 Move disk from peg 1 to peg 3

Op3 Move disk from peg 2 to peg 1

Op4 Move disk from peg 2 to peg 3

Op5 Move disk from peg 3 to peg 1

Op6 Move disk from peg 3 to peg 2

We also need a way to represent each state. For this example, we will use
vectors of numbers where 1 represents the smallest peg and 3 the largest

3.9 Search Trees 55

(2,3)(1)()

(1,3)()(2) (1,3)(2)()

(1,3)(2)()

(2,3)()(1)

(3)()(1,2) (3)(1,2)()

(3)(1,2)()

(1,3)()(2)

(3)()(1,2)

(3)(1)(2) (3)(2)(1)

(1,2,3)()()

Figure 3.11
The first five levels of the
search tree for the Towers
of Hanoi problem with
three disks

peg. The first vector represents the first peg, and so on. Hence, the starting
state is represented as

(1,2,3) () ()

The second state shown in figure 3.10 is represented as

(2,3) (1) ()

and the goal state is

() () (1,2,3)

The first few levels of the search tree for the Towers of Hanoi problem with
three disks is shown in Figure 3.11. Again, we have ignored cyclical paths.
In fact, with the Towers of Hanoi problem, at each step, we can always
choose to reverse the previous action. For example, having applied opera-
tor Op1 to get from the start state to (2,3) (1) (), we can now apply opera-
tor Op3, which reverses this move and brings us back to the start state.
Clearly, this behavior will always lead to a cycle, and so we ignore such
choices in our representation.

As we see later in this book, search is not the only way to identify solutions
to problems like the Towers of Hanoi. A search method would find a solu-
tion by examining every possible set of actions until a path was found that
led from the start state to the goal state. A more intelligent system might be

56 CHAPTER 3 Knowledge Representation

PENGUIN KIWI

IS IT BLACK AND WHITE?

CAN IT FLY?

NOYES

YES

YES NO

NO

DODO

IS IT EXTINCT?

Figure 3.12
Search tree representation
used with Describe and
Match to identify a
penguin

developed that understood more about the problem and, in fact, under-
stood how to go about solving the problem without necessarily having to
examine any alternative paths at all.

3.9.5 Example 4: Describe and Match

A method used in Artificial Intelligence to identify objects is to describe it
and then search for the same description in a database, which will identify
the object.

An example of Describe and Match is as follows:

Alice is looking out of her window and can see a bird in the garden. She
does not know much about birds but has a friend, Bob, who does. She calls
Bob and describes the bird to him. From her description, he is able to tell
her that the bird is a penguin.

We could represent Bob’s knowledge of birds in a search tree, where each
node represents a question, and an arc represents an answer to the ques-
tion. A path through the tree describes various features of a bird, and a leaf
node identifies the bird that is being described.

Hence, Describe and Match enables us to use search in combination with
knowledge to answer questions about the world.

A portion of the search tree Bob used to identify the penguin outside Alice’s
window is shown in Figure 3.12.

3.11 Problem Reduction 57

First, the question at the top of the tree, in the root node, is asked. The
answer determines which branch to follow from the root node. In this case,
if the answer is “yes,” the left-hand branch is taken (this branch is not
shown in the diagram). If the answer is “no,” then the right-hand branch is
taken, which leads to the next question—“Is it extinct?”

If the answer to this question is “yes,” then a leaf node is reached, which
gives us the answer: the bird is a dodo. If the answer is “no,” then we move
on to the next question. The process continues until the algorithm reaches
a leaf node, which it must eventually do because each step moves one level
down the tree, and the tree does not have an infinite number of levels.

This kind of tree is called a decision tree, and we learn more about them in
Chapter 10, where we see how they are used in machine learning.

3.10 Combinatorial Explosion

The search tree for a Traveling Salesman problem becomes unmanageably
large as the number of cities increases. Many problems have the property
that as the number of individual items being considered increases, the
number of possible paths in the search tree increases exponentially, mean-
ing that as the problem gets larger, it becomes more and more unreason-
able to expect a computer program to be able to solve it. This problem is
known as combinatorial explosion because the amount of work that a
program needs to do to solve the problem seems to grow at an explosive
rate, due to the possible combinations it must consider.

3.11 Problem Reduction

In many cases we find that a complex problem can be most effectively
solved by breaking it down into several smaller problems. If we solve all of
those smaller subproblems, then we have solved the main problem. This
approach to problem solving is often referred to as goal reduction because
it involves considering the ultimate goal of solving the problem in a way
that involves generating subgoals for that goal.

For example, to solve the Towers of Hanoi problem with n disks, it turns
out that the first step is to solve the smaller problem with n � 1 disks.

58 CHAPTER 3 Knowledge Representation

1 2 3

Figure 3.13
The starting state of the
Towers of Hanoi problem
with four disks

1 2 3

Figure 3.14
Towers of Hanoi problem
of size 4 reduced to a prob-
lem of size 3 by first mov-
ing the largest disk from
peg 1 to peg 3

For example, let us examine the Towers of Hanoi with four disks, whose
starting state is shown in Figure 3.13.

To solve this problem, the first step is to move the largest block from peg 1 to
peg 3. This will then leave a Towers of Hanoi problem of size 3, as shown in
Figure 3.14, where the aim is to move the disks from peg 2 to peg 3. Because
the disk that is on peg 3 is the largest disk, any other disk can be placed on
top of it, and because it is in its final position, it can effectively be ignored.

In this way, a Towers of Hanoi problem of any size n can be solved by first
moving the largest disk to peg 3, and then applying the Towers of Hanoi
solution to the remaining disks, but swapping peg 1 and peg 2.

The method for moving the largest disk is not difficult and is left as an exercise.

3.12 Goal Trees

A goal tree (also called an and-or tree) is a form of semantic tree used to
represent problems that can be broken down in this way. We say that the
solution to the problem is the goal, and each individual step along the way
is a subgoal. In the case of the Towers of Hanoi, moving the largest disk to
peg 3 is a subgoal.

Each node in a goal tree represents a subgoal, and that node’s children are
the subgoals of that goal. Some goals can be achieved only by solving all of

3.12 Goal Trees 59

MOVE A, B, C, D FROM 1 TO 3

MOVE A, B, C,
FROM 2 TO 3

MOVE A, B,
FROM 1 TO 3

MOVE C
FROM 2 TO 3

MOVE B
FROM 1 TO 3

MOVE D
FROM 1 TO 3

MOVE A
FROM 2 TO 3

Figure 3.15
Goal tree for Towers of Hanoi problem with four disks

its subgoals. Such nodes on the goal tree are and-nodes, which represent
and-goals.

In other cases, a goal can be achieved by achieving any one of its subgoals.
Such goals are or-goals and are represented on the goal tree by or-nodes.

Goal trees are drawn in the same way as search trees and other semantic
trees. An and-node is shown by drawing an arc across the arcs that join it to
its subgoals (children). Or-nodes are not marked in this way. The main dif-
ference between goal trees and normal search trees is that in order to solve
a problem using a goal tree, a number of subproblems (in some cases, all
subproblems) must be solved for the main problem to be solved. Hence,
leaf nodes are called success nodes rather than goal nodes because each leaf
node represents success at a small part of the problem.

Success nodes are always and-nodes. Leaf nodes that are or-nodes are
impossible to solve and are called failure nodes.

A goal tree for the Towers of Hanoi problem with four disks is shown in
Figure 3.15. The root node represents the main goal, or root goal, of the
problem, which is to move all four disks from peg 1 to peg 3. In this tree, we
have represented the four disks as A,B,C, and D, where A is the smallest
disk, and D is the largest. The pegs are numbered from 1 to 3. All of the
nodes in this tree are and-nodes. This is true of most problems where there
is only one reasonable solution.

60 CHAPTER 3 Knowledge Representation

Figure 3.15 is somewhat of an oversimplification because it does not
explain how to solve each of the subgoals that is presented. To produce a
system that could solve the problem, a larger goal tree that included addi-
tional subgoals would be needed. This is left as an exercise.

Breaking down the problem in this way is extremely advantageous because it
can be easily extended to solving Towers of Hanoi problems of all sizes. Once
we know how to solve the Towers of Hanoi with three disks, we then know
how to solve it for four disks. Hence, we also know how to solve it for five
disks, six disks, and so on. Computer programs can be developed easily that
can solve the Towers of Hanoi problem with enormous numbers of disks.

Another reason that reducing problems to subgoals in this way is of such
great interest in Artificial Intelligence research is that this is the way in
which humans often go about solving problems. If you want to cook a
fancy dinner for your friends, you probably have a number of subgoals to
solve first:

■ find a recipe

■ go to the supermarket

■ buy ingredients

■ cook dinner

■ set the table

And so on. Solving the problem in this way is very logical for humans
because it treats a potentially complex problem as a set of smaller, simpler
problems. Humans work very well in this way, and in many cases comput-
ers do too.

One area in which goal trees are often used is computer security. A threat
tree represents the possible threats to a computer system, such as a com-
puterized banking system. If the goal is “steal Edwin’s money from the
bank,” you can (guess or convince me to divulge my PIN) and (steal or
copy my card) and so on. The threat tree thus represents the possible paths
an attacker of the system might take and enables security experts to deter-
mine the weaknesses in the system.

3.12.1 Top Down or Bottom Up?

There are two main approaches to breaking down a problem into sub-
goals—top down and bottom up.

3.12 Goal Trees 61

A top-down approach involves first breaking down the main problem into
smaller goals and then recursively breaking down those goals into smaller
goals, and so on, until leaf nodes, or success nodes, are reached, which can
be solved.

A bottom-up approach involves first determining all of the subgoals that
are necessary to solve the entire problem, and then starting by solving the
success nodes, and working up until the complete solution is found. As we
see elsewhere in this book, both of these approaches are valid, and the cor-
rect approach should be taken for each problem.

Again, humans often think in these terms.

Businesses often look at solving problems either from the top down or
from the bottom up. Solving a business problem from the top down means
looking at the global picture and working out what subgoals are needed to
change that big picture in a satisfactory way. This often means passing
those subgoals onto middle managers, who are given the task of solving
them. Each middle manager will then break the problem down into smaller
subproblems, each of which will be passed down the chain to subordinates.
In this way, the overall problem is solved without the senior management
ever needing to know how it was actually solved. Individual staff members
solve their small problems without ever knowing how that impacts on the
overall business.

A bottom-up approach to solving business problems would mean looking
at individual problems within the organization and fixing those. Computer
systems might need upgrading, and certain departments might need to
work longer hours. The theory behind this approach is that if all the indi-
vidual units within the business are functioning well, then the business as a
whole will be functioning well.

3.12.2 Uses of Goal Trees

We can use goal-driven search to search through a goal tree. As we describe
elsewhere in this book, this can be used to solve a number of problems in
Artificial Intelligence.

3.12.3 Example 1: Map Coloring

Map-coloring problems can be represented by goal trees. For example, Fig-
ure 3.16 shows a goal tree that can be used to represent the map-coloring

62 CHAPTER 3 Knowledge Representation

r g b y r g b y r g b y r g b y r g b yr g b y

1 2 3 4 5 6

Figure 3.16
Goal tree representing a map-coloring problem with six countries and four colors

problem for six countries with four colors. The tree has just two levels. The
top level consists of a single and-node, which represents the fact that all
countries must be colored. The next level has an or-node for each country,
representing the choice of colors that can be applied.

Of course, this tree alone does not represent the entire problem. Con-
straints must be applied that specify that no two adjacent countries may
have the same color. Solving the tree while applying these constraints solves
the map-coloring problem. In fact, to apply a search method to this prob-
lem, the goal tree must be redrawn as a search tree because search methods
generally are not able to deal with and-nodes.

This can be done by redrawing the tree as a search tree, where paths
through the tree represent plans rather than goals. Plans are discussed in
more detail in Part 5 of this book. A plan consists of steps that can be taken
to solve the overall problem. A search tree can thus be devised where nodes
represent partial plans. The root node has no plan at all, and leaf nodes rep-
resent complete plans.

A part of the search tree for the map-coloring problem with six countries
and four colors is shown in Figure 3.17.

One of the search methods described in Chapter 4 or 5 can be applied to
this search tree to find a solution. This may not be the most efficient way to
solve the map-coloring problem, though.

3.12.4 Example 2: Proving Theorems

As will be explained in Part 3 of this book, goal trees can be used to repre-
sent theorems that are to be proved. The root goal is the theorem that is to

3.12 Goal Trees 63

NO PLAN

SELECT A COLOR
FOR COUNTRY 1

CHOOSE
RED

CHOOSE
GREEN

CHOOSE
GREEN

CHOOSE
BLUE

SELECT A COLOR
FOR COUNTRY 2

SELECT A COLOR
FOR COUNTRY 2

Figure 3.17
Partial search tree for
map-coloring problem
with six countries and four
colors

be proved. It is an or-node because there may be several ways to prove the
theorem. The next level down consists of and-nodes, which are lemmas
that are to be proven. Each of these lemmas again may have several ways to
be proved so, therefore, is an or-node. The leaf-nodes of the tree represent
axioms that do not need to be proved.

3.12.5 Example 3: Parsing Sentences

As is described in Chapter 20, a parser is a tool that can be used to analyze
the structure of a sentence in the English language (or any other human
language). Sentences can be broken down into phrases, and phrases can be
broken down into nouns, verbs, adjectives, and so on. Clearly, this is ideally
suited to being represented by goal trees.

3.12.6 Example 4: Games

Game trees, which are described in more detail in Chapter 6, are goal
trees that are used to represent the choices made by players when play-
ing two-player games, such as chess, checkers, and Go. The root node of
a game tree represents the current position, and this is an or-node
because I must choose one move to make. The next level down in the
game tree represents the possible choices my opponent might make,

64 CHAPTER 3 Knowledge Representation

and because I need to consider all possible responses that I might make
to that move, this level consists of and-nodes. Eventually, the leaf nodes
represent final positions in the game, and a path through the tree repre-
sents a sequence of moves from start to finish, resulting in a win, loss,
or a draw.

This kind of tree is a pure and-or tree because it has an or-node at the top,
each or-node has and-nodes as its direct successors, and each and-node has
or-nodes as its direct successors. Another condition of a pure and-or tree is
that it does not have any constraints that affect which choices can be made.

3.13 Chapter Summary

■ Artificial Intelligence can be used to solve a wide range of prob-
lems, but for the methods to work effectively, the correct represen-
tation must be used.

■ Semantic nets use graphs to show relationships between objects.
Frame-based systems show the same information in frames.

■ Frame-based systems allow for inheritance, whereby one frame can
inherit features from another.

■ Frames often have procedures associated with them that enable a
system to carry out actions on the basis of data within the frames.

■ Search trees are a type of semantic tree. Search methods (several of
which are described in Chapters 4 and 5) are applied to search
trees, with the aim of finding a goal.

■ Describe and Match is a method that can be used to identify an
object by searching a tree that represents knowledge about the uni-
verse of objects that are being considered.

■ Problems such as the Towers of Hanoi problem can be solved effec-
tively by breaking them down into smaller subproblems, thus
reducing an overall goal to a set of subgoals.

■ Goal trees (or and-or trees) are an effective representation for
problems that can be broken down in this way.

■ Data-driven search (forward chaining) works from a start state
toward a goal. Goal-driven search (backward chaining) works in
the other direction, starting from the goal.

Exercises 65

3.14 Review Questions

3.1 Why are representations so important in Artificial Intelligence?
What risks are inherent in using the wrong representation?

3.2 Explain the connection between frames and object-oriented struc-
tures in programming languages, such as Java and C++.

3.3 Explain the relationship between graphs, semantic nets, semantic
trees, search spaces, and search trees.

3.4 Explain why goal trees are so useful to artificial intelligence
research. Give illustrations of how they are used.

3.5 Explain the connection between decision trees and the Describe
and Match algorithm. How efficient do you think this algorithm is?
Can you think of any ways to improve it?

3.6 Explain the problem of combinatorial explosion. What impact
does this have on the methods we use for solving large problems
using search?

3.7 Explain why removing cycles from a search tree is a good idea.

3.8 Explain how and-or trees can be used to represent games. What
limitations do you think a system that uses game trees to play chess
might face? Would it face different limitations if it played tic-tac-
toe? Or poker?

3.9 What is the difference between a top-down approach to solving a
problem and a bottom-up approach? In what kinds of situations
might each be more appropriate?

3.15 Exercises

3.10 Convert the following information into:

a) a semantic net

b) a frame-based representation

A Ford is a type of car. Bob owns two cars. Bob parks his car at
home. His house is in California, which is a state. Sacramento is the
state capital of California. Cars drive on the freeway, such as Route
101 and Highway 81.

66 CHAPTER 3 Knowledge Representation

3.11 Design a decision tree that enables you to identify an item from a
category in which you are interested (e.g., cars, animals, pop
singers, films, etc.).

3.12 Devise your own representation for the Missionaries and Canni-
bals problem and implement it either with pen and paper or in the
programming language of your choice. Use it to solve the problem.
How efficient is your representation compared with that used in
Section 3.9.1 of this book? Does it come up with the same answer?
Which approach is easier for an observer to quickly grasp? Which
would you say is the better representation overall, and why?

3.13 Design a suitable representation and draw the complete search tree
for the following problem:

A farmer is on one side of a river and wishes to cross the river with
a wolf, a chicken, and a bag of grain. He can take only one item at a
time in his boat with him. He can’t leave the chicken alone with the
grain, or it will eat the grain, and he can’t leave the wolf alone with
the chicken, or the wolf will eat the chicken. How does he get all
three safely across to the other side?

3.14 Write a program using the programming language of your choice
to implement the representation you designed for Review Ques-
tion 3.3. Have your program solve the problem, and have it show
on the screen how it reaches the solution. Does it find the best pos-
sible solution? Does it find it as quickly as it might?

3.15 Write a program that solves either

a) the Towers of Hanoi problem with up to 1000 disks, or,

b) the Traveling Salesman problem with up to 10 cities.

You may need to wait until you have read about some of the search
techniques described in Chapter 4 before you can write this pro-
gram. For now, you can design a suitable representation and
implement a suitable data structure for the problem in the lan-
guage of your choice.

3.16 Further Reading

All Artificial Intelligence textbooks deal with the subject of representation.
A particularly good description in terms of search for problem solving is
found in Russell and Norvig (1995).

Further Reading 67

Winston (1993) provides a good description in terms of semantics.

Dromey (1982) provides an excellent description of the development of an
algorithm for the Towers of Hanoi problem by problem reduction.

And-or trees and their uses are particularly well described by Luger (2002)
and Charniak and McDermott (1985).

Frames were introduced by Marvin Minsky in his 1975 paper, A framework
for Representing Knowledge.

Knowledge Representation, Reasoning and Declarative Problem Solving, by
Chitta Baral (2003 – Cambridge University Press)

How to Solve it by Computer, by R.G. Dromey (1982 – out of print)

Knowledge Representation and Defeasible Reasoning (Studies in Cognitive
Systems, Vol 5), edited by Ronald P. Loui and Greg N. Carlson (1990 –
Kluwer Academic Publishers)

A Framework for Representing Knowledge, by Marvin Minsky (1975 – in
Computation & Intelligence – Collected Readings, edited by George F. Luger,
The MIT Press)

Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations, by John F. Sowa and David Dietz (1999 – Brooks Cole)

This page intentionally left blank

Search
2

Introduction to Part 2

Part 2 is divided into three chapters.

Search Methodologies

Chapter 4 introduces a number of search methods, includ-
ing depth-first search and breadth-first search. Metrics are
presented that enable analysis of search methods and pro-
vide a way to determine which search methods are most
suitable for particular problems.

This chapter also introduces the idea of heuristics for
search and presents a number of methods, such as best-first
search, that use heuristics to improve the performance of
search methods.

Advanced Search

Chapter 5 introduces a number of more complex search
methods. In particular, it explains the way that search can
be used to solve combinatorial optimization problems
using local search and presents a number of local search
methods, such as simulated annealing and tabu search. The
chapter also explains how search can be run in parallel and
discusses some of the complications that this introduces.

Game Playing

This chapter explains the relationship between search and
games, such as chess, checkers, and tic-tac-toe. It explains
the Minimax algorithm and how alpha–beta pruning can
be used to make it more efficient. It explains some of the
more advanced techniques used in modern game-playing
computers and discusses why computers are currently
unable to beat humans at games such as Go.

PART
4

CHAPTER

5
CHAPTER

6
CHAPTER

This page intentionally left blank

4CHAPTER
Search Methodologies

Research is the process of going up alleys to see if they are blind.

—Marston Bates

When a thing is funny, search it carefully for a hidden truth.

—George Bernard Shaw

If we do not find anything pleasant, at least we shall find something new.

—Voltaire, Candide

Everyone that asketh receiveth; and he that seeketh findeth.

—The Gospel according to St Matthew, Chapter 7, Verse 8

4.1 Introduction

In Chapter 3, we introduced search trees and other methods and represen-
tations that are used for solving problems using Artificial Intelligence tech-
niques such as search. In Chapter 4, we introduce a number of methods
that can be used to search, and we discuss how effective they are in different
situations. Depth-first search and breadth-first search are the best-known
and widest-used search methods, and in this chapter we examine why this
is and how they are implemented. We also look at a number of properties
of search methods, including optimality and completeness, that can be
used to determine how useful a search method will be for solving a partic-
ular problem.

72 CHAPTER 4 Search Methodologies

The methods that are described in this chapter and Chapter 5 impact on
almost every aspect of Artificial Intelligence. Because of the serial nature in
which computers tend to operate, search is a necessity to determine solu-
tions to an enormous range of problems.

This chapter starts by discussing blind search methods and moves on to
examine search methods that are more informed—these search methods
use heuristics to examine a search space more efficiently.

4.2 Problem Solving as Search

Problem solving is an important aspect of Artificial Intelligence. A problem
can be considered to consist of a goal and a set of actions that can be taken
to lead to the goal. At any given time, we consider the state of the search
space to represent where we have reached as a result of the actions we have
applied so far.

For example, consider the problem of looking for a contact lens on a foot-
ball field. The initial state is how we start out, which is to say we know that
the lens is somewhere on the field, but we don’t know where. If we use the
representation where we examine the field in units of one square foot, then
our first action might be to examine the square in the top-left corner of the
field. If we do not find the lens there, we could consider the state now to be
that we have examined the top-left square and have not found the lens.
After a number of actions, the state might be that we have examined 500
squares, and we have now just found the lens in the last square we exam-
ined. This is a goal state because it satisfies the goal that we had of finding
a contact lens.

Search is a method that can be used by computers to examine a problem
space like this in order to find a goal. Often, we want to find the goal as
quickly as possible or without using too many resources. A problem space
can also be considered to be a search space because in order to solve the
problem, we will search the space for a goal state. We will continue to use
the term search space to describe this concept.

In this chapter, we will look at a number of methods for examining a search
space. These methods are called search methods.

4.3 Data-Driven or Goal-Driven Search 73

4.3 Data-Driven or Goal-Driven Search

There are two main approaches to searching a search tree, which roughly
correspond to the top-down and bottom-up approaches discussed in Sec-
tion 3.12.1. Data-driven search starts from an initial state and uses actions
that are allowed to move forward until a goal is reached. This approach is
also known as forward chaining.

Alternatively, search can start at the goal and work back toward a start state,
by seeing what moves could have led to the goal state. This is goal-driven
search, also known as backward chaining.

Most of the search methods we will examine in this chapter and Chapter 5
are data-driven search: they start from an initial state (the root node in the
search tree) and work toward the goal node.

In many circumstances, goal-driven search is preferable to data driven-
search, but for most of this part of the book, when we refer to “search,” we
are talking about data-driven search.

Goal-driven search and data-driven search will end up producing the same
results, but depending on the nature of the problem being solved, in some
cases one can run more efficiently than the other—in particular, in some
situations one method will involve examining more states than the other.

Goal-driven search is particularly useful in situations in which the goal can be
clearly specified (for example, a theorem that is to be proved or finding an exit
from a maze). It is also clearly the best choice in situations such as medical
diagnosis where the goal (the condition to be diagnosed) is known, but the
rest of the data (in this case, the causes of the condition) need to be found.

Data-driven search is most useful when the initial data are provided, and it is
not clear what the goal is. For example, a system that analyzes astronomical
data and thus makes deductions about the nature of stars and planets would
receive a great deal of data, but it would not necessarily be given any direct
goals. Rather, it would be expected to analyze the data and determine conclu-
sions of its own. This kind of system has a huge number of possible goals that
it might locate. In this case, data-driven search is most appropriate.

It is interesting to consider a maze that has been designed to be traversed
from a start point in order to reach a particular end point. It is nearly
always far easier to start from the end point and work back toward the start

74 CHAPTER 4 Search Methodologies

point. This is because a number of dead end paths have been set up from
the start (data) point, and only one path has been set up to the end (goal)
point. As a result, working back from the goal to the start has only one pos-
sible path.

4.4 Generate and Test

The simplest approach to search is called Generate and Test. This simply
involves generating each node in the search space and testing it to see if it is
a goal node. If it is, the search has succeeded and need not carry on. Other-
wise, the procedure moves on to the next node.

This is the simplest form of brute-force search (also called exhaustive
search), so called because it assumes no additional knowledge other than
how to traverse the search tree and how to identify leaf nodes and goal nodes,
and it will ultimately examine every node in the tree until it finds a goal.

To successfully operate, Generate and Test needs to have a suitable Genera-
tor, which should satisfy three properties:

1. It must be complete: In other words, it must generate every possi-
ble solution; otherwise it might miss a suitable solution.

2. It must be nonredundant: This means that it should not generate
the same solution twice.

3. It must be well informed: This means that it should only propose
suitable solutions and should not examine possible solutions that
do not match the search space.

The Generate and Test method can be successfully applied to a number of
problems and indeed is the manner in which people often solve problems
where there is no additional information about how to reach a solution.
For example, if you know that a friend lives on a particular road, but you do
not know which house, a Generate and Test approach might be necessary;
this would involve ringing the doorbell of each house in turn until you
found your friend. Similarly, Generate and Test can be used to find solu-
tions to combinatorial problems such as the eight queens problem that is
introduced in Chapter 5.

Generate and Test is also sometimes referred to as a blind search technique
because of the way in which the search tree is searched without using any
information about the search space.

4.5 Depth-First Search 75

2 7

8

1
A

CB

FED

G H I J K L

9

10

113
4

5

6

13
12 Figure 4.1

Illustrating depth-first
search

More systematic examples of brute-force search are presented in this chap-
ter, in particular, depth-first search and breadth-first search.

More “intelligent” (or informed) search techniques are explored later in
this chapter.

4.5 Depth-First Search

A commonly used search algorithm is depth-first search. Depth-first
search is so called because it follows each path to its greatest depth before
moving on to the next path. The principle behind the depth-first approach
is illustrated in Figure 4.1. Assuming that we start from the left side and
work toward the right, depth-first search involves working all the way down
the left-most path in the tree until a leaf node is reached. If this is a goal
state, the search is complete, and success is reported.

If the leaf node does not represent a goal state, search backtracks up to the
next highest node that has an unexplored path. In Figure 4.1, after examining
node G and discovering that it is not a leaf node, search will backtrack to
node D and explore its other children. In this case, it only has one other child,
which is H. Once this node has been examined, search backtracks to the next
unexpanded node, which is A, because B has no unexplored children.

This process continues until either all the nodes have been examined, in
which case the search has failed, or until a goal state has been reached, in
which case the search has succeeded. In Figure 4.1, search stops at node J,
which is the goal node. As a result, nodes F, K, and L are never examined.

76 CHAPTER 4 Search Methodologies

A

CB

FED

G H I J K L

1

2 3

4 5 6

7 8 9 10

Figure 4.2
Illustrating breadth-first
search. The numbers indi-
cate the order in which the
nodes are examined.

Depth-first search uses a method called chronological backtracking to
move back up the search tree once a dead end has been found. Chronolog-
ical backtracking is so called because it undoes choices in reverse order of
the time the decisions were originally made. We will see later in this chapter
that nonchronological backtracking, where choices are undone in a more
structured order, can be helpful in solving certain problems.

Depth-first search is an example of brute-force search, or exhaustive search.

Depth-first search is often used by computers for search problems such as
locating files on a disk, or by search engines for spidering the Internet.

As anyone who has used the find operation on their computer will know,
depth-first search can run into problems. In particular, if a branch of the
search tree is extremely large, or even infinite, then the search algorithm
will spend an inordinate amount of time examining that branch, which
might never lead to a goal state.

4.6 Breadth-First Search

An alternative to depth-first search is breadth-first search. As its name sug-
gests, this approach involves traversing a tree by breadth rather than by
depth. As can be seen from Figure 4.2, the breadth-first algorithm starts by
examining all nodes one level (sometimes called one ply) down from the
root node.

4.6 Breadth-First Search 77

Table 4.1 Comparison of depth-first and breadth-first search

Scenario Depth first Breadth first

Some paths are extremely long, or
even infinite

All paths are of similar length

All paths are of similar length, and all
paths lead to a goal state

High branching factor

Performs badly

Performs well

Performs well

Performance depends on other factors

Performs well

Performs well

Wasteful of time and memory

Performs poorly

If a goal state is reached here, success is reported. Otherwise, search contin-
ues by expanding paths from all the nodes in the current level down to the
next level. In this way, search continues examining nodes in a particular
level, reporting success when a goal node is found, and reporting failure if
all nodes have been examined and no goal node has been found.

Breadth-first search is a far better method to use in situations where the
tree may have very deep paths, and particularly where the goal node is in a
shallower part of the tree. Unfortunately, it does not perform so well where
the branching factor of the tree is extremely high, such as when examining
game trees for games like Go or Chess (see Chapter 6 for more details on
game trees).

Breadth-first search is a poor idea in trees where all paths lead to a goal
node with similar length paths. In situations such as this, depth-first search
would perform far better because it would identify a goal node when it
reached the bottom of the first path it examined.

The comparative advantages of depth-first and breadth-first search are tab-
ulated in Table 4.1.

As will be seen in the next section, depth-first search is usually simpler to
implement than breadth-first search, and it usually requires less memory
usage because it only needs to store information about the path it is currently
exploring, whereas breadth-first search needs to store information about all
paths that reach the current depth. This is one of the main reasons that
depth-first search is used so widely to solve everyday computer problems.

78 CHAPTER 4 Search Methodologies

The problem of infinite paths can be avoided in depth-first search by
applying a depth threshold. This means that paths will be considered to
have terminated when they reach a specified depth. This has the disadvan-
tage that some goal states (or, in some cases, the only goal state) might be
missed but ensures that all branches of the search tree will be explored in
reasonable time. As is seen in Chapter 6, this technique is often used when
examining game trees.

4.7 Properties of Search Methods

As we see in this chapter, different search methods perform in different
ways. There are several important properties that search methods should
have in order to be most useful.

In particular, we will look at the following properties:

■ complexity

■ completeness

■ optimality

■ admissibility

■ irrevocability

In the following sections, we will explain what each of these properties
means and why they are useful. We will continue to refer to many of these
properties (in particular, completeness and complexity) as we examine a
number of search methods in this chapter and in Chapter 5.

4.7.1 Complexity

In discussing a search method, it is useful to describe how efficient that
method is, over time and space. The time complexity of a method is related
to the length of time that the method would take to find a goal state. The
space complexity is related to the amount of memory that the method
needs to use.

It is normal to use Big-O notation to describe the complexity of a method. For
example, breadth-first search has a time complexity of O(bd), where b is the
branching factor of the tree, and d is the depth of the goal node in the tree.

4.7 Properties of Search Methods 79

Depth-first search is very efficient in space because it only needs to store
information about the path it is currently examining, but it is not efficient
in time because it can end up examining very deep branches of the tree.

Clearly, complexity is an important property to understand about a search
method. A search method that is very inefficient may perform reasonably
well for a small test problem, but when faced with a large real-world prob-
lem, it might take an unacceptably long period of time. As we will see, there
can be a great deal of difference between the performance of two search
methods, and selecting the one that performs the most efficiently in a par-
ticular situation can be very important.

This complexity must often be weighed against the adequacy of the solu-
tion generated by the method. A very fast search method might not always
find the best solution, whereas, for example, a search method that examines
every possible solution will guarantee to find the best solution, but it will be
very inefficient.

4.7.2 Completeness

A search method is described as being complete if it is guaranteed to find a
goal state if one exists. Breadth-first search is complete, but depth-first
search is not because it may explore a path of infinite length and never find
a goal node that exists on another path.

Completeness is usually a desirable property because running a search
method that never finds a solution is not often helpful. On the other hand,
it can be the case (as when searching a game tree, when playing a game, for
example) that searching the entire search tree is not necessary, or simply
not possible, in which case a method that searches enough of the tree might
be good enough.

A method that is not complete has the disadvantage that it cannot neces-
sarily be believed if it reports that no solution exists.

4.7.3 Optimality

A search method is optimal if it is guaranteed to find the best solution that
exists. In other words, it will find the path to a goal state that involves tak-
ing the least number of steps.

80 CHAPTER 4 Search Methodologies

This does not mean that the search method itself is efficient—it might take
a great deal of time for an optimal search method to identify the optimal
solution—but once it has found the solution, it is guaranteed to be the best
one. This is fine if the process of searching for a solution is less time con-
suming than actually implementing the solution. On the other hand, in
some cases implementing the solution once it has been found is very sim-
ple, in which case it would be more beneficial to run a faster search method,
and not worry about whether it found the optimal solution or not.

Breadth-first search is an optimal search method, but depth-first search is
not. Depth-first search returns the first solution it happens to find, which
may be the worst solution that exists. Because breadth-first search examines
all nodes at a given depth before moving on to the next depth, if it finds a
solution, there cannot be another solution before it in the search tree.

In some cases, the word optimal is used to describe an algorithm that finds
a solution in the quickest possible time, in which case the concept of
admissibility is used in place of optimality. An algorithm is then defined as
admissible if it is guaranteed to find the best solution.

4.7.4 Irrevocability

Methods that use backtracking are described as tentative. Methods that do
not use backtracking, and which therefore examine just one path, are
described as irrevocable. Depth-first search is an example of tentative
search. In Section 4.13 we look at hill climbing, a search method that is
irrevocable.

Irrevocable search methods will often find suboptimal solutions to prob-
lems because they tend to be fooled by local optima—solutions that look
good locally but are less favorable when compared with other solutions
elsewhere in the search space.

4.8 Why Humans Use Depth-First Search

Both depth-first and breadth-first search are easy to implement, although
depth-first search is somewhat easier. It is also somewhat easier for humans
to understand because it much more closely relates to the natural way in
which humans search for things, as we see in the following two examples.

4.8 Why Humans Use Depth-First Search 81

4.8.1 Example 1: Traversing a Maze

When traversing a maze, most people will wander randomly, hoping they
will eventually find the exit (Figure 4.3). This approach will usually be suc-
cessful eventually but is not the most rational and often leads to what we
call “going round in circles.” This problem, of course, relates to search
spaces that contain loops, and it can be avoided by converting the search
space into a search tree.

An alternative method that many people know for traversing a maze is to
start with your hand on the left side of the maze (or the right side, if you
prefer) and to follow the maze around, always keeping your left hand on
the left edge of the maze wall. In this way, you are guaranteed to find the
exit. As can be seen in Figure 4.3, this is because this technique corresponds
exactly to depth-first search.

In Figure 4.3, certain special points in the maze have been labeled:

■ A is the entrance to the maze.

■ M is the exit from the maze.

■ C, E, F, G, H, J, L, and N are dead ends.

■ B, D, I, and K are points in the maze where a choice can be made as
to which direction to go next.

In following the maze by running one’s hand along the left edge, the fol-
lowing path would be taken:

A, B, E, F, C, D, G, H, I, J, K, L, M

You should be able to see that following the search tree using depth-first
search takes the same path. This is only the case because the nodes of the
search tree have been ordered correctly. The ordering has been chosen so
that each node has its left-most child first and its right-most child last.
Using a different ordering would cause depth-first search to follow a differ-
ent path through the maze.

4.8.2 Example 2: Searching for a Gift

When looking for a Christmas present for a relative in a number of shops,
each of which has several floors, and where each floor has several depart-
ments, depth-first search might be a natural, if rather simplistic, approach.

82 CHAPTER 4 Search Methodologies

E F G H I

DC

A

B

J K

L M N

IN OUTA N M

E

D I

F L

B

H

C
J

K

G

Figure 4.3
A maze and a search tree
representation of the
maze.

This would involve visiting each floor in the first building before moving
on to the next building. A breadth-first approach would mean examining
the first department in each shop, and then going back to examine the sec-
ond department in each shop, and so on. This way does not make sense due
to the spatial relationship between the departments, floors, and shops. For
a computer, either approach would work equally well as long as a represen-
tation was used where moving from one building to another did not take
any computation time.

4.9 Implementing Depth-First and Breadth-First Search 83

A

B C

D E F G

ONMLKJIH

Figure 4.4
A simple search tree with
fifteen nodes. The tree has
a branching factor of two
and a depth of three.

In both of the examples above, it can be seen that using breadth-first
search, although a perfectly reasonable approach for a computer system,
would be rather strange for a human. This is probably because with depth-
first search, the approach is to explore each path fully before moving onto
another path, whereas with breadth-first search, the approach involves
revisiting and extending particular paths many times.

Despite this, implementations in software of both algorithms are nearly
identical, at least when expressed in pseudocode.

4.9 Implementing Depth-First and Breadth-First Search

A pseudocode implementation of depth-first search is given below.

The variable state represents the current state at any given point in the
algorithm, and queue is a data structure that stores a number of states, in a
form that allows insertion and removal from either end. In this algorithm,
we always insert at the front and remove from the front, which as we will
see later on means that depth-first search can be easily implemented using
a stack.

In this implementation, we have used the function successors (state),
which simply returns all successors of a given state.

84 CHAPTER 4 Search Methodologies

Function depth ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)
{

if is_goal (state)
then return SUCCESS

else add_to_front_of_queue (successors (state));
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}

Table 4.2 shows the states that the variables queue and state take on when
running the depth-first search algorithm over a simple search tree, as
shown in Figure 4.3.

In fact, depth-first search can be readily implemented on most computer
systems using a stack, which is simply a “last in first out” queue (sometimes
called a LIFO). In this way, a recursive version of the algorithm given above
can be used, as follows. Because this function is recursive, it needs to be
called with an argument:

recursive_depth (root_node);

The function is defined as follows:

Function recursive_depth (state)
{

if is_goal (state)
then return SUCCESS

else
{

remove_from_stack (state);
add_to_stack (successors (state))

}
while (stack != [])
{

if recursive_depth (stack [0]) == SUCCESS
then return SUCCESS;

remove_first_item_from (stack);
}
return FAILURE;

}

If you run through this algorithm on paper (or in a programming language
such as C++ or LISP), you will find that it follows the tree in the same way
as the previous algorithm, depth.

4.9 Implementing Depth-First and Breadth-First Search 85

Table 4.2 Analysis of depth-first search of tree shown in Figure 4.5

Step State Queue Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A

A

B

B

D

D

H

I

E

E

J

K

C

C

F

F

L

(empty)

B,C

C

D,E,C

E,C

H,I,E,C

I,E,C

E,C

C

J,K,C

K,C

C

(empty)

F,G

G

L,M,G

M,G

The queue starts out empty, and the initial state
is the root node, which is A.

The successors of A are added to the queue.

The successors of the current state, B, are added
to the front of the queue.

H has no successors, so no new nodes are added
to the queue.

Similarly, I has no successors.

Again, J has no successors.

K has no successors. Now we have explored the
entire branch below B, which means we back-
track up to C.

The queue is empty, but we are not at the point
in the algorithm where this would mean failing
because we are about to add successors of C to
the queue.

SUCCESS: the algorithm ends because a goal node
has been located. In this case, it is the only goal
node, but the algorithm does not know that and
does not know how many nodes were left to
explore.

86 CHAPTER 4 Search Methodologies

As was mentioned previously, depth-first search and breadth-first search
can be implemented very similarly. The following is a pseudocode of a non-
recursive implementation of breadth-first search, which should be com-
pared with the implementation above of depth-first search:

Function breadth ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)

{
if is_goal (state)

then return SUCCESS
else add_to_back_of_queue (successors (state));
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}

Notice that the only difference between depth and breadth is that where depth
adds successor states to the front of the queue, breadth adds them to the back
of the queue. So when applied to the search tree in Figure 4.4, breadth will fol-
low a rather different path from depth, as is shown in Table 4.3.

You will notice that in this particular case, depth-first search found the goal
in two fewer steps than breadth-first search. As has been suggested, depth-
first search will often find the goal quicker than breadth-first search if all
leaf nodes are the same depth below the root node. However, in search trees
where there is a very large subtree that does not contain a goal, breadth-
first search will nearly always perform better than depth-first search.

Another important factor to note is that the queue gets much longer when
using breadth-first search. For large trees, and in particular for trees with
high branching factors, this can make a significant difference because the
depth-first search algorithm will never require a queue longer than the
maximum depth of the tree, whereas breadth-first search in the worst case
will need a queue equal to the number of nodes at the level of the tree with
the most nodes (eight in a tree of depth three with branching factor of two,
as in Figure 4.3). Hence, we say that depth-first search is usually more
memory efficient than breadth-first search.

4.9 Implementing Depth-First and Breadth-First Search 87

Table 4.3 Analysis of breadth-first search of tree shown in Figure 4.4

Step State Queue Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

I

J

K

L

(empty)

B,C

C

C,D,E

D,E

D,E,F,G

E,F,G

E,F,G,H,I

F,G,H,I

F,G,H,I,J,K

G,H,I,J,K

G,H,I,J,K,L,M

H,I,J,K,L,M

H,I,J,K,L,M,N,O

I,J,K,L,M,N,O

J,K,L,M,N,O

K,L,M,N,O

L,M,N,O

M,N,O

The queue starts out empty, and the initial
state is the root node, which is A.

The two descendents of A are added to the
queue.

The two descendents of the current state, B, are
added to the back of the queue.

H has no successors, so we have nothing to add
to the queue in this state, or in fact for any sub-
sequent states.

SUCCESS: A goal state has been reached.

88 CHAPTER 4 Search Methodologies

As we have seen, however, depth-first search is neither optimal nor com-
plete, whereas breadth-first search is both. This means that depth-first
search may not find the best solution and, in fact, may not ever find a solu-
tion at all. In contrast, breadth-first search will always find the best solution.

4.10 Example: Web Spidering

An example of the importance of choosing the right search strategy can be
seen in spidering the world wide web. The assumption is made that the
majority of the web is connected, meaning that it is possible to get from
one page to another by following a finite number of links, where a link con-
nects two pages together.

Some parts of the Internet have a very high branching factor, with many
pages containing hundreds of links to other pages. On average though, the
branching factor is reasonably low, and so it seems that breadth-first search
might be a sensible approach to spidering. In practice, however, the search
tree that represents the connected part of the Internet is huge, and search-
ing it by pure breadth-first search would involve a prohibitive storage
requirement. Depth-first search would also not be practical because some
paths might have almost infinite depth, particularly given that some pages
on the Internet are generated automatically at the time they are accessed.

Hence, Internet spiders must use a combination of approaches, with a par-
ticular emphasis placed on web pages that change frequently and pages that
are considered by some metric to be “important.” Another important
aspect of search engines is their ability to search in parallel. We discuss this
concept in more detail in Chapter 5.

4.11 Depth-First Iterative Deepening

Depth-First Iterative Deepening, or DFID (also called Iterative Deepening
Search or IDS), is an exhaustive search technique that combines depth-first
with breadth-first search. The DFID algorithm involves repeatedly carrying
out depth-first searches on the tree, starting with a depth-first search lim-
ited to a depth of one, then a depth-first search of depth two, and so on,
until a goal node is found.

This is an algorithm that appears to be somewhat wasteful in terms of the
number of steps that are required to find a solution. However, it has the
advantage of combining the efficiency of memory use of depth-first search

4.11 Depth-First Iterative Deepening 89

with the advantage that branches of the search tree that are infinite or
extremely large will not sidetrack the search.

It also shares the advantage of breadth-first search that it will always find
the path that involves the fewest steps through the tree (although, as we will
see, not necessarily the best path).

Although it appears that DFID would be an extremely inefficient way to
search a tree, it turns out to be almost as efficient as depth-first or breadth-
first search. This can be seen from the fact that for most trees, the majority
of nodes are in the deepest level, meaning that all three approaches spend
most of their time examining these nodes.

For a tree of depth d and with a branching factor of b, the total number
of nodes is

1 root node

b nodes in the first layer

b2 nodes in the second layer

. . .

bn nodes in the nth layer

Hence, the total number of nodes is

1 + b + b2 + b3 + . . . + bd

which is a geometric progression equal to

For example, for a tree of depth 2 with a branching factor of 2, there are

= 7 nodes

Using depth-first or breadth-first search, this means that the total number
of nodes to be examined is seven.

Using DFID, nodes must be examined more than once, resulting in the fol-
lowing progression:

(d + 1) + b(d) + b2 (d � 1) + b3(d � 2) + . . . + bd

1 – 8
�
1 – 2

1 – bd+1
�

1 – b

90 CHAPTER 4 Search Methodologies

Hence, DFID has a time complexity of O(bd). It has the memory efficiency
of depth-first search because it only ever needs to store information about
the current path. Hence, its space complexity is O(bd).

In the case of the tree with depth of 2 and branching factor of 2, this means
examining the following number of nodes:

(3 + 1) + 3 � 2 + 4 � 2 = 18

Hence, for a small tree, DFID is far more inefficient in time than depth-first
or breadth-first search.

However, if we compare the time needed for a larger tree with depth of 4
and branching factor of 10, the tree has the following number of nodes:

= 11,111 nodes

DFID will examine the following number of nodes:

(4 + 1) + 10 � 4 + 100 � 3 + 1,000 � 2 + 10,000 = 12,345 nodes

Hence, as the tree gets larger, we see that the majority of the nodes to be
examined (in this case, 10,000 out of 12,345) are in the last row, which
needs to be examined only once in either case.

Like breadth-first search, DFID is optimal and complete. Because it also has
good space efficiency, it is an extremely good search method to use where
the search space may be very large and where the depth of the goal node is
not known.

4.12 Using Heuristics for Search

Depth-first and breadth-first search were described as brute-force search
methods. This is because they do not employ any special knowledge of the
search trees they are examining but simply examine every node in order
until they happen upon the goal. This can be likened to the human being
who is traversing a maze by running a hand along the left side of the maze
wall.

In some cases, this is the best that can be done because there is no addi-
tional information available that can be used to direct the search any better.

Often, however, such information does exist and can be used. Take the
example of looking for a suitable Christmas gift. Very few people would

1 – 105
�
1 – 10

4.12 Using Heuristics for Search 91

simply walk into each shop as they came across it, looking in each
department in turn until they happened upon a present. Most people
would go straight to the shop that they considered to be most likely to
have a suitable gift. If no gift was found in that shop, they would then
proceed to the shop they considered to be the next most likely to have a
suitable gift.

This kind of information is called a heuristic, and humans use them all the
time to solve all kinds of problems. Computers can also use heuristics, and
in many problems heuristics can reduce an otherwise impossible problem
to a relatively simple one.

A heuristic evaluation function is a function that when applied to a node
gives a value that represents a good estimate of the distance of the node
from the goal. For two nodes m and n, and a heuristic function f, if f(m) <
f(n), then it should be the case that m is more likely to be on an optimal
path to the goal node than n. In other words, the lower the heuristic value
of a node, the more likely it is that it is on an optimal path to a goal and the
more sensible it is for a search method to examine that node.

The following sections provide details of a number of search methods that
use heuristics and are thus thought of as heuristic search methods, or
heuristically informed search methods.

Typically, the heuristic used in search is one that provides an estimate of the
distance from any given node to a goal node. This estimate may or may not be
accurate, but it should at least provide better results than pure guesswork.

4.12.1 Informed and Uninformed Methods

A search method or heuristic is informed if it uses additional information
about nodes that have not yet been explored to decide which nodes to
examine next. If a method is not informed, it is uninformed, or blind. In
other words, search methods that use heuristics are informed, and those
that do not are blind.

Best-first search is an example of informed search, whereas breadth-first
and depth-first search are uninformed or blind.

A heuristic h is said to be more informed than another heuristic, j, if
h(node) ≤ j(node) for all nodes in the search space. (In fact, in order for h

92 CHAPTER 4 Search Methodologies

7

4

2

6

3

5

1

8

1

8

7

2 3

6

4

5

Figure 4.5
The 8-puzzle, start state
and goal state

to be more informed than j, there must be some node where h(node) <
j(node). Otherwise they are as informed as each other.)

The more informed a search method is, the more efficiently it will search.

4.12.2 Choosing a Good Heuristic

Some heuristics are better than others, and the better (more informed) the
heuristic is, the fewer nodes it needs to examine in the search tree to find a
solution. Hence, like choosing the right representation, choosing the right
heuristic can make a significant difference in our ability to solve a problem.

In choosing heuristics, we usually consider that a heuristic that reduces the
number of nodes that need to be examined in the search tree is a good
heuristic. It is also important to consider the efficiency of running the
heuristic itself. In other words, if it takes an hour to compute a heuristic
value for a given state, the fact that doing so saves a few minutes of total
search time is irrelevant. For most of this section, we will assume that
heuristic functions we choose are extremely simple to calculate and so do
not impact on the overall efficiency of the search algorithm.

4.12.3 The 8-puzzle

To illustrate the way in which heuristics are developed, we will use the 8-
puzzle, as illustrated in Figure 4.5.

The puzzle consists of a 3 � 3 grid, with the numbers 1 through 8 on tiles
within the grid and one blank square. Tiles can be slid about within the
grid, but a tile can only be moved into the empty square if it is adjacent to
the empty square. The start state of the puzzle is a random configuration,
and the goal state is as shown in the second picture in Figure 4.5, where the

4.12 Using Heuristics for Search 93

numbers go from 1 to 8 clockwise around the empty middle square, with 1
in the top left.

Typically, it takes about 20 moves to get from a random start state to the
goal state, so the search tree has a depth of around 20. The branching factor
depends on where the blank square is. If it is in the middle of the grid, the
branching factor is 4; if it is on an edge, the branching factor is 3, and if it is
in a corner, the branching factor is 2. Hence, the average branching factor
of the search tree is 3.

So, an exhaustive search of the search tree would need to examine around
320 states, which is around 3.5 billion. Because there are only 9! or 362,880
possible states, the search tree could clearly be cut down significantly by
avoiding repeated states.

It is useful to find ways to reduce the search tree further, in order to devise
a way to solve the problem efficiently. A heuristic would help us to do this,
by telling us approximately how many moves a given state is from the goal
state. We will examine a number of possible heuristics that could be used
with the 8-puzzle.

To be useful, our heuristic must never overestimate the cost of changing
from a given state to the goal state. Such a heuristic is defined as being
admissible. As we will see, in many search methods it is essential that the
heuristics we use are admissible.

The first heuristic we consider is to count how many tiles are in the wrong
place. We will call this heuristic, h1(node). In the case of the first state
shown in Figure 4.5, h1 (node) = 8 because all the tiles are in the wrong
place. However, this is misleading because we could imagine a state with a
heuristic value of 8 but where each tile could be moved to its correct place
in one move. This heuristic is clearly admissible because if a tile is in the
wrong place, it must be moved at least once.

An improved heuristic, h2, takes into account how far each tile had to
move to get to its correct state. This is achieved by summing the Manhat-
tan distances of each tile from its correct position. (Manhattan distance is
the sum of the horizontal and vertical moves that need to be made to get
from one position to another, named after the grid system of roads used in
Manhattan.)

94 CHAPTER 4 Search Methodologies

For the first state in Figure 4.5, this heuristic would provide a value of

h2 (node) = 2 + 2 + 2 + 2 + 3 + 3 + 1 + 3 = 18

Clearly, this is still an admissible heuristic because in order to solve the puz-
zle, each tile must be moved one square at a time from where it starts to
where it is in the goal state.

It is worth noting that h2 (node) ≥ h1 (node) for any node. This means that
h2 dominates h1, which means that a search method using heuristic h2 will
always perform more efficiently than the same search method using h1.
This is because h2 is more informed than h1. Although a heuristic must
never overestimate the cost, it is always better to choose the heuristic that
gives the highest possible underestimate of cost. The ideal heuristic would
thus be one that gave exactly accurate costs every time.

This efficiency is best understood in terms of the effective branching fac-
tor, b*, of a search.

If a search method expands n nodes in solving a particular problem, and
the goal node is at depth d, then b* is the branching factor of a uniform
tree that contains n nodes. Heuristics that give a lower effective branching
factor perform better. A search method running with h2 has a lower effec-
tive branching factor than the same search method running with h1 in solv-
ing the 8-puzzle.

A third heuristic function, h3, takes into account the fact that there is extra
difficulty involved if two tiles have to move past each other because tiles
cannot jump over each other. This heuristic uses a function k(node), which
is equal to the number of direct swaps that need to be made between adja-
cent tiles to move them into the correct sequence.

h3 (node) = h2 (node) + (2 � k(node))

Because k(node) must be at least 0, h3 (node) must be greater than h2

(node), meaning that h3 is a more informed heuristic than h2.

The heuristic functions h1, h2, and h3 are all admissible, meaning that using
the A* algorithm (see Section 4.16.1) with any of these heuristics would
guarantee to find the quickest solution to the puzzle.

There are a number of possible ways to generate useful heuristic functions.
Functions like h1 and h2 can be generated by relaxing the 8-puzzle prob-

4.12 Using Heuristics for Search 95

lem. A relaxed problem is a version of a problem that has fewer con-
straints. For example, a relaxed version of the 8-puzzle might be that a tile
can be moved to an adjacent square regardless of whether that square is
empty or not. In that case, h2 (node) would be exactly equal to the number
of moves needed to get from a node to the goal node.

If the problem were relaxed further, we might say that a tile could move to
any square, even if that square is not adjacent to the square it is starting
from. In this case, h1 (node) exactly equals the number of moves needed to
get from a node to the goal node.

Hence, using an exact cost function for a relaxed version of a problem is
often a good way to generate a heuristic cost function for the main problem.

It is clear that h3 is the best heuristic function to use of the three we gen-
erated because it dominates both h1 and h2. In some cases, a number of
heuristic functions may exist, none of which dominates the others. In
that case, a new heuristic can be generated from the heuristics h1. . . hn, as
follows:

h(node) = max (h1 [node], h2 [node], . . . , hn [node])

Because all of h1 to hn is admissible, h(node) must also be admissible. The
heuristic function h dominates all of the heuristics h1 . . . hn and so is clearly
the best one to use.

As we see in Chapter 6, another way to find a heuristic is to take advantage
of features of the problem that is being modeled by the search tree. For
example, in the case of playing checkers, computers are able to use heuris-
tics such as the fact that a player with more kings on the board is likely to
win against a player with fewer kings.

4.12.4 Monotonicity

A search method is described as monotone if it always reaches a given node
by the shortest possible path.

So, a search method that reaches a given node at different depths in the
search tree is not monotone. A monotone search method must be admissi-
ble, provided there is only one goal state.

A monotonic heuristic is a heuristic that has this property.

96 CHAPTER 4 Search Methodologies

10

3 3

6

4
3

2

12

A

B

C

E

F

D

Figure 4.6
Map of five cities

An admissible heuristic is a heuristic that never overestimates the true dis-
tance of a node from the goal. A monotonic heuristic is also admissible,
assuming there is only one goal state.

4.12.5 Example: The Modified Traveling Salesman Problem

It is usual when examining heuristic search methods to relate the search
problem to a real-world situation in order to derive suitable heuristics. For
this explanation, we will use the example of finding the best route between
two cities, a variation of the Traveling Salesman problem, as shown in Fig-
ure 4.6.

In this diagram, each node represents a town, and the vertices between
nodes represent roads that join towns together. A is the starting node, and F
is the goal node. Each vertex is labeled with a distance, which shows how
long that road is. Clearly the diagram is not drawn to scale.

The aim of this problem is to find the shortest possible path from city A to
city F. This is different from the traditional Traveling Salesman problem, in
which the problem is to find a way to travel around a group of cities and
finally arrive back at the starting city.

We can represent the search space of the map in Figure 4.6 as a search tree
by showing each possible path as a leaf node in the tree. In doing so, we
need to be careful to remove repetitions of paths, or loops, because those

4.12 Using Heuristics for Search 97

E B

FF

F F

F F

DC B FE

EE DD

A

B C

D C

Figure 4.7
Search tree for map in Figure 4.6

would add redundancy to the graph and make searching it inefficient. The
tree for this search space is shown in Figure 4.7.

You will notice that this tree has nine leaf nodes, seven of which are goal
nodes. Two of the paths lead to cyclical paths and so are abandoned. There
are seven distinct paths that successfully lead from A to F. These seven paths
can be traced from the tree as follows:

1 A,B,D,E,F

2 A,B,D,F

3 A,B,C,E,D,F

4 A,B,C,E,F

5 A,C,E,F

6 A,C,B,D,E,F

7 A,C,B,D,F

98 CHAPTER 4 Search Methodologies

The two cyclical paths are as follows:

1 A,B,D,E,C (which would then lead on to A or B)

2 A,C,E,D,B (which would then lead on to A or C)

A depth-first approach to this problem would provide path number 1,
A,B,D,E,F, which has a total distance of 29.

Breadth-first search always produces the path that has the least steps, but
not necessarily the shortest path. In this case, it would yield path 2, which is
A,B,D,F and which has a length of 19. This is much shorter than the path
produced by depth-first search but is not the shortest path (the shortest
path is path 5, A,C,E,F, which has a length of 17).

Now we introduce two new search methods that use heuristics to more effi-
ciently identify search solutions.

4.13 Hill Climbing

Hill climbing is an example of an informed search method because it uses
information about the search space to search in a reasonably efficient man-
ner. If you try to climb a mountain in fog with an altimeter but no map,
you might use the hill climbing Generate and Test approach:

Check the height 1 foot away from your current location in each direction:
north, south, east, and west.

As soon as you find a position where the height is higher than your current
position, move to that location and restart the algorithm.

If all directions lead lower than your current position, then you stop and
assume you have reached the summit. As we see later, this might not neces-
sarily always be true.

In examining a search tree, hill climbing will move to the first successor
node that is “better” than the current node—in other words, the first
node that it comes across with a heuristic value lower than that of the
current node.

4.13.1 Steepest Ascent Hill Climbing

Steepest ascent hill climbing is similar to hill climbing, except that rather
than moving to the first position you find that is higher than the current

4.13 Hill Climbing 99

8

A

B

C

E

F

D

25

12

620
Figure 4.8
The map of five cities
where the straight-line
distance from each city to
the goal city (F) is shown

position, you always check around you in all four directions and choose the
position that is highest.

Steepest ascent hill climbing can also be thought of as a variation on depth-
first search, which uses information about how far each node is from the
goal node to choose which path to follow next at any given point.

For this method, we apply a heuristic to the search tree shown in Figure 4.7,
which is the straight-line distance from each town to the goal town. We are
using this heuristic to approximate the actual distance from each town to
the goal, which will of course be longer than the straight-line distance.

In Figure 4.8, we can see the same search problem as presented in Figure
4.6, but instead of noting the lengths of vertices, we note how far each city
is (using a straight-line measurement) from the goal, city F.

Now hill climbing proceeds as with depth-first search, but at each step, the
new nodes to be added to the queue are sorted into order of distance from
the goal. Note that the only difference between this implementation and
that given for depth-first search is that in hill climbing the successors of
state are sorted according to their distance from the goal before being
added to the queue:

Function hill ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)

100 CHAPTER 4 Search Methodologies

Table 4.4 Analysis of hill climbing

Step State Queue Notes

1

2

3

4

5

6

7

A

A

B

B

D

D

F

(empty)

B,C

C

D,C,C

C,C

F,E,C,C

E,C,C

The queue starts out empty, and the initial
state is the root node, which is A.

The successors of A are sorted and placed on
the queue. B is placed before C on the queue
because it is closer to the goal state, F.

F is placed first on the queue because it is clos-
est to the goal. In fact, it is the goal, as will be
discovered in the next step.

SUCCESS: Path is reported as A,B,D,F.

{
if is_goal (state)

then return SUCCESS
else
{

sort (successors (state));
add_to_front_of_queue (successors (state));

}
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}

This algorithm thus searches the tree in a depth-first manner, at each step
choosing paths that appear to be most likely to lead to the goal.

The steps taken by a hill-climbing algorithm in solving the preceding prob-
lem are shown in Table 4.4:

In this case, hill climbing has produced the same path as breadth-first
search, which is the path with the least steps, but not the shortest path. In

4.13 Hill Climbing 101

many cases though, using this heuristic enables hill climbing to identify
shorter paths than would be identified by depth-first or breadth-first
search. Hill climbing uses heuristics to identify paths efficiently but does
not necessarily identify the best path.

If we ran the searches from right to left, instead of from left to right (or
ordered the search tree the other way around), then we would find that
breadth-first search would produce a different path: A,C,E,F (which is in
fact the shortest path), but hill climbing would still produce the same
path, A,B,D,F. In other words, the particular ordering of nodes used
affects which result is produced by breadth-first and depth-first search
but does not affect hill climbing in the same way. This can clearly be a
useful property.

4.13.2 Foothills, Plateaus, and Ridges

Although we have been talking about using search techniques to tra-
verse search trees, they can also be used to solve search problems that
are represented in different ways. In particular, we often represent a
search problem as a three-dimensional space, where the x- and y-axes
are used to represent variables and the z-axis (or height) is used to rep-
resent the outcome.

The goal is usually to maximize the outcome, and so search methods in
these cases are aiming to find the highest point in the space.

Many such search spaces can be successfully traversed using hill climbing
and other heuristically informed search methods. Some search spaces,
however, will present particular difficulties for these techniques.

In particular, hill climbing can be fooled by foothills, plateaus, and ridges.
Figure 4.9 has three illustrations, showing foothills, a plateau, and a ridge.
This figure shows the search space represented as a three-dimensional ter-
rain. In this kind of terrain, the aim of search is to find the x and y values
that give the highest possible value of z—in other words, the highest point
in the terrain. This is another way of looking at traditional search: search is
normally aiming to maximize some function, which in this case is shown as
the height of the terrain, but is traditionally a function that details the dis-
tance of a node from the goal node.

Foothills are often called local maxima by mathematicians. A local maxi-
mum is a part of the search space that appears to be preferable to the parts
around it, but which is in fact just a foothill of a larger hill. Hill-climbing

102 CHAPTER 4 Search Methodologies

z y

GLOBAL MAXIMUM

LOCAL MAXIMUM

MAXIMUM

PLATEAU

x

z y

x

z y

x

A

C

B

(a)

(b)

(c)

Figure 4.9
(a) FOOTHILLS

(b) PLATEAU

(c) RIDGE

techniques will reach this peak, where a more sophisticated technique
might move on from there to look for the global maximum. Figure 4.9 (a)
shows a search space that has a single global maximum surrounded by a
number of foothills, or local maxima. Many search methods would reach
the top of one of these foothills and, because there was nowhere higher
nearby, would conclude that this was the best solution to the problem.

4.13 Hill Climbing 103

Later in this chapter and in Chapter 5, we see methods such as simulated
annealing that are good at avoiding being trapped by local maxima.

A plateau is a region in a search space where all the values are the same. In
this case, although there may well be a suitable maximum value somewhere
nearby, there is no indication from the local terrain of which direction to
go to find it. Hill climbing does not perform well in this situation. Figure
4.9 (b) shows a search space that consists of just one peak surrounded by a
plateau. A hill-climbing search method could well find itself stuck in the
plateau with no clear indication of where to go to find a good solution.

The final problem for hill climbing is presented by ridges. A ridge is a long,
thin region of high land with low land on either side. When looking in one
of the four directions, north, south, east, and west from the ridge, a hill-
climbing algorithm would determine that any point on the top of the ridge
was a maximum because the hill falls away in those four directions. The
correct direction is a very narrow one that leads up the top of the ridge, but
identifying this direction using hill climbing could be very tricky.

Figure 4.9 (c) shows a ridge. The point marked A is lower than the point
marked B, which is the global maximum. When a hill-climbing method
finds itself at point C, it might find it hard to get from there to B. The arrows
on point C show that in moving north, south, east, or west, the method
would find itself at a lower point. The correct direction is up the ridge.

4.14 Best-First Search

Best-first search employs a heuristic in a similar manner to hill climbing.
The difference is that with best-first search, the entire queue is sorted after
new paths have been added to it, rather than adding a set of sorted paths.

In practical terms, this means that best-first search follows the best path
available from the current (partially developed) tree, rather than always fol-
lowing a depth-first style approach.

Function best ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)
{

if is_goal (state)
then return SUCCESS

else

104 CHAPTER 4 Search Methodologies

Table 4.5 Analysis of best-first search of tree shown in Figure 4.4

Step State Queue Notes

1

2

3

4

5

6

7

8

9

A

A

A

B

B

B

D

D

D

F

(empty)

B,C

B,C

C

D,C,C

D,C,C

C,C

E,F,C,C

F,E,C,C

E,C,C

The queue starts out empty, and the initial
state is the root node, which is A.

The successors of the current state, B and C, are
placed in the queue.

The queue is sorted, leaving B in front of C
because it is closer to the goal state, F.

The children of node B are added to the front of
the queue.

The queue is sorted, leaving D at the front
because it is closer to the goal node than C.

Note that although the queue appears to con-
tain the same node twice, this is just an artifact
of the way the search tree was constructed. In
fact, those two nodes are distinct and represent
different paths on our search tree.

The children of D are added to the front of the
queue.

The queue is sorted, moving F to the front.

SUCCESS: Path is reported as A,B,D,F.

{
add_to_front_of_queue (successors (state));
sort (queue);

}
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}

The path taken through the search tree shown in Figure 4.7 is shown in
Table 4.5.

4.14 Best-First Search 105

It can be seen that, in this case, best-first search happens to produce the
same path as hill climbing and breadth-first search, although the queue is
ordered differently during the process. As with hill climbing, best-first
search will tend to provide a shorter path than depth first or breadth first,
but not necessarily the shortest path.

4.15 Beam Search

Beam search is a form of breadth-first search that employs a heuristic, as
seen with hill climbing and best-first search. Beam search works using a
threshold so that only the best few paths are followed downward at each
level. This method is very efficient in memory usage and would be particu-
larly useful for exploring a search space that had a very high branching fac-
tor (such as in game trees for games, such as Go or Chess). It has the
disadvantage of not exhaustively searching the entire tree and so may fail to
ever find a goal node.

In this implementation, the function call select_best_paths (queue, n)

removes all but the best n paths from the queue.

Function beam ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)
{

if is_goal (state)
then return SUCCESS

else
{

add_to_back_of_queue (successors (state));
select_best_paths (queue, n);

}
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}

In this pseudocode, n is used to represent the width threshold, which is set
at the beginning of the procedure.

106 CHAPTER 4 Search Methodologies

Table 4.6 Analysis of beam search of tree shown in Figure 4.7

Step State Queue Notes

1

2

3

4

5

6

7

8

9

10

11

12

A

A

B

B

B

D

D

D

E

E

E

F

(empty)

B,C

C

C,D,C

D,C

C

C,E,F

E,F

F

F,C,F

F,F

F

The queue starts out empty, and the initial state
is the root node, which is A.

The two children of the current node are added to
the back of the queue.

The two children of B are added to the back of
the queue.

All but the two best paths are discarded from the
queue.

The two children of the current node are added to
the back of the queue.

At this step, C is removed from the queue because
we only require the two best paths.

The two children of E are added to the back of the
queue.

The path that leads to C is discarded, in favor of
the two better paths, both of which lead to F.

SUCCESS: Path is reported as A,B,D,E,F.

The interesting aspect of this method is the choice of how to define the
“best” paths to include in the queue. Often, the path that involves the fewest
steps is used or the path that has reached the point with the highest heuris-
tic value (in other words, the path that got closest to the goal).

In Table 4.6, the value of state and queue are shown for the problem tree
shown in Figure 4.7, using beam search with a threshold of 2 (in other
words, only two paths are extended down from each level). For this imple-
mentation, we have used the heuristic value of each node to determine

4.16 Identifying Optimal Paths 107

which path is the “best” path. So the “best” path will be the one that has
reached the closest to a goal node so far.

4.16 Identifying Optimal Paths

Several methods exist that do identify the optimal path through a search
tree. The optimal path is the one that has the lowest cost or involves travel-
ing the shortest distance from start to goal node. The techniques described
previously may find the optimal path by accident, but none of them are
guaranteed to find it.

The simplest method for identifying the optimal path is called the British
Museum procedure. This process involves examining every single path
through the search tree and returning via the best path that was found.
Because every path is examined, the optimal path must be found. This
process is implemented as an extension of one of the exhaustive search
techniques, such as depth-first or breadth-first search, but rather than stop-
ping when a solution is found, the solution is stored and the process con-
tinues until all paths have been explored. If an alternative solution is found,
its path is compared with the stored path, and if it has a lower cost, it
replaces the stored path.

The following more sophisticated techniques for identifying optimal paths
are outlined in this section:

■ A*

■ uniform cost search (Branch and Bound)

■ greedy search

The British Museum procedure also has the property that it generates all
solutions. Most of the search methods we look at in this book stop when
they find a solution. In some cases, this will be the best solution, and in
other cases it may even be the worst available solution (depth-first search
will do this if the worst solution happens to be the left-most solution).

In some cases, it may be necessary to identify all possible solutions, in
which case something like the British Museum procedure would be useful.

Assuming that none of the branches of the tree is infinitely deep, and that
no level has an infinite branching factor, then it does not matter which
approach is used (depth first or breadth first, for example) when running

108 CHAPTER 4 Search Methodologies

the British Museum procedure: because the goal is to visit every node, the
order the nodes are visited probably does not matter.

4.16.1 A* Algorithms

A* algorithms are similar to best-first search but use a somewhat more
complex heuristic to select a path through the tree. The best-first algorithm
always extends paths that involve moving to the node that appears to be
closest to the goal, but it does not take into account the cost of the path to
that node so far.

The A* algorithm operates in the same manner as best-first search but uses
the following function to evaluate nodes:

f(node) = g(node) + h(node)

g(node) is the cost of the path so far leading up to the node, and h(node) is
an underestimate of the distance of the node from a goal state; f is called a
path-based evaluation function. When operating A*, f(node) is evaluated
for successor nodes and paths extended using the nodes that have the low-
est values of f.

If h(node) is always an underestimate of the distance of a node to a goal
node, then the A* algorithm is optimal: it is guaranteed to find the shortest
path to a goal state. A* is described as being optimally efficient, in that in
finding the path to the goal node, it will expand the fewest possible paths.
Again, this property depends on h(node) always being an underestimate.

Note that running the A* algorithm on the search tree shown in Figure 4.4
would not be guaranteed to find the shortest solution because the esti-
mated values for h(node) are not all underestimates. In other words, the
heuristic that is being used is not admissible. If a nonadmissible heuristic
for h(node) is used, then the algorithm is called A.

A* is the name given to the algorithm where the h(node) function is admis-
sible. In other words, it is guaranteed to provide an underestimate of the
true cost to the goal.

A* is optimal and complete. In other words, it is guaranteed to find a solu-
tion, and that solution is guaranteed to be the best solution.

A* is in fact only complete if the tree it is searching has a finite branching
factor and does not contain a path of finite cost, which has an infinite num-
ber of nodes along it. Both of these conditions are likely to be met in all

4.16 Identifying Optimal Paths 109

real-world situations, and so for simplicity we can state that A* is complete;
although, to be more accurate:

A* is complete if the graph it is searching is locally finite (that is, it has a
finite branching factor) and if every arc between two nodes in the graph
has a non-zero cost.

That A* is optimal can be proved by considering a counter-example:

Imagine we are applying the A* algorithm to a graph with two goals, G1
and G2. The path cost of G1 is f1 and the path cost of G2 is f2, where f2 >
f1. G1 is the goal with the lower cost, but let us imagine a scenario where
the A* algorithm has reached G2 without having explored G1. In other
words, we are imagining a scenario where the algorithm has not chosen the
goal with the lesser cost.

If we consider a node, n, that is on an optimal path from the root node to
G1, then because h is an admissible heuristic:

f1 ≥ f (n)

The only reason the algorithm would not choose to expand n before it
reaches G2 would be if

f (n) > f (G2)

Hence, by combining these two expressions together, we arrive at

f1 ≥ f(G2)

Because G2 is a goal state, it must be the case that h(G2) = 0, and thus f(G2)
= g(G2). Thus we have

f1 ≥ g(G2)

This, therefore, contradicts our original assumption that G2 had a higher
path cost than G1, which proves that A* can only ever choose the least cost
path to a goal.

It was mentioned that A* is similar to breadth-first search. In fact, breadth-
first search can be considered to be a special case of A*, where h(node) is
always 0, so f(node) = g(node), and where every direct path between a node
and its immediate successor has a cost of 1.

4.16.2 Uniform Cost Search

Uniform cost search (or Branch and Bound) is a variation on best-first
search that uses the evaluation function g(node), which for a given node

110 CHAPTER 4 Search Methodologies

evaluates to the cost of the path leading to that node. In other words, this is
an A* algorithm but where h(node) is set to zero. At each stage, the path
that has the lowest cost so far is extended. In this way, the path that is gen-
erated is likely to be the path with the lowest overall cost, but this is not
guaranteed. To find the best path, the algorithm needs to continue running
after a solution is found, and if a preferable solution is found, it should be
accepted in place of the earlier solution.

Uniform cost search is complete and is optimal, providing the cost of a
path increases monotonically. In other words, if for every node m that has a
successor n, it is true that g(m) < g(n), then uniform cost is optimal. If it is
possible for the cost of a node to be less than the cost of its parent, then
uniform cost search may not find the best path.

Uniform cost search was invented by Dijkstra in 1959 and is also known as
Dijkstra’s algorithm.

4.16.3 Greedy Search

Greedy search is a variation of the A* algorithm, where g(node) is set to
zero, so that only h(node) is used to evaluate suitable paths. In this way, the
algorithm always selects the path that has the lowest heuristic value or esti-
mated distance (or cost) to the goal.

Greedy search is an example of a best-first strategy.

Greedy-search methods tend to be reasonably efficient, although in the worst
case, like depth-first search, it may never find a solution at all. Additionally,
greedy search is not optimal and can be fooled into following extremely costly
paths. This can happen if the first step on the shortest path toward the goal is
longer than the first step along another path, as is shown in Figure 4.10.

4.16.4 Example: The Knapsack Problem

The knapsack problem is an interesting illustration of the use of greedy-
search algorithms and their pitfalls. The fractional knapsack problem can
be expressed as follows:

A man is packing items into his knapsack. He wants to take the most valu-
able items he can, but there is a limit on how much weight he can fit in his
knapsack. Each item has a weight wi and is worth vi. He can only fit a total
weight of W in his knapsack. The items that he wants to take are things that
can be broken up and still retain their value (like flour or milk), and he is

4.16 Identifying Optimal Paths 111

1 10

1000 10

Figure 4.10
A search tree where a
greedy-search method will
not find the best solution

able to take fractions of items. Hence, the problem is called the fractional
knapsack problem.

In solving this problem, a greedy-search algorithm provides the best solution.

The problem is solved by calculating the value per unit weight of each item:
vi/wi, and then taking as much as he can carry of the item with the greatest
value per unit weight. If he still has room, he moves on to the item with the
next highest value per unit weight, and so on.

The 0-1 knapsack problem is the same as the fractional knapsack problem,
except that he cannot take parts of items. Each item is thus something like
a television set or a laptop computer, which must be taken whole. In solving
this problem, a greedy-search approach does not work, as can be seen from
the following example:

Our man has a knapsack that lets him carry a total of 100 pounds. His
items are:

1 gold brick worth $1800 and weighing 50 pounds

1 platinum brick worth $1500 and weighing 30 pounds

1 laptop computer worth $2000 and weighing 50 pounds

Hence, we have four items, whose values of v and w are as follows:

v1 = 1800 w1 = 50 v1/w1 = 36

v2 = 1500 w2 = 30 v2/w2 = 50

v3 = 2000 w3 = 50 v3/w3 = 40

112 CHAPTER 4 Search Methodologies

In this case, a greedy-search strategy would pick item 2 first, and then
would take item 3, giving a total weight of 80 pounds, and a total value of
$3500. In fact, the best solution is to take items 1 and 3 and to leave item 2
behind giving a total weight of 100 pounds and a total value of $3800.

4.17 Chapter Summary

■ Generate and Test is an extremely simple example of a brute-force
or exhaustive search technique.

■ Depth-first search and breadth-first search are extremely com-
monly used and well understood exhaustive search methods.

■ In analyzing search methods, it is important to examine the com-
plexity (in time and space) of the method.

■ A search method is complete if it will always find a solution if one
exists. A search method is optimal (or admissible) if it always finds
the best solution that exists.

■ Depth-First Iterative Deepening (DFID) is a search method that
has the low memory requirements of depth-first search and is opti-
mal and complete, like breadth-first search.

■ Heuristics can be used to make search methods more informed
about the problem they are solving. A heuristic is a method that
provides a better guess about the correct choice to make at any
junction that would be achieved by random guessing.

■ One heuristic is more informed than another heuristic if a search
method that uses it needs to examine fewer nodes to reach a goal.

■ Relaxing problems is one way to identify potentially useful heuristics.

■ Hill climbing is a heuristic search method that involves continually
moving from one potential solution to a better potential solution
until no better solution can be found.

■ Hill climbing has problems in search spaces that have foothills,
plateaus, and ridges.

■ A* is a heuristic search method that in most situations is optimal
and complete. It uses the path evaluation function to choose suit-
able paths through the search space.

Review Questions 113

■ Uniform cost search is similar to A* but uses a simpler evaluation
function, which is based just on the cost of reaching the node so far.

■ Greedy search involves always moving to the most immediately
attractive position on the next step. It can be used to solve the frac-
tional knapsack problem, but not the 1-0 knapsack problem.

4.18 Review Questions

4.1 Explain the idea behind Generate and Test. Why is this method
described as being exhaustive ?

4.2 Explain the differences and similarities between depth-first search
and breadth-first search. Give examples of the kinds of problems
where each would be appropriate.

4.3 Explain what is meant by the following terms in relation to search
methods:

■ complexity

■ completeness

■ optimality

4.4 What is the complexity (in space and in time) of the following
search methods:

■ depth-first search

■ breadth-first search

■ best-first search

■ greedy search

4.5 What does it mean to say that a search method is monotonic? How
desirable is this property? Which of the search methods described
in this chapter is monotonic?

4.6 Explain why Depth-First Search Iterative Deepening is reasonably
efficient. Why might it be preferable to use DFID rather than
depth-first search?

4.7 Provide a definition of the word “heuristic.” In what ways can
heuristics be useful in search? Name three ways in which you use
heuristics in your everyday life.

114 CHAPTER 4 Search Methodologies

4.8 Explain the components of the path evaluation function f(node)
used by A*. Do you think it is the best evaluation function that
could be used? To what kinds of problems might it be best suited?
And to what kinds of problems would it be worst suited?

4.9 Show that A* is optimal and complete in most circumstances.

4.10 Explain why a greedy method provides suboptimal solutions to the
0-1 knapsack problem but provides optimal solutions to the frac-
tional knapsack problem. Could there be a search tree for which
greedy search found optimal solutions?

4.11 What effect does the ordering of a search tree have on the efficiency
of search? What effect does it have on the quality of the results?
How would ordering affect the way that depth-first search or
greedy search would perform when searching the search tree
shown in Figure 4.10?

4.19 Exercises

4.12 Implement a data structure that represents search trees in a pro-
gramming language of your choice. Have the program display the
tree on the screen, and provide functions that can select nodes and
display paths.

4.13 Implement depth-first search in your program. Implement
breadth-first search. Build a search tree of depth 10 and with a
branching factor of 2. Which of your search methods finds a goal
the most quickly? Can you change the tree so that the other
method finds the goal more quickly?

4.14 Add the concept of path cost to your implementation. Implement A*.
Does it perform much better than depth-first or breadth-first search?
How well does it do with the large tree you built in Exercise 4.8?

4.15 Implement a greedy-search algorithm. How well does it perform
compared with the other methods you have implemented? Invent a
0-1 knapsack problem, and use your search tree implementation to
model this problem. Can you model the fractional knapsack prob-
lem using a search tree?

4.16 Investigate the file search facility on your computer. Which type of
search method do you think it uses? Why do you think this partic-

Further Reading 115

ular search method was chosen? What problems could this
approach cause it? How well does it work when it is searching
directories with large numbers of files in them?

4.20 Further Reading

Search is covered well by almost all artificial intelligence text books,
although the approaches taken vary.

A detailed description and analysis of Dijkstra’s algorithm (uniform cost
search) can be found in Cormen et al. (2001). Books such as this that cover
algorithms in more detail provide an interesting non-Artificial Intelligence
perspective on the subject.

Marvin Minsky’s 1961 paper, Steps Toward Artificial Intelligence, introduced
the idea of hill climbing and discussed some of the difficulties faced by hill-
climbing methods.

Allen Newell and Herbert A. Simon’s 1976 paper, Computer Science as
Empirical Inquiry, contains an excellent discussion of heuristic search for
problem solving.

A good description of the way that Prolog uses depth-first search for unifi-
cation is contained in Russell and Norvig (1995).

Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein (2001 – MIT Press)

Artificial Intelligence: Strategies, Applications, and Models Through Search, by
Benedict Du Boulay and Christopher James Thornton (1999 – AMACOM)

Algorithmics: The Spirit of Computing, by David Harel (1987 – Addison Wesley)

Art of Computer Programming: Sorting and Searching, by Donald Knuth
(1973 – Pearson Addison Wesley)

Steps Towards Artificial Intelligence, by Marvin Minsky (1961 – in Computa-
tion & Intelligence—Collected Readings, edited by George F. Luger, MIT Press)

Computer Science as Empirical Enquiry: Symbols and Search, by Allen
Newell and Herbert A. Simon (1976 – in Computation & Intelligence—Col-
lected Readings, edited by George F. Luger, MIT Press)

Algorithms, by Robert Sedgewick (1988 – Addison Wesley)

This page intentionally left blank

5CHAPTER
Advanced Search

The difficult we do immediately. The impossible takes a little longer.

—US Armed Forces slogan

Had I been present at the Creation, I would have given some useful hints for
the better ordering of the universe.

—Alfonso ‘the wise’, on studying the Ptolemaic system (13th century A.D.)

If we value the pursuit of knowledge, we must be free to follow wherever that
search may lead us. The free mind is not a barking dog, to be tethered on a ten-
foot chain.

—Adlai E. Stevenson Jr., speech at the University of Wisconsin, Madison,
October 8, 1952

5.1 Introduction

In Chapter 4, we examined a range of methods that can be used to search a
problem space. In Chapter 5, we introduce some more sophisticated methods.

First, we examine constraint satisfaction problems, such as the eight-
queens problem, and search methods and heuristics that can be used to
solve them.

We also discuss local search methods, such as simulated annealing, that
attempt to find a solution to large combinatorial problems by moving
from one possible solution to another that is a little better. We also intro-
duce the idea of parallel search—using multiple processors (or multiple

118 CHAPTER 5 Advanced Search

computers) to deal with a single search problem to solve it more quickly.
Much of the material in this chapter is introductory in nature, and refer-
ences are given to books and papers where more information can be
learned on the methods.

5.2 Constraint Satisfaction Search

Search can be used to solve problems that are limited by constraints, such
as the eight-queens problem. Such problems are often known as Con-
straint Satisfaction Problems, or CSPs.

In this problem, eight queens must be placed on a chess board in such a
way that no two queens are on the same diagonal, row, or column. If we use
traditional chess board notation, we mark the columns with letters from a
to g and the rows with numbers from 1 to 8. So, a square can be referred to
by a letter and a number, such as a4 or g7.

This kind of problem is known as a constraint satisfaction problem (CSP)
because a solution must be found that satisfies the constraints.

In the case of the eight-queens problem, a search tree can be built that rep-
resents the possible positions of queens on the board.

One way to represent this is to have a tree that is 8-ply deep, with a branch-
ing factor of 64 for the first level, 63 for the next level, and so on, down to
57 for the eighth level.

A goal node in this tree is one that satisfies the constraints that no two
queens can be on the same diagonal, row, or column.

An extremely simplistic approach to solving this problem would be to ana-
lyze every possible configuration until one was found that matched the
constraints.

A more suitable approach to solving the eight-queens problem would be to
use depth-first search on a search tree that represents the problem in the
following manner:

The first branch from the root node would represent the first choice of a
square for a queen. The next branch from these nodes would represent
choices of where to place the second queen.

The first level would have a branching factor of 64 because there are 64 pos-
sible squares on which to place the first queen. The next level would have a

5.2 Constraint Satisfaction Search 119

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 5.1
The eight-queens prob-
lem. Three queens have
been placed so far.

somewhat lower branching factor because once a queen has been placed,
the constraints can be used to determine possible squares upon which the
next queen can be placed. The branching factor will decrease as the algo-
rithm searches down the tree. At some point, the tree will terminate
because the path being followed will lead to a position where no more
queens can be placed on legal squares on the board, and there are still some
queens remaining.

In fact, because each row and each column must contain exactly one queen,
the branching factor can be significantly reduced by assuming that the first
queen must be placed in row 1, the second in row 2, and so on. In this way,
the first level will have a branching factor of 8 (a choice of eight squares on
which the first queen can be placed), the next 7, the next 6, and so on.

In fact, the search tree can be further simplified as each queen placed on the
board “uses up” a diagonal, meaning that the branching factor is only 5 or 6
after the first choice has been made, depending on whether the first queen
is placed on an edge of the board (columns a or h) or not. The next level
will have a branching factor of about 4, and the next may have a branching
factor of just 2, as shown in Figure 5.1.

The arrows in Figure 5.1 show the squares to which each queen can move.
Note that no queen can move to a square that is already occupied by
another queen.

120 CHAPTER 5 Advanced Search

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 5.2
A solution to the eight-
queens problem

In Figure 5.1, the first queen was placed in column a of row 8, leaving six
choices for the next row. The second queen was placed in column d of row
7, leaving four choices for row 6. The third queen was placed in column f in
row 6, leaving just two choices (column c or column h) for row 5.

Using knowledge like this about the problem that is being solved can help
to significantly reduce the size of the search tree and thus improve the effi-
ciency of the search solution.

A solution will be found when the algorithm reaches depth 8 and success-
fully places the final queen on a legal square on the board. A goal node
would be a path containing eight squares such that no two squares shared a
diagonal, row, or column.

One solution to the eight-queens problem is shown in Figure 5.2.

Note that in this solution, if we start by placing queens on squares e8, c7,
h6, and then d5, once the fourth queen has been placed, there are only two
choices for placing the fifth queen (b4 or g4). If b4 is chosen, then this
leaves no squares that could be chosen for the final three queens to satisfy
the constraints. If g4 is chosen for the fifth queen, as has been done in Fig-
ure 5.2, only one square is available for the sixth queen (a3), and the final
two choices are similarly constrained. So, it can be seen that by applying the
constraints appropriately, the search tree can be significantly reduced for
this problem.

5.4 Most-Constrained Variables 121

Using chronological backtracking in solving the eight-queens problem
might not be the most efficient way to identify a solution because it will
backtrack over moves that did not necessarily directly lead to an error, as
well as ones that did. In this case, nonchronological backtracking, or
dependency-directed backtracking (see Section 5.17) could be more use-
ful because it could identify the steps earlier in the search tree that caused
the problem further down the tree.

5.3 Forward Checking

In fact, backtracking can be augmented in solving problems like the eight-
queens problem by using a method called forward checking. As each
queen is placed on the board, a forward-checking mechanism is used to
delete from the set of possible future choices any that have been rendered
impossible by placing the queen on that square. For example, if a queen is
placed on square a1, forward checking will remove all squares in row 1, all
squares in column a, and also squares b2, c3, d4, e5, f6, g7, and h8. In this
way, if placing a queen on the board results in removing all remaining
squares, the system can immediately backtrack, without having to attempt
to place any more queens. This can often significantly improve the per-
formance of solutions for CSPs such as the eight-queens problem.

5.4 Most-Constrained Variables

A further improvement in performance can be achieved by using the most-
constrained variable heuristic. At each stage of the search, this heuristic
involves working with the variable that has the least possible number of
valid choices. In the case of the eight-queens problem, this might be
achieved by considering the problem to be one of assigning a value to eight
variables, a through h. Assigning value 1 to variable a means placing a
queen in square a1. To use the most constrained variable heuristic with this
representation means that at each move we assign a value to the variable
that has the least choices available to it. Hence, after assigning a = 1, b = 3,
and c = 5, this leaves three choices for d, three choices for e, one choice for
f, three choices for g, and three choices for h. Hence, our next move is to
place a queen in column f.

This heuristic is perhaps more clearly understood in relation to the map-
coloring problem. It makes sense that, in a situation where a particular

122 CHAPTER 5 Advanced Search

country can be given only one color due to the colors that have been
assigned to its neighbors, that country be colored next.

The most-constraining variable heuristic is similar in that it involves
assigning a value next to the variable that places the greatest number of
constraints on future variables.

The least-constraining value heuristic is perhaps more intuitive than the
two already presented in this section. This heuristic involves assigning a
value to a variable that leaves the greatest number of choices for other vari-
ables. This heuristic can be used to make n-queens problems with
extremely large values of n quite solvable.

5.5 Example: Cryptographic Problems

The constraint satisfaction procedure is also a useful way to solve problems
such as cryptographic problems. For example:

FORTY

+ TEN

+ TEN

SIXTY

Solution:

29786

+ 850

+ 850

31486

This cryptographic problem can be solved by using a Generate and Test
method, applying the following constraints:

■ Each letter represents exactly one number.

■ No two letters represent the same number.

As explained in Chapter 4, Generate and Test is a brute-force method,
which in this case involves cycling through all possible assignments of
numbers to letters until a set is found that meets the constraints and solves
the problem.

5.6 Heuristic Repair 123

Without using constraints, the method would first start by attempting to
assign 0 to all letters, resulting in the following sum:

00000

+ 000

+ 000

00000

Although this may appear to be a valid solution to the problem, it does not
meet the constraints laid down that specify that each letter can be assigned
only one number, and each number can be assigned only to one letter.

Hence, constraints are necessary simply to find the correct solution to the
problem. They also enable us to reduce the size of the search tree. In this
case, for example, it is not necessary to examine possible solutions where
two letters have been assigned the same number, which dramatically
reduces the possible solutions to be examined.

As we see in the next section, there are more efficient methods than Gener-
ate and Test to solve problems of this nature.

5.6 Heuristic Repair

Heuristics can be used to improve performance of solutions to con-
straint satisfaction problems. One way to do this is to use a heuristic
repair method, which involves generating a possible solution (ran-
domly, or using a heuristic to generate a position that is close to a solu-
tion) and then making changes that reduce the distance of the state
from the goal.

In the case of the eight-queens problem, this could be done using the min-
conflicts heuristic. To move from one state to another state that is likely to be
closer to a solution using the min-conflicts heuristic, select one queen that
conflicts with another queen (in other words, it is on the same row, column,
or diagonal as another queen). Now move that queen to a square where it
conflicts with as few queens as possible. Continue with another queen.

To see how this method would work, consider the starting position shown
in Figure 5.3.

124 CHAPTER 5 Advanced Search

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 5.3
Almost a solution to the
eight-queens problem

This starting position has been generated by placing the queens such that there
are no conflicts on rows or columns. The only conflict here is that the queen in
column 3 (on c7) is on a diagonal with the queen in column h (on h2).

To move toward a solution, we choose to move the queen that is on column
h. We will only ever apply a move that keeps a queen on the same column
because we already know that we need to have one queen on each column.
Each square in column h has been marked with a number to show how
many other queens that square conflicts with. Our first move will be to
move the queen on column h up to row 6, where it will conflict only with
one queen. Then we arrive at the position shown in Figure 5.4.

Because we have created a new conflict with the queen on row 6 (on f6),
our next move must be to move this queen. In fact, we can move it to a
square where it has zero conflicts. This means the problem has been solved,
and there are no remaining conflicts.

This method can be used not only to solve the eight-queens problem but
also has been successfully applied to the n-queens problem for extremely
large values of n. It has been shown that, using this method, the 1,000,000-
queens problem can be solved in an average of around 50 steps.

Solving the 1,000,000-queens problem using traditional search techniques
would be impossible because it would involve searching a tree with a
branching factor of 1012.

5.7 Combinatorial Optimization Problems 125

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 5.4
Almost a solution to the
eight-queens problem;
position after applying
min-conflicts heuristic
once to the position shown
in Figure 5.3

5.7 Combinatorial Optimization Problems

Local search uses a range of techniques to solve large combinatorial opti-
mization problems. A combinatorial optimization problem is simply a
problem that can be expressed in terms of finding the best possible set of
values for a group of variables.

An example of a combinatorial optimization problem is the eight-queens
problem presented in Chapter 4. The variables in this case can be consid-
ered to be the eight queens, which can take on values that represent the
squares on the board. The constraints of the problem make it harder than
simply picking any eight values for the variables, and hence, as we have
seen, it is useful to find ways to restrict the number of choices that are avail-
able for each queen to avoid the problem of combinatorial explosion.

Real-world combinatorial optimization problems include allocating teach-
ers to classrooms, scheduling machines and workers in factories, and select-
ing the best routes for buses, taxis, and other vehicles. The traveling
salesman problem is another such problem.

A relaxed optimization problem is a version of a problem where there are
more possible solutions (the feasible region is larger), or where there are
fewer constraints applied to the possible values that the variables can take.
For example, a relaxed (and trivial) version of the eight-queens problem

126 CHAPTER 5 Advanced Search

might be that the eight queens must be placed on the board so that no two
queens are on the same row or column. As we see in Section 5.2, finding
solutions to relaxed problems can help to develop heuristics for more com-
plex problems.

5.8 Local Search and Metaheuristics

Local search methods work by starting from some initial configuration
(usually random) and making small changes to the configuration until a
state is reached from which no better state can be achieved. Hill climbing is
a good example of a local search technique. Local search techniques, used in
this way, suffer from the same problems as hill climbing and, in particular,
are prone to finding local maxima that are not the best solution possible.

The methods used by local search techniques are known as metaheuristics.
Examples of metaheuristics include simulated annealing (see Section 5.9),
tabu search (see Section 5.8.3), genetic algorithms (see Chapter 14), ant colony
optimization (see Section 5.8.4), and neural networks (see Chapter 11).

This kind of search method is also known as local optimization because it
is attempting to optimize a set of values but will often find local maxima
rather than a global maximum.

A local search technique applied to the problem of allocating teachers to class-
rooms would start from a random position and make small changes until a
configuration was reached where no inappropriate allocations were made.

5.8.1 Exchanging Heuristics

The simplest form of local search is to use an exchanging heuristic. An
exchanging heuristic moves from one state to another by exchanging one or
more variables by giving them different values. We saw this in solving the
eight-queens problem as heuristic repair. A k-exchange is considered to be a
method where k variables have their values changed at each step. The heuris-
tic repair method we applied to the eight-queens problem was 2-exchange.

A k-exchange can be used to solve the traveling salesman problem. A tour
(a route through the cities that visits each city once, and returns to the
start) is generated at random. Then, if we use 2-exchange, we remove two
edges from the tour and substitute them for two other edges. If this pro-

5.8 Local Search and Metaheuristics 127

duces a valid tour that is shorter than the previous one, we move on from
here. Otherwise, we go back to the previous tour and try a different set of
substitutions.

In fact, using k = 2 does not work well for the traveling salesman problem,
whereas using k = 3 produces good results. Using larger numbers of k will
give better and better results but will also require more and more iterations.
Using k = 3 gives reasonable results and can be implemented efficiently. It
does, of course, risk finding local maxima, as is often the case with local
search methods.

5.8.2 Iterated Local Search

Iterated local search techniques attempt to overcome the problem of local
maxima by running the optimization procedure repeatedly, from different
initial states. If used with sufficient iterations, this kind of method will
almost always find a global maximum.

The aim, of course, in running methods like this is to provide a very good
solution without needing to exhaustively search the entire problem space.
In problems such as the traveling salesman problem, where the search
space grows extremely quickly as the number of cities increases, results
can be generated that are good enough (i.e., a local maximum) without
using many iterations, where a perfect solution would be impossible to
find (or at least it would be impossible to guarantee a perfect solution—
even one iteration of local search may happen upon the global maximum,
of course!).

5.8.3 Tabu Search

Tabu search is a metaheuristic that uses a list of states that have already
been visited to attempt to avoid repeating paths. The tabu search meta-
heuristic is used in combination with another heuristic and operates on the
principle that it is worth going down a path that appears to be poor if it
avoids following a path that has already been visited. In this way, tabu
search is able to avoid local maxima.

To quote from the www.tabusearch.net website: “a bad strategic choice can
yield more information than a good random choice.”

www.tabusearch.net

128 CHAPTER 5 Advanced Search

5.8.4 Ant Colony Optimization

Foraging ants leave a trail of pheromones so that they can lead other ants to
find the food that they have found. The trail of pheromones is renewed reg-
ularly, so that if another ant finds a better route, the pheromones along the
old route will gradually fade, and the new, superior route will become the
most popular choice.

The ant colony optimization (ACO) metaheuristic is based on this behav-
ior. For example, when attempting to solve the traveling salesman problem,
a set of “artificial ants” is sent out along the routes, leaving trails of
“pheromones” that indicate how short the route they have taken is.
Pheromones gradually fade, meaning that ants that follow later will take
the route whose pheromones have been most recently updated, while
attempting to follow the pheromones that indicate the shortest path. ACO
has been successfully used to enable engineers to find the best way to route
cables through a communications network. Because the “ants” are continu-
ally foraging through the network, this method is able to cope extremely
well with changes in the environment, such as blockages and new routes.

We will learn more about Artificial Intelligence methods based on biologi-
cal systems (artificial life) in Chapter 13.

5.9 Simulated Annealing

Annealing is a process of producing very strong glass or metal, which
involves heating the material to a very high temperature and then allowing
it to cool very slowly. In this way, the atoms are able to form the most stable
structures, giving the material great strength.

Simulated annealing is a local search metaheuristic based on this method
and is an extension of a process called metropolis Monte Carlo simulation.

Simulated annealing is applied to a multi-value combinatorial problem
where values need to be chosen for many variables to produce a particular
value for some global function, dependent on all the variables in the sys-
tem. This value is thought of as the energy of the system, and in general the
aim of simulated annealing is to find a minimum energy for a system.

Simple Monte Carlo simulation is a method of learning information (such
as shape) about the shape of a search space. The process involves randomly
selecting points within the search space. An example of its use is as follows:

5.9 Simulated Annealing 129

A square is partially contained within a circle. Simple Monte Carlo simula-
tion can be used to identify what proportion of the square is within the cir-
cle and what proportion is outside the circle. This is done by randomly
sampling points within the square and checking which ones are within the
circle and which are not.

Metropolis Monte Carlo simulation extends this simple method as follows:
Rather than selecting new states from the search space at random, a new
state is chosen by making a small change to the current state. If the new
state means that the system as a whole has a lower energy than it did in the
previous state, then it is accepted. If the energy is higher than for the previ-
ous state, then a probability is applied to determine whether the new state
is accepted or not. This probability is called a Boltzmann acceptance crite-
rion and is calculated as follows:

e(�dE/T)

where T is the current temperature of the system, and dE is the increase in
energy that has been produced by moving from the previous state to the
new state. The temperature in this context refers to the percentage of steps
that can be taken that lead to a rise in energy: At a higher temperature, more
steps will be accepted that lead to a rise in energy than at low temperature.

To determine whether to move to a higher energy state or not, the proba-
bility e(�dE/T) is calculated, and a random number is generated between 0
and 1. If this random number is lower than the probability function, the
new state is accepted. In cases where the increase in energy is very high, or
the temperature is very low, this means that very few states will be accepted
that involve an increase in energy, as e(�dE/T) approaches zero.

The fact that some steps are allowed that increase the energy of the system
enables the process to escape from local minima, which means that simu-
lated annealing often can be an extremely powerful method for solving
complex problems with many local maxima.

Note: Some systems use e(�dE/kT) as the probability that the search will
progress to a state with a higher energy, where k is Boltzmann’s constant
(Boltzmann’s constant is approximately 1.3807 � 10�23 Joules per Kelvin).

Simulated annealing uses Monte Carlo simulation to identify the most stable
state (the state with the lowest energy) for a system. This is done by running

130 CHAPTER 5 Advanced Search

*VLSI — Very Large-Scale Integration—a method used to get very large numbers of gates
onto silicon chips.

successive iterations of metropolis Monte Carlo simulation, using progres-
sively lower temperatures. Hence, in successive iterations, fewer and fewer
steps are allowed that lead to an overall increase in energy for the system.

A cooling schedule (or annealing schedule) is applied, which determines
the manner in which the temperature will be lowered for successive itera-
tions. Two popular cooling schedules are as follows:

Tnew = Told � dT

Tnew = C � Told (where C < 1.0)

The cooling schedule is extremely important, as is the choice of the number
of steps of metropolis Monte Carlo simulation that are applied in each iter-
ation. These help to determine whether the system will be trapped by local
minima (known as quenching). The number of times the metropolis
Monte Carlo simulation is applied per iteration is for later iterations.

Also important in determining the success of simulated annealing are the
choice of the initial temperature of the system and the amount by which
the temperature is decreased for each iteration. These values need to be
chosen carefully according to the nature of the problem being solved.

When the temperature, T, has reached zero, the system is frozen, and if the
simulated annealing process has been successful, it will have identified a
minimum for the total energy of the system.

Simulated annealing has a number of practical applications in solving prob-
lems with large numbers of interdependent variables, such as circuit design.
It has also been successfully applied to the traveling salesman problem.

5.9.1 Uses of Simulated Annealing

Simulated annealing was invented in 1983 by Kirkpatrick, Gelatt, and Vec-
chi. It was first used for placing VLSI* components on a circuit board.

Simulated annealing has also been used to solve the traveling salesman
problem, although this approach has proved to be less efficient than using
heuristic methods that know more about the problem. It has been used
much more successfully in scheduling problems and other large combina-

5.11 Real-Time A* 131

torial problems where values need to be assigned to a large number of vari-
ables to maximize (or minimize) some function of those variables.

5.10 Genetic Algorithms for Search

Genetic algorithms are discussed in much more detail in Chapter 14. This
section provides a brief overview of the ways in which genetic algorithms
can be used to solve search problems but does not assume any detailed
understanding of the mechanics of genetic algorithms.

Genetic algorithms involve finding solutions to complex problems using a
method based on the process of evolution that we see in nature. In much
the same way as nature evolves creatures that are best designed to suit their
environments by selecting features that work (survival of the fittest),
genetic algorithms work by combining potential solutions to a problem
together in a way that tends to produce better solutions over successive
generations. This is a form of local optimization, but where mutation and
crossover are used to try to avoid local maxima.

As is explained in Chapter 14, genetic algorithms are usually used to iden-
tify optimal solutions to complex problems. This can clearly be easily
mapped to search methods, which are aiming toward a similar goal.
Genetic algorithms can thus be used to search for solutions to multi-value
problems where the closeness of any attempted solution to the actual solu-
tion (fitness) can be readily evaluated.

In short, a population of possible solutions (chromosomes) is generated,
and a fitness value for each chromosome is determined. This fitness is used
to determine the likelihood that a given chromosome will survive to the
next generation, or reproduce. Reproduction is done by applying cross-
over to two (or more) chromosomes, whereby features (genes) of each
chromosome are combined together. Mutation is also applied, which
involves making random changes to particular genes.

5.11 Real-Time A*

Real-time A* is a variation of A*, as presented in Chapter 4. Search contin-
ues on the basis of choosing paths that have minimum values of f(node) =
g(node) + h(node). However, g(node) is the distance of the node from the
current node, rather than from the root node. Hence, the algorithm will

132 CHAPTER 5 Advanced Search

backtrack if the cost of doing so plus the estimated cost of solving the prob-
lem from the new node is less than the estimated cost of solving the prob-
lem from the current node.

Implementing real-time A* means maintaining a hash table of previously
visited states with their h(node) values.

5.12 Iterative-Deepening A* (IDA*)

By combining iterative-deepening with A*, we produce an algorithm that is
optimal and complete (like A*) and that has the low memory requirements
of depth-first search.

IDA* is a form of iterative-deepening search where successive iterations
impose a greater limit on f(node) rather than on the depth of a node.

IDA* performs well in problems where the heuristic value f (node) has rel-
atively few possible values. For example, using the Manhattan distance as a
heuristic in solving the eight-queens problem, the value of f (node) can
only have values 1, 2, 3, or 4. In this case, the IDA* algorithm only needs to
run through a maximum of four iterations, and it has a time complexity
not dissimilar from that of A*, but with a significantly improved space
complexity because it is effectively running depth-first search.

In cases such as the traveling salesman problem where the value of f (node)
is different for every state, the IDA* method has to expand 1 + 2 + 3 + . . .
+ n nodes = O(n2) where A* would expand n nodes.

5.13 Parallel Search

Many of the search methods that have been described in this book were
developed in the 1960s, 1970s, and 1980s, when computers lacked the
power, memory, and storage space that they have today. Many of the issues
that were thus of concern when those algorithms were developed are no
longer important.

Nowadays, computers have far more processing power and storage space and
so are able to run algorithms, such as search, a great deal faster. As we see in
Chapter 6, this has helped to lead to a great improvement in the ability of
chess-playing computer programs. Another aspect of chess-playing com-
puter programs is that they tend to run parallel search. The names of many of

5.13 Parallel Search 133

the best chess computers include the word deep: Deep Thought, Deep Blue,
Deep Junior, and Deep Fritz, for example. The word deep means parallel.

The idea of parallel processing is that if a task can be broken down into a
number of sub-tasks, where those sub-tasks do not need to be run sequen-
tially, then they can be run in parallel, simultaneously on separate processors.

As with much of Artificial Intelligence, there is a good basis for this idea:
the human brain. The human brain is massively parallel, which means
that it is able to do millions of things simultaneously. Computers are much
faster at raw processing than a human brain, but because the brain is able to
do so many things simultaneously, it is able to operate at a much faster rate
than a computer.

Applying this idea to search is clearly desirable because many search prob-
lems (such as playing chess) can be heavily time dependent.

One search method that can be simply parallelized is depth-first search. If
we assume that we have two processors, we could simply divide the descen-
dants of the root node in half and assign half of them to one processor and
half to the other. The two processors would then run a series of depth-first
searches on each of its nodes. The first processor to find a goal node would
report success, and the whole computation would stop.

More complex search methods such as alpha–beta pruning, which is
described in Chapter 6, are not so easy to implement in parallel. Alpha–beta
pruning is a method that is used to eliminate portions of the search tree for
playing games such as chess that can provide a great increase in perform-
ance. It has been shown that running alpha–beta pruning searches in paral-
lel by simply dividing the search tree up between processors actually
provides worse results than running it in serial (Fox et al. 1994).

To develop a parallel version of an algorithm such as alpha–beta pruning,
more care needs to be taken in how the tasks are split up so that perform-
ance is not degraded.

One area where parallel search can be readily applied is in solving con-
straint satisfaction problems. In general, CSPs are not well solved by using
brute-force search because this involves a combinatorial optimization
problem. In situations where the search tree can be reduced somewhat, and
no better method can be found than blind search, the performance of the
search can be significantly improved by running it in a parallel fashion, by

134 CHAPTER 5 Advanced Search

simply dividing the search tree between processors. In some cases, search
problems can be divided between individual computers.

Of course, problems that can be solved using goal reduction are also often
solved more efficiently using parallel search because the goal tree can be
broken down into sub-goal trees, which can be worked on in parallel by
separate processors.

When distributing work in this way, important concepts to consider are
task distribution (deciding which task to give to which processor), load
balancing (ensuring that all processors have enough work to do and that
no single processor is overworked), and tree ordering (determining the
correct order to process the search tree).

5.13.1 Task Distribution

Cook (1998) explores the process of implementing a parallel version of
IDA* search.

One approach to distributing tasks for parallel implementations of IDA*
was to use parallel window search (PWS). This involves searching the dif-
ferent depth-limited searches concurrently, rather than in series. For exam-
ple, using three processors, the first processor might search with a depth
limit of 1, the second with a depth limit of 2, and the third with a depth
limit of 3. As soon as any processor completes a search, it is assigned a new
search with a depth that is deeper than any currently running. Unfortu-
nately, if there are too many processors (more than the number of itera-
tions needed to find an optimal solution) the PWS method can be very
inefficient because many processors will be idle for the entire search.

Another approach used by Cook was distributed tree search (DTS). First,
a breadth-first search is carried out until there are as many leaf nodes avail-
able as there are processors. Then, each of these nodes is assigned to a
processor for search. To ensure that this method is optimal, when a proces-
sor finishes an iteration, it must wait for all other processors to finish their
iterations before starting another. This means that there will often be idle
processors.

Cook’s paper provides a very detailed analysis of both of these methods and
their respective advantages and disadvantages.

5.13 Parallel Search 135

In their paper Randomized Parallel Algorithms for Backtrack Search and
Branch-and-Bound Computation, Richard Karp and Yanjun Zhang showed
that distributing tasks between processors at random gives better results,
particularly when running a variation of depth-first search called back-
tracking search. In backtracking search, when a node is discovered, the
processor passes one of the children of that node to an idle processor, if one
is available. The normal method of determining to which processor to pass
this child node is fairly complex and can create a significant overhead. By
passing the child nodes randomly, this overhead can be eliminated, and the
search becomes much more efficient.

5.13.2 Tree Ordering

When running IDA* in parallel, the order of the tree can be very impor-
tant. Since the search tree is expanded in depth-first order from left to
right, if the optimal solution is on the left side of the tree, it will be found
much more quickly than if it is on the right side. Clearly, if a way could be
found to ensure that the optimal solution was always on the left side of the
tree, then a search method would not be needed to find it. However, heuris-
tics can be used to attempt to examine the tree in a way that will increase
the likelihood of finding an optimal solution quickly. These heuristics
operate in much the same way that the heuristics for best-first search and
other serial informed search methods use.

5.13.3 Search Engines

Search engines are an excellent example of parallel search systems. One
problem faced by search engines is the enormous size of the Internet (esti-
mated to be many billions of pages and growing continually). To index a
reasonable percentage of these pages, search engines need to run in parallel.
Typically, search engines run their indexing on a number of indexing
servers. Pages or websites are distributed among the servers by a scheduling
process. Clearly, as well as getting the schedule right, it is important that the
search engines are able to communicate with each other. For example, if
two search engines both come across the same page, they need to be able to
decide which one will search that page. Instead of crawling independently
like this, some search engine spiders simply have a list of links that they
need to crawl. When a spider finds a page, it indexes the page and extracts

136 CHAPTER 5 Advanced Search

all the links from it. The spider places these links into a central database
and carries on with its own list of links. A central scheduling system then
decides how to distribute the links in the central database to the servers. In
this way, no two servers will ever duplicate work.

5.14 Bidirectional Search

Bidirectional search (also known as wave search, due to the wave-like
nature in which paths are followed through the search space) is applied
when searching for the best path between a start node and a known goal
node. This is somewhat different from most of the other search algorithms
discussed in this part, where the goal node is not known, and the purpose
of the algorithm is to find a path to a goal node without knowing where the
goal node will be located in the tree.

Bidirectional search involves simultaneously spreading out paths in a
breadth-first fashion from both the start and goal nodes.

This requires that a predecessor function be available for each node, as well
as the successor function, so that paths can be extended backward from the
goal node.

As soon as the two paths meet, a complete path has been generated that
begins at the start node, goes through the point where the two paths met,
and ends at the goal node. This path is guaranteed to be the shortest path
(or rather, the path involving the fewest steps).

5.15 Nondeterministic Search

Nondeterministic search is a combination of depth-first and breadth-first
search, which avoids the problems of both but does not necessarily have the
advantages of either.

When running a nondeterministic search, new paths are added to the
queue at random positions. In the following pseudo-code implementation,
the function call add_randomly_to_queue (successors (state)) adds the suc-
cessors of state to random positions in the queue:

Function random ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)

5.17 Nonchronological Backtracking 137

{
if is_goal (state)

then return SUCCESS
else add_randomly_to_queue (successors (state));
if queue == []

then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}

This method is useful in cases where very little information is available about
the search space—for example, in a situation where there may be extremely
long, or even infinite, paths and may also be an extremely large branching
factor. In situations like that, depth-first search might end up stuck down an
infinitely long path, and breadth-first search could be extremely inefficient
in dealing with the large branching factor. A nondeterministic search will
avoid these problems but will not necessarily find the best path.

Nondeterministic search can also be used in combination with other search
techniques. For example, by applying a nondeterministic search when a
maximum is found in hill climbing, the problems of local maxima (the
foothill problem) can be avoided.

5.16 Island-Driven Search

Island-driven search assumes that an island exists roughly half way
between the root node and a goal node. The method involves finding a path
between the root node and the island, and a path between the island and a
goal node. If no path exists that goes through the island, the method reverts
to another search method that ignores the island.

This method is useful in situations where it is extremely likely that the
island actually does lie on a path to the goal, for example, if we are trying to
identify a route between Milan and Naples, given the knowledge that all
roads lead to Rome.

5.17 Nonchronological Backtracking

Nonchronological backtracking, or dependency-directed backtracking, is
an alternative to chronological backtracking, which we saw being used in
search methods such as depth-first search.

138 CHAPTER 5 Advanced Search

Chronological backtracking operates as follows:

When a dead end in a tree is found (in other words, a leaf node that is not a
goal node), move back up the search tree to the last point in the tree where
a decision had to be made. Undo this decision, and all its consequences,
and choose the next option at this junction instead.

In some cases, additional information is available about the search space
that can help to backtrack in a more efficient manner, undoing decisions
that are more likely to lead to success, rather than just undoing each deci-
sion in chronological order. In these cases, we use nonchronological back-
tracking, which is also known as dependency-directed backtracking.

It is particularly useful in solving constraint satisfaction problems, where
backtracking can be applied by going back to the previous choice that
caused a constraint to fail.

5.18 Chapter Summary

■ Constraint satisfaction problems (CSPs) such as the eight-queens
problem, can be solved using search.

■ Methods such as forward checking and heuristics such as the most-
constrained variable heuristic and min-conflicts make it possible to
solve extremely large CSPs (such as the 1,000,000-queens problem).

■ Large combinatorial optimization problems are best solved using
local search methods.

■ Local search methods (or metaheuristics) move from one potential
solution to another by making small changes. When a local maxi-
mum is found, the search stops.

■ Iterating the local search from different random starting configu-
rations can avoid the problem of identifying local maxima and
ignoring a global maximum.

■ Local search methods include tabu search, ant colony optimiza-
tion, and simulated annealing.

■ Simulated annealing is based on the way in which metals are hard-
ened by being heated up and then slowly cooled, so that the crys-
talline structure forms the strongest possible arrangement.

5.19 Review Questions 139

■ Variations on A* such as real-time A* and iterative-deepening A*
can provide enhanced performance.

■ Parallel search methods can take advantage of modern parallel
computers. Issues such as task distribution, load balancing, and
tree ordering need to be considered.

5.19 Review Questions

5.1 Explain how search can be used to solve constraint satisfaction
problems, such as the eight-queens problem. What difficulties arise
when such problems become extremely large (e.g., the 1,000,000-
queens problem)? What kinds of methods can be applied to solve
such large problems efficiently?

5.2 Explain the idea behind the following heuristics:

■ most-constrained variable

■ most-constraining variable

■ least-constraining variable

■ min-conflicts

5.3 Why is local search more practical than depth-first search for solv-
ing large combinatorial optimization problems? Explain what a
metaheuristic is and why it is useful.

5.4 How does iterated local search avoid the problem of local maxima?
Why is this important?

5.5 Explain how ant colony optimization works. Why might it be use-
ful for communications routing?

5.6 Describe in layman’s terms the idea behind simulated annealing and
why it works. What kinds of problems might it be useful for solving?

5.7 Explain the purpose of the temperature variable in simulated
annealing. How effective would the method be without it?

5.8 Explain why IDA* might be used instead of A*. In what kinds of
situations might it be less useful?

140 CHAPTER 5 Advanced Search

5.9 Explain the importance of the following principles when running
parallel search methods:

■ task distribution

■ load balancing

■ tree ordering

5.10 How do search engines make use of search? Research a few of the
best known search engines, and try to find out what kind of search
algorithms they use. How efficient do you think they are at search-
ing? Could you implement them better?

5.20 Exercises

5.1 Write a program in a programming language of your choice for
solving the n-queens problem. Run it with 8 queens, and then try it
with 100 queens. How well does it perform? Could your program
find a solution for 1,000,000 queens? If not, why not? If so, what
optimizations have you used to make that possible?

5.2 Write a program that can solve arbitrary cryptographic problems.
Add heuristics to your implementation to make it more efficient.
What limitations does your program have?

5.3 Investigate tabu search. Write 1000 words explaining how it works
and what sorts of problems it is best suited to solving.

5.4 Write a program that uses simulated annealing to solve the traveling
salesman problem of arbitrary size. Do you think that simulated
annealing is a good way to solve this problem? Explain your answer.

5.5 Implement a nondeterministic search algorithm. Build search trees
for which it performs the following:

a. better than depth-first search

b. worse than depth-first search

c. better than breadth-first search

d. worse than breadth-first search

5.21 Further Reading 141

5.21 Further Reading

Most of the material covered in this chapter is covered well by the majority
of Artificial Intelligence textbooks. Material on local search is relatively
new, and not so well covered by the older textbooks.

Tabu Search by Glover and Laguna, the inventors of tabu search, provides a
good insight into the tabu search metaheuristic.

The min-conflicts heuristic was invented by Gu in 1989. Further informa-
tion on the method can be found in Minton (1992).

Pearl (1984) gives a good overview of search methods with a particular
focus on heuristics.

Rayward-Smith et al. (1996) gives excellent coverage of heuristics and
metaheuristics in particular.

Jansen (1997) reports on research that has been done using simulated
annealing in information retrieval to select a suitable ordering of results to
return to a user in response to a keyword text query.

Multiobjective Heuristic Search: An Introduction to Intelligent Search Meth-
ods for Multicriteria Optimization by Pallab Dasgupta, P. P. Chakrabarti,
S. C. Desarkar (1999 - Friedrich Vieweg & Sohn)

Adaptive Parallel Iterative Deepening Search by Diane J. Cook and R. Craig Var-
nell (1998 – in Journal of Artificial Intelligence Research, Vol. 9, pp. 139–166)

Parallel Computing Works by G. C. Fox, R. D. Williams, and P. C. Messina
(1994 – Morgan Kaufmann)

Tabu Search by Fred W. Glover, Manuel Laguna (1998 – Kluwer Academic
Publishers)

Simulated Annealing for Query Results Ranking by B. J. Jansen (1997 – in
ACM Computer Science Education Conference)

Learning to Solve Problems by Searching for Macro-Operators (Research
Notes in Artificial Intelligence, Vol. 5) by Richard E. Korf (1985 – Longman
Group United Kingdom)

Search by Richard E. Korf (1987 – in Encyclopedia of Artificial Intelligence
edited by E. Shapiro – Wiley)

142 CHAPTER 5 Advanced Search

Learning Search Control Knowledge: An Explanation Based Approach by
Stephen Minton (1988 – Kluwer Academic Publishers)

Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction
and Scheduling Problems by S. Minton, M. D. Johnson, A. B. Philips, and P.
Laird (1992 – Artificial Intelligence, Vol. 58)

How to Solve It: Modern Heuristics by Zbigniew Michalewicz and David B.
Fogel (1999 – Springer Verlag)

Local Search for Planning and Scheduling: Ecai 2000 Workshop, Berlin, Ger-
many, August 21, 2000: Revised Papers (Lecture Notes in Computer Science,
2148) edited by Alexander Nareyek (2001 – Springer Verlag)

Combinatorial Optimization: Algorithms and Complexity by Christos H.
Papadimitriou and Kenneth Steiglitz (1998 – Dover Publications)

Heuristics: Intelligent Search Strategies for Computer Problem Solving by
Judea Pearl (1984 – Addison Wesley)

Modern Heuristic Search Methods edited by V. J. Rayward-Smith, I. H.
Osman, Colin R. Reeves, and G. D. Smith (1996 – John Wiley & Sons)

The Algorithm Design Manual by Steven S. Skiena (1997 – Telos)

Simulated Annealing: Theory and Applications by P. J. M. Van Laarhoven
and E. H. L. Aarts (1987 - D. Reidel Publishing Company – Out of Print)

6CHAPTER
Game Playing

After the other matches I felt hooked to be part of this competition because I
believe it is very important for the game of chess and the human race as a
whole. Now I hope to use my experience to help set new standards and also
prove that human players are not hopeless.

—Garry Kasparov before his six-game chess match against Deep Junior

One hundred years from now, the idea that humans could still beat computers
will seem quaint. It will be like men trying to race cars at the turn of the cen-
tury. Who’s better? Who cares? The technology is what matters. It’s improving,
and that’s what counts.

—Professor Jonathan Schaeffer discussing Kasparov’s chess match with
Deep Junior

‘The Game’, said he, ‘is never lost till won.’

—George Crabbe, Gretna Green

The Game’s Afoot.

—William Shakespeare, Henry V

6.1 Introduction

One of the most interesting and well publicized areas of Artificial Intelli-
gence research has been in the playing of games. With the success of Deep
Blue in 1997, a landmark was reached: a computer program that could
defeat the best chess player in the world.

144 CHAPTER 6 Game Playing

Game-playing systems tend to rely heavily on the search techniques
described in Chapters 4 and 5, in combination with a number of heuristics
and often a detailed database of knowledge about the game.

This chapter explains the relationship between search and games such as
chess, checkers, and backgammon. It explains the concepts of alpha–beta
pruning and Minimax. It uses Chinook, a checkers-playing computer sys-
tem, to explain some of the more advanced techniques used in modern
game-playing computers and discusses why computers are currently
unable to beat humans at games such as Go.

6.2 Game Trees

Many two-player games can be efficiently represented using trees, called
game trees. A game tree is an instance of a tree in which the root node rep-
resents the state before any moves have been made, the nodes in the tree
represent possible states of the game (or positions), and arcs in the tree
represent moves.

It is usual to represent the two players’ moves on alternate levels of the
game tree, so that all edges leading from the root node to the first level rep-
resent possible moves for the first player, and edges from the first level to
the second represent moves for the second player, and so on.

Leaf nodes in the tree represent final states, where the game has been won,
lost, or drawn. In simple games, a goal node might represent a state in
which the computer has won, but for more complex games such as chess
and Go, the concept of a goal state is rarely of use.

One approach to playing a game might be for the computer to use a tree
search algorithm such as depth-first or breadth-first search, looking for a
goal state (i.e., a final state of the game where the computer has won).
Unfortunately, this approach does not work because there is another intel-
ligence involved in the game. We will consider this to be a rational,
informed opponent who plays to win. Whether this opponent is human or
another computer does not matter—or should not matter—but for the
purposes of this section of the book, we will refer to the opponent as being
human, to differentiate him or her from the computer.

Consider the game tree shown in Figure 6.1. This partial tree represents the
game of tic-tac-toe, in which the computer is playing noughts, and the
human opponent is playing crosses. The branching factor of the root node

6.2 Game Trees 145

o o o
o o

o

ooo

o x

o ox o
o

x

o
o
x x

o
oo
x x o

o
o

x x

o
o
x

x
o

o
x

x

o
o
x

o x o
x

Figure 6.1
A partial game tree for the game tic-tac-toe

is 9 because there are nine squares in which the computer can place its first
nought. The branching factor of the next level of the tree is 8, then 7 for the
next level, and so on. The tree shown in Figure 6.1 is clearly just a part of
that tree and has been pruned to enable it to fit comfortably on the page.

For a computer to use this tree to make decisions about moves in a game of
tic-tac-toe, it needs to use an evaluation function, which enables it to
decide whether a given position in the game is good or bad. If we use
exhaustive search, then we only need a function that can recognize a win, a
loss, and a draw. Then, the computer can treat “win” states as goal nodes
and carry out search in the normal way.

6.2.1 Rationality, Zero Sum, and Other Assumptions

All the methods discussed in this chapter are designed for games with two
players. In most of the games, there is no element of chance (in other
words, no dice are thrown, or cards drawn), and the players have complete

146 CHAPTER 6 Game Playing

knowledge of the state of the game, which means that the players do not
conceal information (apart from their strategies and plans) from their
opponents. This sets games such as chess and Go aside from games such as
poker, in which there is an element of chance, and it is also important that
players conceal information from each other.

Most of the games we will consider in this chapter are zero-sum games,
which means that if the overall score at the end of a game for each player
can be 1 (a win), 0 (a draw), or �1 (a loss), then the total score for both
players for any game must always be 0. In other words, if one player wins,
the other must lose. The only other alternative is that both players draw.
For this reason, we consider the search techniques that are discussed here to
be adversarial methods because each player is not only trying to win but to
cause the opponent to lose. In the algorithms such as Minimax and
alpha–beta that are discussed later, it is important that the computer can
assume that the opponent is rational and adversarial. In other words, the
computer needs to assume that the opponent will play to win.

In discussing game trees, we use the concept of ply, which refers to the
depth of the tree. In particular, we refer to the ply of lookahead. When a
computer evaluates a game tree to ply 5, it is examining the tree to a depth
of 5. The 4th ply in a game tree is the level at depth 4 below the root node.

Because the games we are talking about involve two players, sequential plies
in the tree will alternately represent the two players. Hence, a game tree
with a ply of 8 will represent a total of eight choices in the game, which cor-
responds to four moves for each player. It is usual to use the word ply to
represent a single level of choice in the game tree, but for the word move to
represent two such choices—one for each player.

6.2.2 Evaluation Functions

Evaluation functions (also known as static evaluators because they are
used to evaluate a game from just one static position) are vital to most
game-playing computer programs. This is because it is almost never possi-
ble to search the game tree fully due to its size. Hence, a search will rarely
reach a leaf node in the tree at which the game is either won, lost, or drawn,
which means that the software needs to be able to cut off search and evalu-
ate the position of the board at that node. Hence, an evaluation function is
used to examine a particular position of the board and estimate how well
the computer is doing, or how likely it is to win from this position. Due to

6.2 Game Trees 147

the enormous number of positions that must be evaluated in game playing,
the evaluation function usually needs to be extremely efficient, to avoid
slowing down game play.

One question is how the evaluation function will compare two positions. In
other words, given positions A and B, what relative values will it give those
positions? If A is a clearly better position than B, perhaps A should receive a
much higher score than B. In general, as we will see elsewhere, to be suc-
cessful, the evaluation function does not need to give values that linearly
represent the quality of positions: To be effective, it just needs to give a
higher score to a better position.

An evaluation function for a chess game might look at the number of
pieces, taking into account the relative values of particular pieces, and
might also look at pawn development, control over the center of the board,
attack strength, and so on. Such evaluation functions can be extremely
complex and, as we will see, are essential to building successful chess-play-
ing software.

Evaluation functions are usually weighted linear functions, meaning that a
number of different scores are determined for a given position and simply
added together in a weighted fashion. So, a very simplistic evaluation func-
tion for chess might count the number of queens, the number of pawns,
the number of bishops, and so on, and add them up using weights to indi-
cate the relative values of those pieces:

q = number of queens

r = number of rooks

n = number of knights

b = number of bishops

p = number of pawns

score = 9q + 5r + 3b + 3n + p

If two computer programs were to compete with each other at a game such as
checkers, and the two programs had equivalent processing capabilities and
speeds, and used the same algorithms for examining the search tree, then the
game would be decided by the quality of the programs’ evaluation functions.

In general, the evaluation functions for game-playing programs do not
need to be perfect but need to give a good way of comparing two positions
to determine which is the better. Of course, in games as complex as chess

148 CHAPTER 6 Game Playing

and Go, this is not an easy question: two grandmasters will sometimes dif-
fer on the evaluation of a position.

As we will see, one way to develop an accurate evaluation function is to
actually play games from each position and see who wins. If the play is per-
fect on both sides, then this will give a good indication of what the evalua-
tion of the starting position should be.

This method has been used successfully for games such as checkers, but for
games such as chess and Go, the number of possible positions is so huge
that evaluating even a small proportion of them is not feasible. Hence, it is
necessary to develop an evaluation function that is dynamic and is able to
accurately evaluate positions it has never seen before.

6.2.3 Searching Game Trees

Even for the game of tic-tac-toe, a part of whose game tree is illustrated in
Figure 6.1, it can be inefficient for the computer to exhaustively search the
tree because it has a maximum depth of 9 and a maximum branching fac-
tor of 9, meaning there are approximately 9 � 8 � 7 � . . . � 2 � 1 nodes
in the tree, which means more than 350,000 nodes to examine. Actually,
this is a very small game tree compared with the trees used in games like
chess or Go, where there are many more possible moves at each step and
the tree can potentially have infinite depth.

In fact, using exhaustive search on game trees is almost never a good idea
for games with any degree of complexity. Typically, the tree will have very
high branching factors (e.g., a game tree representing chess has an average
branching factor of 38) and often will be very deep. Exhaustively searching
such trees is just not possible using current computer technology, and so in
this chapter, we will explore methods that are used to prune the game tree
and heuristics that are used to evaluate positions.

There is another problem with using exhaustive search to find goal nodes
in the game tree. When the computer has identified a goal state, it has sim-
ply identified that it can win the game, but this might not be the case
because the opponent will be doing everything he or she can to stop the
computer from winning. In other words, the computer can choose one arc
in the game tree, but the opponent will choose the next one. It may be that
depth-first search reveals a path to a leaf node where the computer wins,
but the computer must also assume that the opponent will be attempting
to choose a different path, where the computer loses.

6.3 Minimax 149

So, as we see later in this chapter, the computer can use methods like depth-
first or breadth-first search to identify the game tree, but more sophisti-
cated methods need to be used to choose the correct moves.

6.3 Minimax

When evaluating game trees, it is usual to assume that the computer is
attempting to maximize some score that the opponent is trying to minimize.
Normally we would consider this score to be the result of the evaluation
function for a given position, so we would usually have a high positive score
mean a good position for the computer, a score of 0 mean a neutral position,
and a high negative score mean a good position for the opponent.

The Minimax algorithm is used to choose good moves. It is assumed that a
suitable static evaluation function is available, which is able to give an over-
all score to a given position. In applying Minimax, the static evaluator will
only be used on leaf nodes, and the values of the leaf nodes will be filtered
up through the tree, to pick out the best path that the computer can achieve.

This is done by assuming that the opponent will play rationally and will
always play the move that is best for him or her, and thus worst for the
computer. The principle behind Minimax is that a path through the tree is
chosen by assuming that at its turn (a max node), the computer will choose
the move that will give the highest eventual static evaluation, and that at
the human opponent’s turn (a min node), he or she will choose the move
that will give the lowest static evaluation. So the computer’s aim is to max-
imize the lowest possible score that can be achieved.

Figure 6.2 shows how Minimax works on a very simple game tree. Note that
the best result that max can achieve is a score of 6. If max chooses the left
branch as its first choice, then min will inevitably choose the right branch,
which leaves max a choice of 1 or 3. In this case, max will choose a score of
3. If max starts by choosing the right branch, min will have a choice between
a path that leads to a score of 7 or a path that leads to a score of 6. It will
therefore choose the left branch, leaving max a choice between 2 and 6.

Figure 6.2 shows how Minimax can use depth-first search to traverse the
game tree. The arrows start from the root node at the top and go down to
the bottom of the left branch.

This leads to a max node, which will get a score of 5. The value 5 is there-
fore passed up to the parent of this max node. Following the right path
from this min node leads to another max node, this time getting a score of

150 CHAPTER 6 Game Playing

6

6

6

6

6

6 2 0

0

7

73

3

3

3125

5

5

MIN

MAX

MAXSTART

Figure 6.2
Illustrating how minimax works on a very simple game tree. The arrows show the order in which the nodes are examined by
the algorithm, and the values that are passed through the tree.

3. This comes back up to the min node, which now chooses the minimum
of 3 and 5, and selects 3. Eventually, having traversed the whole tree, the
best result for max comes back up to the root node: 6.

The Minimax function provides a best available score for a given node
as follows:

Function minimax (current_node)
{

if is_leaf (current_node)
then return static_evaluation (current_node);

if is_min_node (current_node)
then return min (minimax (children_of
(current_node)));

if is_max_node (current_node)
then return max (minimax (children_of
(current_node)));

// this point will never be reached since
// every node must be a leaf node, a min node or a
// max node.

}

6.3 Minimax 151

This is a recursive function because to evaluate the scores for the children
of the current node, the Minimax algorithm must be applied recursively to
those children until a leaf node is reached.

Minimax can also be performed nonrecursively, starting at the leaf nodes
and working systematically up the tree, in a reverse breadth-first search.

6.3.1 Bounded Lookahead

Minimax, as we have defined it, is a very simple algorithm and is unsuitable
for use in many games, such as chess or Go, where the game tree is
extremely large. The problem is that in order to run Minimax, the entire
game tree must be examined, and for games such as chess, this is not possi-
ble due to the potential depth of the tree and the large branching factor.

In such cases, bounded lookahead is very commonly used and can be com-
bined with Minimax. The idea of bounded lookahead is that the search tree is
only examined to a particular depth. All nodes at this depth are considered to
be leaf nodes and are evaluated using a static evaluation function. This corre-
sponds well to the way in which a human plays chess. Even the greatest grand-
masters are not able to look forward to see every possible move that will occur
in a game. Chess players look forward a few moves, and good chess players
may look forward a dozen or more moves. They are looking for a move that
leads to as favorable a position as they can find and are using their own static
evaluator to determine which positions are the most favorable.

Hence, the Minimax algorithm with bounded lookahead is defined as follows:

Function bounded_minimax (current_node, max_depth)
{

if is_leaf (current_node)
then return static_evaluation (current_node);

if depth_of (current_node) == max_depth
then return static_evaluation (current_node);

if is_min_node (current_node)
then return min (minimax (children_of
(current_node)));

if is_max_node (current_node)
then return max (minimax (children_of
(current_node)));

// this point will never be reached since
// every node must be a leaf node, a min node or a
// max node.

}

152 CHAPTER 6 Game Playing

Figure 6.3
Chess position with black
to move

In fact, it is not necessarily sensible to apply a fixed cut-off point for search.
The reason for this can be seen from the chess position shown in Figure 6.3.
If bounded Minimax search cut off search at this node, it might consider
the position to be reasonably even because the two players have the same
pieces, which are roughly equally well developed. In fact, although it is
black’s turn to move, white will almost certainly take black’s queen after
this move, meaning that the position is extremely strong for white.

This problem must be avoided if a computer program is to play chess or
any other game successfully. One way to avoid the problem is to only cut off
search at positions that are deemed to be quiescent. A quiescent position is
one where the next move is unlikely to cause a large change in the relative
positions of the two players. So, a position where a piece can be captured
without a corresponding recapture is not quiescent.

Another problem with bounded Minimax search is the horizon problem.
This problem involves an extremely long sequence of moves that clearly lead
to a strong advantage for one player, but where the sequence of moves,
although potentially obvious to a human player, takes more moves than is
allowed by the bounded search. Hence, the significant end of the sequence
has been pushed over the horizon. This was a particular problem for Chi-
nook, the checkers-playing program that we learn more about in Section 6.5.

There is no universal solution to the horizon problem, but one method to
minimize its effects is to always search a few ply deeper when a position is

6.4 Alpha–Beta Pruning 153

found that appears to be particularly good. The singular-extension heuris-
tic is defined as follows: if a static evaluation of a move is much better than
that of other moves being evaluated, continue searching.

6.4 Alpha–Beta Pruning

Bounded lookahead can help to make smaller the part of the game tree that
needs to be examined. In some cases, it is extremely useful to be able to
prune sections of the game tree. Using alpha–beta pruning, it is possible to
remove sections of the game tree that are not worth examining, to make
searching for a good move more efficient.

The principle behind alpha–beta pruning is that if a move is determined to
be worse than another move that has already been examined, then further
examining the possible consequences of that worse move is pointless.

Consider the partial game tree in Figure 6.4.

This very simple game tree has five leaf nodes. The top arc represents a
choice by the computer, and so is a maximizing level (in other words, the
top node is a max node). After calculating the static evaluation function for
the first four leaf nodes, it becomes unnecessary to evaluate the score for
the fifth. The reason for this can be understood as follows:

In choosing the left-hand path from the root node, it is possible to achieve
a score of 3 or 5. Because this level is a minimizing level, the opponent can
be expected to choose the move that leads to a score of 3. So, by choosing
the left-hand arc from the root node, the computer can achieve a score of 3.

By choosing the right-hand arc, the computer can achieve a score of 7 or 1,
or a mystery value. Because the opponent is aiming to minimize the score,

5 3 7 1

Figure 6.4
A partial game tree

154 CHAPTER 6 Game Playing

he or she could choose the position with a score of 1, which is worse than
the value the computer could achieve by choosing the left-hand path. So,
the value of the rightmost leaf node doesn’t matter—the computer must
not choose the right-hand arc because it definitely leads to a score of at best
1 (assuming the opponent does not irrationally choose the 7 option).

6.4.1 The Effectiveness of Alpha–Beta Pruning

In this contrived example, alpha–beta pruning removes only one leaf node
from the tree, but in larger game trees, it can result in fairly valuable reduc-
tions in tree size. However, as Winston (1993) showed, it will not necessar-
ily remove large portions of a game tree. In fact, in the worst case,
alpha–beta pruning will not prune any searches from the game tree, but
even in this case it will compute the same result as Minimax and will not
perform any less efficiently.

The alpha–beta pruning method provides its best performance when the
game tree is arranged such that the best choice at each level is the first one
(i.e., the left-most choice) to be examined by the algorithm. With such a
game tree, a Minimax algorithm using alpha–beta cut-off will examine a
game tree to double the depth that a Minimax algorithm without
alpha–beta pruning would examine in the same number of steps.

This can be shown as follows:

If a game tree is arranged optimally, then the number of nodes that must
be examined to find the best move using alpha–beta pruning can be
derived as follows:

where

b = branching factor of game tree

d = depth of game tree

s = number of nodes that must be examined

This means that approximately

s = 2bd/2

Without alpha–beta pruning, where all nodes must be examined:

s = bd

S
b if d is even

b b if d is odd

d

d d=
−

+ −

+() −()

2 1

1

2

1 2 1 2

/

/ /

6.4 Alpha–Beta Pruning 155

Hence, we can consider that using alpha–beta pruning reduces the effective
branching factor from b to �b�, meaning that in a fixed period of time,
Minimax with alpha–beta pruning can look twice as far in the game tree as
Minimax without pruning.

This represents a significant improvement—for example, in chess it
reduces the effective branching factor from around 38 to around 6—but it
must be remembered that this assumes that the game tree is arranged opti-
mally (such that the best choice is always the left-most choice). In reality, it
might provide far less improvement.

It was found that in implementing the Deep Blue chess computer (see Sec-
tion 6.6), use of the alpha–beta method did in fact reduce the average
branching factor of the chess game tree from 38 to around 6.

6.4.2 Implementation

The alpha-beta pruning algorithm is implemented as follows:

■ The game tree is traversed in depth-first order. At each non-leaf
node a value is stored. For max nodes, this value is called alpha,
and for min nodes, the value is beta.

■ An alpha value is the maximum (best) value found so far in the
max node’s descendants.

■ A beta value is minimum (best) value found so far in the min
node’s descendants.

In the following pseudo-code implementation, we use the function call
beta_value_of (min_ancestor_of (current_node)), which returns the beta
value of some min node ancestor of the current node to see how it com-
pares with the alpha value of the current node. Similarly, alpha_value_of
(max_ancestor_of (current_node)) returns the alpha value of some max
node ancestor of the current node in order that it be compared with the
beta value of the current node.

Function alpha_beta (current_node)
{

if is_leaf (current_node)
then return static_evaluation (current_node);

if is_max_node (current_node) and
alpha_value_of (current_node) >=
beta_value_of (min_ancestor_of (current_node))

then cut_off_search_below (current_node);

156 CHAPTER 6 Game Playing

if is_min_node (current_node) and
beta_value_of (current_node) <=
alpha_value_of (max_ancestor_of (current_node))

then cut_off_search_below (current_node);
}

To avoid searching back up the tree for ancestor values, values are propa-
gated down the tree as follows:

■ For each max node, the minimum beta value for all its min node
ancestors is stored as beta.

■ For each min node, the maximum alpha value for all its max node
ancestors is stored as alpha.

■ Hence, each non-leaf node will have a beta value and an alpha
value stored.

■ Initially, the root node is assigned an alpha value of negative infin-
ity and a beta value of infinity.

So, the alpha_beta function can be modified as follows. In the following
pseudo-code implementation, the variable children is used to represent all
of the children of the current node, so the following line:

alpha = max (alpha, alpha_beta (children, alpha, beta));

means that alpha is set to the greatest of the current value of alpha, and the
values of the current node’s children, calculated by recursively calling
alpha_beta.

Function alpha_beta (current_node, alpha, beta)
{

if is_root_node (current_node)
then
{

alpha = -infinity
beta = infinity

}
if is_leaf (current_node)
then return static_evaluation (current_node);
if is_max_node (current_node)
then
{

alpha = max (alpha, alpha_beta (children, alpha, beta));
if alpha >= beta
then cut_off_search_below (current_node);

}

6.4 Alpha–Beta Pruning 157

1 2 3 4 5 7 1 0 2 6 1 5

d e f g

cb

a

MAX

MIN

MAX

Figure 6.5
A simple game tree

if is_min_node (current_node)
then
{

beta = min (beta, alpha_beta (children, alpha, beta));
if beta <= alpha
then cut_off_search_below (current_node);

}
}

To see how alpha–beta pruning works in practice, let us examine the game
tree shown in Figure 6.5.

The non-leaf nodes in the tree are labeled from a to g, and the leaf nodes
have scores assigned to them by static evaluation: a is a max node; b and c
are min nodes; and d, e, f, and g are max nodes.

Following the tree by depth-first search, the first step is to follow the path
a,b,d and then to the three children of d. This gives an alpha value for d of
3. This is passed up to b, which now has a beta value of 3, and an alpha
value that has been passed down from a of negative infinity.

Now, the first child of e is examined and has a score of 4. In this case, clearly
there is no need to examine the other children of e because the minimizing
choice at node b will definitely do worse by choosing e rather than d. So cut-
off is applied here, and the nodes with scores of 5 and 7 are never examined.

The full analysis of the tree is shown in Table 6.1, which shows how the
scores move through the tree from step to step of the process.

158 CHAPTER 6 Game Playing

TABLE 6.1 Analysis of alpha–beta pruning for the game tree in Figure 6.5

Step Node Alpha Beta Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

a

b

d

d

d

d

b

e

e

a

c

f

c

��

��

��

1

2

3

��

��

4

3

3

3

3

�

�

�

�

�

�

3

3

3

�

�

�

3

Alpha starts as �� and beta starts as �.

At this stage, we have examined the three children of d
and have obtained an alpha value of 3, which is passed
back up to node b.

At this min node, we can clearly achieve a score of 3 or
better (lower). Now we need to examine the children of
e to see if we can get a lower score.

CUT-OFF. A score of 4 can be obtained from the first child
of e. Min clearly will do better to choose d rather than e
because if he chooses e, max can get at least 4, which is
worse for min than 3. Hence, we can now ignore the
other children of e.

The value of 3 has been passed back up to the root node,
a. Hence, max now knows that he can score at least 3. He
now needs to see if he can do better.

We now examine the three children of f and find that
none of them is better than 3. So, we pass back a value of
3 to c.

CUT-OFF. Max has already found that by taking the left-
hand branch, he can achieve a score of 3. Now it seems
that if he chooses the right-hand branch, min can choose
f, which will mean he can only achieve a score of 2. So
cut-off can now occur because there is no need to exam-
ine g or its children.

6.5 Checkers 159

4 3 8 7 2 1 6 5

MAX

MIN

MAX

Figure 6.6
A game tree optimized for alpha–beta search

1Draughts is another name for the common variety of checkers, which is played on an 8�8
board. International checkers is another variety, which is played on a 10�10 board.

Hence, out of the 12 leaf nodes in the tree, the algorithm has needed to
examine only 7 to conclude that the best move for max to make is b, in
which case min will choose d and max will choose the right hand node,
ending with a static evaluation of 3.

At this stage, we can easily see that this is the right answer because if max
chooses c, then min will clearly choose f, resulting in max being able to
achieve a score of only 2.

An ideal tree for alpha–beta pruning is shown in Figure 6.6.

In this case, the Minimax algorithm with alpha–beta cut-off will need to
examine only five of the eight leaf nodes.

6.5 Checkers

The game of checkers (or draughts1) has proved to be an excellent chal-
lenge for the methods of Artificial Intelligence and one that has been met
with a reasonable degree of success.

160 CHAPTER 6 Game Playing

In his paper of 1959, Some Studies in Machine Learning Using the Game of
Checkers, Arthur Samuel described a computer system that could play
checkers to a reasonable level, using Minimax with alpha–beta pruning.
This system used a weighted linear function of a variety of heuristics that
measured how strong a particular position was.

If a particular strategy was played and found to lose, the system would
adjust its weights to avoid making such a mistake in the future. In this way,
by playing many games it was able to learn to play checkers to a fairly high
level. Samuel’s system was a significant milestone in the Artificial Intelli-
gence research. Unfortunately, it was widely reported by the media that
Samuel’s system had solved the game of checkers and was able to beat a
top-ranked human player. Neither of these claims was true, but it caused
the Artificial Intelligence community to believe that there was nothing
more to be learned about checkers, and so until Chinook, very little further
research was done on the game.

6.5.1 Chinook

Chinook is a checkers-playing computer that was developed by a team led
by Dr. Jonathan Schaeffer of the University of Alberta in Canada.

Chinook uses Minimax search with alpha–beta pruning. It also applies iter-
ative deepening (see Section 4.11) and a number of heuristics to maximize
the efficiency of the search and to minimize the size of the game tree that the
program needs to examine for each move. Chinook also has a database of
endgames consisting of hundreds of billions of possible positions. Such a
database would not be practical in chess, due to the enormous number of
possible positions, but is possible with checkers because there are fewer legal
squares on the board (32 instead of 64), fewer piece types (2 as opposed to
6), and a smaller average branching factor (8 compared with 38).

Chinook also has a large amount of knowledge about the game and built-in
heuristics to help it evaluate positions and choose better moves.

On average, Chinook examines the game tree to a depth of 20 ply and is
able to examine around 1000 positions per second per MIPS (millions of
instructions per second) of processing power.

In 1990, Chinook was beaten by the world champion checkers player,
Marion Tinsley, by a margin of 7.5 to 6.5. Tinsley had been world cham-

6.5 Checkers 161

pion for 40 years and is commonly recognized as the greatest checkers
player of all time.

In 1992, Tinsley beat Chinook in the World Checkers Championship. Forty
games were played; Chinook won two and Tinsley won four. Thirty-three
games were drawn. This was the first World Championship match of any
game in which a computer had taken part. In a rematch in 1994, Tinsley
and Chinook played six games, all of which were drawn, after which Tins-
ley resigned due to ill health, surrendering the world championship title to
Chinook. Sadly, Marion Tinsley succumbed to cancer in 1995 before a fur-
ther rematch could be played. Chinook did beat Don Lafferty, who was
then the world’s second-best human player, in 1995 to retain the title. The
current world champion, Ron King, has been beaten many times by Chi-
nook, but never in a championship match.

The version of Chinook that played in 1994 was a significantly more pow-
erful player (running on a much more powerful computer and using
more sophisticated algorithms). One might imagine that with increasing
computer power, a checkers computer could be developed that would
“solve” the game of checkers—that is, a computer program that could
examine the entire game tree for checkers and determine the outcome
before a game was started. This is a difficult challenge and one that does
not seem likely to be achieved in the near future. The main problem is
that as the depth of analysis increases, the improvement in play increases
less than linearly, meaning that a much deeper analysis is needed to pro-
vide small improvements (compare with chess—Section 6.6). Addition-
ally, although the complete game tree for checkers would be vastly smaller
than that for chess, it would still be extremely large (around 1020 possible
moves to examine).

6.5.2 Chinook’s Databases

One of the secrets of Chinook’s success at playing checkers lies in its data-
bases of endgame positions and opening moves. Chinook uses the opening
book of a commercial checkers program, Colossus. This book had been
developed over years, mainly from the published literature on the game.
Chinook spent a number of months examining each position in the book
to a depth of at least 19 ply to ensure that the opening moves were correct.

This process was also used to identify unusual opening moves that might
surprise an experienced player such as Tinsley.

162 CHAPTER 6 Game Playing

In fact, to make Chinook play more imaginatively, the developers chose to
avoid the use of the opening book in most situations. Instead, they built an
anti-book that contains moves that Chinook should avoid, and in most
other cases, Chinook uses search to decide on good moves to make. Schaef-
fer and his team have found that this actually tends to lead to better play
than following the opening book.

The main power of Chinook lies in its databases of endgame positions. In
1992, Chinook’s database contained an evaluation (win, lose, or draw) for
every possible position involving seven pieces—around 40 billion positions.

By 1994, the databases had been extended to cover all positions involving
eight pieces—another 440 billion positions.

In most games, within a few moves from the start, Chinook’s search has
reached a position stored in its database, meaning that it can usually deter-
mine the outcome of a game within 10 moves of the start. Most possible
games lead to a draw, but Chinook has been programmed to look for draws
that involve complicated strategies that the opponent is likely to miss.
Hence, in evaluating the game tree, Chinook does not give all draws a score
of zero, but gives them a score depending on how likely it is that the oppo-
nent will make a mistake and lose the game.

6.5.3 Chinook’s Evaluation Function

Chinook uses a linear weighted static evaluation function, based on a num-
ber of heuristics. These heuristics include piece count, king count, balance
(the distribution of pieces between the left and right sides of the board), the
number of trapped kings, and so on.

Chinook divides the game up into four phases, which are identified by the
number of pieces left on the board.

Phase Number of pieces

1 20–24

2 14–19

3 10–13

4 less than 10

6.5 Checkers 163

Chinook has different sets of weights for its 25 heuristic values for each
phase of the game, so that, for example, it places more importance on kings
in later phases of the game than in the first phase.

6.5.4 Forward Pruning

Another technique used by Chinook, and other game-playing systems, is
forward pruning. The idea behind forward pruning is that if a line of play
(i.e., a path through the game tree) is being examined in which a number of
pieces are lost without any way to recapture, then examination of the path
is terminated and the tree is pruned at this point.

Hence, unlike alpha–beta pruning, no static evaluation is needed. It is pos-
sible, but unlikely, that such pruning could miss a useful strategy, but this is
less likely with checkers than with chess, where sacrifices of important
pieces can often lead to a win.

6.5.5 Limitations of Minimax

Schaeffer’s work with Chinook has revealed some serious limitations with
alpha–beta search.

In some cases, Minimax with alpha–beta pruning might show that a num-
ber of different paths lead to a draw. As was mentioned in the previous sec-
tion, some draws can be harder to achieve than others. In particular, one
position might lead to a draw no matter what moves a player makes,
whereas another position might lead to a draw only if a player makes the
correct choice on each move for 40 moves. Clearly the latter draw is much
harder to achieve. Chinook was programmed to take advantage of this,
after it drew a game that it could probably have won because it chose a draw
that was easy for its opponent to achieve and neglected a draw that looked
very much like a win to most human players.

Similarly, in one game against Marion Tinsley, Chinook discovered a long,
complicated win for Tinsley, and made a sacrifice to try to avoid this. As a
result, it lost the game easily. In fact, it is quite possible that Tinsley would
have missed the win without the sacrifice.

A modified version of Minimax would take advantage of the difficulty of
particular paths through the game tree, as well as the final outcome.

164 CHAPTER 6 Game Playing

6.5.6 Blondie 24

In 2000, a new kind of checkers program was developed, called Blondie 24.
Unlike Chinook, Blondie 24 does not have any knowledge of the game
(other than the basic rules) built in. The program, developed by Dr. David
Fogel of Natural Selection Inc. based in San Diego, uses evolutionary tech-
niques (described in Chapter 13) to develop neural networks (see Chapter
11) that can learn how to play checkers, and how to win.

In fact, Blondie uses standard Minimax evaluation to search the game tree.
The evolutionary method was used to develop the static evaluation function.

The static evaluation function is evaluated by neural networks that were
developed by starting with programs that would play the game randomly
and breeding together the ones that played the most successfully. Repeating
this over many generations, and allowing random mutations, led to the
final version of the software, which proved able to beat many human play-
ers. This program is not nearly at the level of Chinook, which currently is
the checkers world champion, but it does represent a fascinating example
of a combination of artificial life techniques with Artificial Intelligence,
generating a solution that performs extremely well, without ever having
had any help from humans.

6.6 Chess

One of the best-known applications of Artificial Intelligence is the develop-
ment of computer programs that can play chess against human players.
Chess programs typically use Minimax algorithms with alpha–beta prun-
ing and are almost always programmed with large libraries of opening
moves (similar to the databases used in Chinook for endgame moves).

It has been shown that there is a more or less linear relationship between
the depth to which a program can examine the game tree for chess and its
skill in playing the game. In other words, a system that is able to examine
the tree to 12 ply is likely to beat a system that can only examine the tree to
10 ply (see Newborn 2002, pages 291–294). As mentioned in Section 6.5,
this is not true for checkers, where a law of diminishing returns applies. In
fact, Schaeffer (1991) claims that this relationship is the same for chess and
checkers, but that the relationship is more or less linear up to a depth of
around 15, tailing off after this. Because the best chess programs tend to

6.7 Go 165

analyze to a depth of around 12, they have not yet reached the nonlinear
stage of the graph.

As a result of this relationship, great advances in the ability of computers to
play chess have been made simply as a result of improvement in speed of
computers and in the use of parallel computing techniques.

In 1997, a chess-playing computer system developed by IBM called Deep
Blue beat world champion Garry Kasparov, who is generally considered to be
the strongest chess player of all time. The final score after six games was 3.5 to
2.5. Kasparov won one game, Deep Blue won two, and three were drawn.

In 2002, Vladimir Kramnik, one of the highest-ranking chess players in the
world, played a match against a German computer program, Deep Fritz.
The eight-game match ended in a draw. There are a number of other chess
computers that can play at a comparable level, and at the time of writing
this book, the competition between human and computer chess players is
very close. In January 2003, Garry Kasparov played a six-game match
against Deep Junior, an Israeli computer program. The match ended in a
draw, with Kasparov and Deep Junior each winning one game, and the
other four games being drawn.

It is certainly not the case as it is with games such as Othello and checkers
that the best computers are unbeatable by humans, and neither is it the case
as with Go or bridge that computers cannot beat the best humans.

It seems likely that given the linear relationship between depth of search
and quality of play that with the improvement in computer power, it will
soon be the case that the best computers are unbeatable by even the very
best human players.

6.7 Go

Go is an ancient Japanese game, which is considered by many to be the final
frontier for research in game-playing computers. It is certainly more com-
plex than chess: Go is played on a 19�19 board, with far greater freedom of
choice in playing most moves than chess, resulting in an enormous branch-
ing factor (on average around 360, compared with around 38 for chess).

It has thus been impossible to develop a system that searches the game tree
for Go in the same way as for chess or checkers. Systems have been developed
that play Go, but the best of these can compete only at the level of a weak club

166 CHAPTER 6 Game Playing

player. None have shown any possibility yet of approaching the level of the
best human players. Methods usually involve extremely selective search—
using constraints to eliminate many options at each stage of the game tree.
Some success has also been had with pattern recognition techniques.

A Taiwanese business man offered one million dollars to the first person
who could write a computer program that could beat a professional Go
player. Although the business man died in 1997, his bet looks as though it
will remain safe for a while yet.

6.7.1 Go-Moku

Go-moku is a far simpler version of Go, usually played on a 15�15 board.
This game is often used for teaching and illustrating Artificial Intelligence
because it is fairly simple. Alternate players place stones on the board, and
the first player to place five stones in a row wins the game.

Go-Moku belongs to a group of games including Connect-4 and tic-tac-toe
(noughts and crosses) that have been solved. That is to say, the complete
game tree has been evaluated such that the outcome of the game can be
determined from the start. Assuming both players play correctly, the player
who starts the game will always win.

6.8 Othello (Reversi)

Othello is a simpler game than chess, and typical Othello computer pro-
grams can now examine the search tree to a depth of around 50 ply. The best
human players are now unable to beat this level of play. In 1997, the human
world champion Takeshi Murakami of Japan was beaten 6–0 by an American
Othello computer program, developed by Michael Buro, called Logistello.

6.9 Games of Chance

Unlike the games we have considered so far, many games involve an ele-
ment of chance—often introduced by a dice roll or a draw of cards. With
the exception of simple games like Chutes and Ladders and Ludo, most
games of chance still involve a reasonable degree of skill because the chance
element merely restricts the choices that can be made.

6.10 Chapter Summary 167

Games such as backgammon, scrabble, and bridge are popular games that
involve chance. Computer programs have been developed that can play
backgammon and Scrabble at a level where they can beat all but the best
human players in the world. Bridge is rather more complex, with its bidding
system presenting real problems for Artificial Intelligence system develop-
ers. Bridge systems have been developed that can play at an intermediate
level but are not yet close to playing at the level of the best human players.

6.9.1 Expectiminimax

Expectiminimax is a version of the Minimax algorithm that has been extended
to take into account the probability of each successor node being reached. In
games that involve the throw of a single die, the successor nodes at each ply will
all have equal probabilities (one-sixth), but in more complex games, the prob-
abilities are not so straightforward. For example, in backgammon, where two
dice are rolled for each move (or rather, for each ply in the game tree), the like-
lihood of achieving a double (1 and 1, 2 and 2, 3 and 3, 4 and 4, 5 and 5, or 6
and 6) is 1 in 36, whereas the likelihood of rolling any other pair is 1 in 18.

Rather than giving each position in the game tree a particular Minimax
value, the Expectiminimax algorithm, which is described in more detail in
Russell and Norvig (1995) assigns an expected value to each node, which is
the average value that could be obtained on the node, taking into account
the probabilities of each possible outcome.

6.10 Chapter Summary

■ Game trees can be used to represent two-player games.

■ Searching game trees is very hard for all but the simplest games.

■ Minimax is an algorithm that identifies the best move to make in a
two-player game with perfect knowledge, assuming the entire tree
can be examined.

■ When the entire tree cannot be examined, a static evaluator is
needed that can assign a score to any given position according to
how well each player is doing and how likely each player is to win
the game from that position.

■ Alpha–beta pruning enables Minimax to run more efficiently
because it removes unnecessary branches from the game tree.

168 CHAPTER 6 Game Playing

■ In the best case, alpha–beta pruning enables Minimax to search the
game tree to double the depth that it would be able to search with-
out pruning.

■ Games such as Go-moku and tic-tac-toe have been solved, mean-
ing that the result of a game is known from the start.

■ Computers are able to beat the best players in the world at games
such as Othello and checkers.

■ Computers cannot compete with humans at games such as Go
and bridge.

■ Although Deep Blue beat Garry Kasparov at chess in 1997, comput-
ers and humans are fairly evenly matched at chess at the moment.

6.11 Review Questions

6.1 Discuss the current state of the art of game-playing computer sys-
tems in relation to the following games: chess, checkers, Go, bridge,
Othello, tic-tac-toe. What advances are likely in the near future?
Do you believe there are any fundamental limitations?

6.2 Discuss the approach you would take to building a system for play-
ing Scrabble or another word game of the sort. What limitations
does your system have? How likely do you think it is that your sys-
tem would be able to beat the best human players in the world?

6.3 What problems did the developers of Chinook face? What new
techniques did they add to simple Minimax with alpha–beta prun-
ing? Would these techniques extend well to other games?

6.4 Explain why the alpha–beta procedure will always generate the
same answer as Minimax without pruning. Why is it useful?

6.5 Show the steps that would be taken in running the Minimax algo-
rithm on the game tree in Figure 6.7. Now run through the same
tree using alpha–beta pruning. How do the two compare?

6.6 Why might it be particularly difficult to program a computer to
successfully play card games like bridge or poker? What sort of
algorithms might you use to play these games?

6.7 What does it mean to say that a game has been solved? How likely is
it that games like Go and chess will ever be solved? Is it always the

6.12 Exercises 169

5 4 1 0 8 9 6 7 3 7 2 8 1 9 0 2

a

b c

gfed

h i j k l m n o

case that the player who goes first will win a game that has been
solved? Even if both players play correctly?

6.8 Most commercially available chess programs for home users are
designed to play at a range of levels from beginner up to grand-
master. Consider the additional difficulties involved in program-
ming a computer to play suboptimally. Would alpha–beta pruning
still be appropriate? What methods might a programmer use to
program the computer to play over such a range of abilities?

6.12 Exercises

6.1 For a game tree of depth d, and branching factor b, show that iter-
ative deepening does not increase by a great deal the number of
static evaluations needed to examine the tree.

6.2 Write an algorithm in pseudo-code, or a programming language of
your choice, that evaluates a position in tic-tac-toe. Your static

Figure 6.7
Game tree for question 6.5

170 CHAPTER 6 Game Playing

evaluator should give 0 for a drawn position, 1 for a won position
for crosses, �1 for won position for noughts.

6.3 Extend the algorithm you designed for Exercise 6.2 so that it is able
to evaluate positions that are nonterminal—in other words, posi-
tions where the game has not yet finished. Your score should be
positive for an advantage to crosses, and negative for an advantage
to noughts.

6.4 Implement a Minimax algorithm using your static evaluator for
tic-tac-toe, and write a simple program that plays the game. Have
the program output how many nodes in the game tree it had to
examine as well as its choice of move.

6.5 Add alpha–beta pruning to your program, and see what difference
(if any) it makes to the number of nodes the program has to exam-
ine when playing a game.

6.6 Implement an Expectiminimax algorithm for a game of chance
(you might use backgammon, or another dice game).

6.7 Is it possible to add alpha–beta pruning to your Expectiminimax
program? If so, do so. If not, can you find another way of pruning
the tree that improves the performance of the program? How can
you tell if it is improving the performance?

6.13 Further Reading

There is a great deal of fascinating literature on the subject of game playing
using Artificial Intelligence. The Chinook website is well worth visiting and
contains a great deal of insight into the way game-playing systems are
developed and improved. It can be found using any search engine.

Arthur Samuel’s articles on his checkers-playing system are also worth reading.

A number of books and articles have been published on the subject of Deep
Blue and other chess computers. Monty Newborn’s book does not contain
a great deal of computer science but does make a fascinating read, particu-
larly for anyone interested in the game of chess.

Blondie 24: Playing at the Edge of AI by David B. Fogel (2001 – Morgan
Kaufmann)

Behind Deep Blue: Building the Computer That Defeated the World Chess
Champion by Feng-Hsiung Hsu (2002 – Princeton University Press)

6.13 Further Reading 171

An analysis of alpha beta pruning, by Donald Knuth and R. W. Moore
(1975 - in Artificial Intelligence, Vol. 6(4), pp. 293–326)

Deep Blue: An Artificial Intelligence Milestone by Monty Newborn (2003 –
Springer Verlag)

Kasparov Versus Deep Blue: Computer Chess Comes of Age by Monty New-
born (1997 – Springer Verlag)

Kasparov and Deep Blue by Bruce Pandolfini (1997 – Fireside)

Some Studies in Machine Learning Using the Game of Checkers by Arthur
Samuel (1959–in Computation & Intelligence – Collected Readings edited by
George F. Luger - MIT Press)

One Jump Ahead: Challenging Human Supremacy in Checkers by Jonathan
Schaeffer (1997 – Springer Verlag)

A Re-examination of Brute-force Search by Jonathan Schaeffer, Paul Lu,
Duane Szafron, and Robert Lake (1993 – in Games: Planning and Learning,
AAAI 1993 Fall Symposium, Report FS9302, pp. 51–58)

A World Championship Caliber Checkers Program by Jonathan Schaeffer,
Joseph Culberson, Norman Treloar, Brent Knight, Paul Lu, and Duane
Szafron – (1992 – in Artificial Intelligence, Vol. 53(2–3), pp. 273–290)

This page intentionally left blank

Knowledge Representation
and Automated Reasoning

3
Introduction to Part 3

Part 3 is divided into three chapters:

Propositional and Predicate Logic

In Chapter 7, the basic concepts behind propositional calculus
and predicate calculus are introduced. Truth tables and the ideas
behind proofs by deduction are explained. The concept of tau-
tology is introduced, as is satisfiability and logical equivalence.

Properties of logical systems such as soundness, completeness,
and decidability are discussed. Logical systems other than
those of classical logic are briefly introduced.

Inference and Resolution for Problem Solving

In Chapter 8, we introduce in detail the ideas behind proof by
refutation and resolution for automated theorem proving.
The chapter explains the steps needed to automate resolution,
including: converting expressions to conjunctive normal
form, Skolemization, and unification. The use of resolution
and Horn Clauses in Prolog is discussed, as are other practical
applications of resolution, such as for solving combinatorial
search problems.

Rules and Expert Systems

Chapter 9 discusses how rules and frames are used to build
expert systems and discusses the practicalities of implement-
ing such systems. Methods such as forward and backward
chaining and conflict resolution are discussed, as is the Rete
Algorithm for a more efficient rule-based approach.

The ideas behind inheritance and multiple inheritance are dis-
cussed in relation to frames, and the relationship between
frames and object-oriented programming languages such as
C++ and Java is explored.

PART
7

CHAPTER

8
CHAPTER

9
CHAPTER

This page intentionally left blank

7CHAPTER
Propositional and
Predicate Logic

If, dear Reader, you will faithfully observe these Rules, and so give my little book
a really fair trial, I promise you, most confidently, that you will find Symbolic
Logic to be one of the most, if not the most, fascinating of mental recreations!

—Lewis Carroll, from the Introduction to Symbolic Logic

If it was so, it might be; and if it were so, it would be: but as it isn’t, it ain’t.
That’s logic.

—Lewis Carroll, from Through The Looking Glass

Of science and logic he chatters
As fine and as fast as he can;
Though I am no judge of such matters,
I’m sure he’s a talented man.

—Winthrop Mackworth Praed, from The Talented Man

7.1 Introduction

In this chapter, we introduce propositional calculus and first-order predi-
cate calculus, the languages of logic. We introduce methods that can be
used to carry out deductions and prove whether or not a conclusion fol-
lows from a set of premises.

We introduce the ideas of logical equivalence, tautologies, and satisfiability.
This chapter also discusses some important properties of logical systems,
including soundness, completeness, monotonicity, and decidability.

176 CHAPTER 7 Propositional and Predicate Logic

This chapter assumes no previous knowledge of logic, so readers who are
already familiar with the ideas of propositional logic and the predicate cal-
culus may wish to skim this chapter.

7.2 What Is Logic?

Logic is concerned with reasoning and the validity of arguments. In gen-
eral, in logic, we are not concerned with the truth of statements, but rather
with their validity. That is to say, although the following argument is
clearly logical, it is not something that we would consider to be true:

All lemons are blue

Mary is a lemon

Therefore, Mary is blue

This set of statements is considered to be valid because the conclusion
(Mary is blue) follows logically from the other two statements, which we
often call the premises.

The reason that validity and truth can be separated in this way is simple: a
piece of a reasoning is considered to be valid if its conclusion is true in cases
where its premises are also true. Hence, a valid set of statements such as the
ones above can give a false conclusion, provided one or more of the prem-
ises are also false.

We can say: a piece of reasoning is valid if it leads to a true conclusion in every
situation where the premises are true.

Logic is concerned with truth values. The possible truth values are true and
false. These can be considered to be the fundamental units of logic, and
almost all logic is ultimately concerned with these truth values.

7.3 Why Logic Is Used in Artificial Intelligence

Logic is widely used in computer science, and particularly in Artificial
Intelligence. Logic is widely used as a representational method for Artificial
Intelligence. Unlike some other representations (such as frames, which are
described in detail in Chapter 3), logic allows us to easily reason about neg-
atives (such as, “this book is not red”) and disjunctions (“or”—such as,
“He’s either a soldier or a sailor”).

7.4 Logical Operators 177

Logic is also often used as a representational method for communicating
concepts and theories within the Artificial Intelligence community. In
addition, logic is used to represent language in systems that are able to
understand and analyze human language.

As we will see, one of the main weaknesses of traditional logic is its inabil-
ity to deal with uncertainty. Logical statements must be expressed in terms
of truth or falsehood—it is not possible to reason, in classical logic, about
possibilities. We will see different versions of logic such as modal logics that
provide some ability to reason about possibilities, and also probabilistic
methods and fuzzy logic that provide much more rigorous ways to reason
in uncertain situations.

7.4 Logical Operators

In reasoning about truth values, we need to use a number of operators,
which can be applied to truth values. We are familiar with several of these
operators from everyday language:

I like apples and oranges.

You can have an ice cream or a cake.

If you come from France, then you speak French.

I am not stupid!

Here we see the four most basic logical operators being used in everyday
language. The operators are:

■ and

■ or

■ not

■ if . . . then . . . (usually called implies)

These operators work more or less as we expect them to. One important
point to note is that or is slightly different from the way we usually use it. In
the sentence, “You can have an icecream or a cake,” the mother is usually
suggesting to her child that he can only have one of the items, but not both.
This is referred to as an exclusive-or in logic because the case where both
are allowed is excluded. The version of or that is used in logic is called
inclusive-or and allows the case with both options.

178 CHAPTER 7 Propositional and Predicate Logic

The operators are usually written using the following symbols, although
other symbols are sometimes used, according to the context:

and ∧
or ∨
not ¬
implies →
iff ↔

Iff is an abbreviation that is commonly used to mean “if and only if.” We see
later that this is a stronger form of implies that holds true if one thing
implies another, and also the second thing implies the first.

For example, “you can have an ice-cream if and only if you eat your din-
ner.” It may not be immediately apparent why this is different from “you
can have an icecream if you eat your dinner.” This is because most mothers
really mean iff when they use if in this way.

7.5 Translating between English and Logic Notation

To use logic, it is first necessary to convert facts and rules about the real
world into logical expressions using the logical operators described in Sec-
tion 7.4. Without a reasonable amount of experience at this translation, it
can seem quite a daunting task in some cases.

Let us examine some examples.

First, we will consider the simple operators, ∧, ∨, and ¬.

Sentences that use the word and in English to express more than one con-
cept, all of which is true at once, can be easily translated into logic using the
AND operator, ∧. For example:

“It is raining and it is Tuesday.”

might be expressed as:

R ∧ T

Where R means “it is raining” and T means “it is Tuesday.” Note that we
have been fairly arbitrary in our choice of these terms. This is all right, as
long as the terms are chosen in such a way that they represent the problem
adequately. For example, if it is not necessary to discuss where it is raining,
R is probably enough. If we need to write expressions such as “it is raining

7.5 Translating between English and Logic Notation 179

in New York” or “it is raining heavily” or even “it rained for 30 minutes on
Thursday,” then R will probably not suffice.

To express more complex concepts like these, we usually use predicates.
Hence, for example, we might translate “it is raining in New York” as:

N(R)

We might equally well choose to write it as:

R(N)

This depends on whether we consider the rain to be a property of New
York, or vice versa. In other words, when we write N(R), we are saying that
a property of the rain is that it is in New York, whereas with R(N) we are
saying that a property of New York is that it is raining.

Which we use depends on the problem we are solving. It is likely that if we
are solving a problem about New York, we would use R(N), whereas if we
are solving a problem about the location of various types of weather, we
might use N(R).

Let us return now to the logical operators. The expression“it is raining in New
York, and I’m either getting sick or just very tired”can be expressed as follows:

R(N) ∧ (S(I) ∨ T(I))

Here we have used both the ∧ operator, and the ∨ operator to express a col-
lection of statements. The statement can be broken down into two sections,
which is indicated by the use of parentheses. The section in the parentheses
is S(I) ∨ T(I), which means “I’m either getting sick OR I’m very tired”. This
expression is “AND’ed” with the part outside the parentheses, which is R(N).

Finally, the ¬ operator is applied exactly as you would expect—to express
negation. For example,

It is not raining in New York,

might be expressed as

¬R(N)

It is important to get the ¬ in the right place. For example: “I’m either not
well or just very tired” would be translated as

¬W(I) ∨ T(I)

180 CHAPTER 7 Propositional and Predicate Logic

The position of the ¬ here indicates that it is bound to W(I) and does not
play any role in affecting T(I). This idea of precedence is explained further
in Section 7.7.

Now let us see how the → operator is used. Often when dealing with logic
we are discussing rules, which express concepts such as “if it is raining then
I will get wet.”

This sentence might be translated into logic as

R → W(I)

This is read “R implies W(I)” or “IF R THEN W(I)”. By replacing the sym-
bols R and W(I) with their respective English language equivalents, we can
see that this sentence can be read as

“raining implies I’ll get wet”

or “IF it’s raining THEN I’ll get wet.”

Implication can be used to express much more complex concepts than this.
For example, “Whenever he eats sandwiches that have pickles in them, he
ends up either asleep at his desk or singing loud songs”might be translated as

S(y) ∧ E(x, y) ∧ P(y) → A(x) ∨ (S(x, z) ∧ L(z))

Here we have used the following symbol translations:

S(y) means that y is a sandwich.

E(x, y) means that x (the man) eats y (the sandwich).

P(y) means that y (the sandwich) has pickles in it.

A(x) means that x ends up asleep at his desk.

S(x, z) means that x (the man) sings z (songs).

L(z) means that z (the songs) are loud.

In fact, there are better ways to express this kind of sentence, as we will see
when we examine the quantifiers ∃ and ∀ in Section 7.13.

The important thing to realize is that the choice of variables and predicates
is important, but that you can choose any variables and predicates that map
well to your problem and that help you to solve the problem. For example, in
the example we have just looked at, we could perfectly well have used instead

S → A ∨ L

where S means “he eats a sandwich which has pickles in it,” A means “he
ends up asleep at his desk,” and L means “he sings loud songs.”

7.6 Truth Tables 181

The choice of granularity is important, but there is no right or wrong way
to make this choice. In this simpler logical expression, we have chosen to
express a simple relationship between three variables, which makes sense if
those variables are all that we care about—in other words, we don’t need to
know anything else about the sandwich, or the songs, or the man, and the
facts we examine are simply whether or not he eats a sandwich with pickles,
sleeps at his desk, and sings loud songs. The first translation we gave is
more appropriate if we need to examine these concepts in more detail and
reason more deeply about the entities involved.

Note that we have thus far tended to use single letters to represent logical
variables. It is also perfectly acceptable to use longer variable names, and
thus to write expressions such as the following:

Fish (x) ∧ living (x) → has_scales (x)

This kind of notation is obviously more useful when writing logical expres-
sions that are intended to be read by humans but when manipulated by a
computer do not add any value.

7.6 Truth Tables

We can use variables to represent possible truth values, in much the same
way that variables are used in algebra to represent possible numerical val-
ues. We can then apply logical operators to these variables and can reason
about the way in which they behave.

It is usual to represent the behavior of these logical operators using truth
tables. A truth table shows the possible values that can be generated by
applying an operator to truth values.

7.6.1 Not

First of all, we will look at the truth table for not, ¬.

Not is a unary operator, which means it is applied only to one variable. Its
behavior is very simple:

¬ true is equal to false

¬ false is equal to true

If variable A has value true, then ¬A has value false.

If variable B has value false, then ¬B has value true.

182 CHAPTER 7 Propositional and Predicate Logic

These can be represented by a truth table,

A ¬ A

true false

false true

7.6.2 And

Now, let us examine the truth table for our first binary operator—one
which acts on two variables:

A B A ∧ B

false false false

false true false

true false false

true true true

∧ is also called the conjunctive operator. A ∧ B is the conjunction of A and B.

You can see that the only entry in the truth table for which A ∧ B is true is
the one where A is true and B is true. If A is false, or if B is false, then A ∧ B
is false. If both A and B are false, then A ∧ B is also false.

What do A and B mean? They can represent any statement, or proposition,
that can take on a truth value. For example, A might represent “It’s sunny,”
and B might represent “It’s warm outside.” In this case, A ∧ B would mean
“It is sunny and it’s warm outside,” which clearly is true only if the two
component parts are true (i.e., if it is true that it is sunny and it is true that
it is warm outside).

7.6.3 Or

The truth table for the or operator, ∨, should need little explanation.

A B A ∨ B

false false false

false true true

true false true

true true true

7.6 Truth Tables 183

∨ is also called the disjunctive operator. A ∨ B is the disjunction of A and B.

Clearly A ∨ B is true for any situation except when both A and B are false. If
A is true, or if B is true, or if both A and B are true, A ∨ B is true.

You should notice that this table represents the inclusive-or operator. A
table to represent exclusive-or would have false in the final row. In other
words, while A ∨ B is true if A and B are both true, A EOR B (A exclusive-or
B) is false if A and B are both true.

You may also notice a pleasing symmetry between the truth tables for ∧
and ∨. This will become useful later, as will a number of other symmetrical
relationships.

7.6.4 Implies

The truth table for implies (→) is a little less intuitive.

A B A → B

false false true

false true true

true false false

true true true

(This form of implication is also known as material implication.)

In the statement A → B, A is the antecedent, and B is the consequent.

The bottom two lines of the table should be obvious. If A is true and B is
true, then A → B seems to be a reasonable thing to believe. For example, if
A means “you live in France” and B means “You speak French,” then A → B
corresponds to the statement “if you live in France, then you speak French.”
Clearly, this statement is true (A → B is true) if I live in France and I speak
French (A is true and B is true).

Similarly, if I live in France, but I don’t speak French (A is true, but B is
false), then it is clear that A → B is not true.

The situations where A is false are a little less clear. If I do not live in France
(A is not true), then the truth table tells us that regardless of whether I
speak French or not (the value of B), the statement A → B is true.

A → B is usually read as “A implies B” but can also be read as “If A then B”
or “If A is true then B is true.” Hence, if A is false, the statement is not really

184 CHAPTER 7 Propositional and Predicate Logic

saying anything about the value of B, so B is free to take on any value (as
long as it is true or false, of course!).

This can lead to some statements being valid that might at first glance
appear absurd. All of the following statements are valid:

52 = 25 → 4 = 4 (true → true)
9 � 9 = 123 → 8 > 3 (false → true)

52 = 25 → 0 = 2 (false → false)

In fact, in the second and third examples, the consequent could be given
any meaning, and the statement would still be true. For example, the fol-
lowing statement is valid:

52 = 25 → Logic is weird

Notice that when looking at simple logical statements like these, there does
not need to be any real-world relationship between the antecedent and the
consequent. For logic to be useful, though, we tend to want the relation-
ships being expressed to be meaningful as well as being logically true.

7.6.5 iff

The truth table for iff (if and only if {↔}) is as follows:

A B A ↔ B

false false true

false true false

true false false

true true true

It can be seen that A ↔ B is true as long as A and B have the same value. In
other words, if one is true and the other false, then A ↔ B is false. Other-
wise, if A and B have the same value, A ↔ B is true.

7.7 Complex Truth Tables

Truth tables are not limited to showing the values for single operators. For
example, a truth table can be used to display the possible values for A∧ (B∨C).

7.7 Complex Truth Tables 185

A B C A ∧ (B∨ C)

false false false false

false false true false

false true false false

false true true false

true false false false

true false true true

true true false true

true true true true

Note that for two variables, the truth table has four lines, and for three vari-
ables, it has eight. In general, a truth table for n variables will have 2n lines.

The use of brackets in this expression is important. A ∧ (B ∨ C) is not the
same as (A ∧ B) ∨ C.

To avoid ambiguity, the logical operators are assigned precedence, as with
mathematical operators. The order of precedence that is used is as follows:

¬, ∧, ∨, →, ↔
Hence, in a statement such as

¬A ∨ ¬B ∧ C

the ¬ operator has the greatest precedence, meaning that it is most closely
tied to its symbols.∧ has a greater precedence than ∨, which means that the
sentence above can be expressed as

(¬A) ∨ ((¬B) ∧ C)

Similarly, when we write

¬A ∨ B

this is the same as

(¬A) ∨ B

rather than

¬(A ∨ B)

186 CHAPTER 7 Propositional and Predicate Logic

In general, it is a good idea to use brackets whenever an expression might
otherwise be ambiguous.

7.8 Tautology

Consider the following truth table:

A A ∨¬ A

false true

true true

This truth table has a property that we have not seen before: the value of
the expression A ∨ ¬A is true regardless of the value of A. An expression like
this that is always true is called a tautology.

If A is a tautology, we write:

|=A

Tautologies may seem like rather uninteresting entities, but in fact they are
extremely useful for logic, as we see later.

A logical expression that is a tautology is often described as being valid. A
valid expression is defined as being one that is true under any interpreta-
tion. In other words, no matter what meanings and values we assign to the
variables in a valid expression, it will still be true. For example, the follow-
ing sentences are all valid:

If wibble is true, then wibble is true.

Either wibble is true, or wibble is not true.

In the language of logic, we can replace wibble with the symbol A, in which
case these two statements can be rewritten as

A → A

A ∨ ¬A

If an expression is false in any interpretation, it is described as being con-
tradictory. The following expressions are contradictory:

A ∧ ¬A

(A ∨ ¬A) → (A ∧ ¬A)

7.9 Equivalence 187

It doesn’t matter what A means in these expressions, the result cannot be true.

Some expressions are satisfiable, but not valid. This means that they are
true under some interpretation, but not under all interpretations. The fol-
lowing expressions are satisfiable:

A ∨ B

(A ∧ B ∨ ¬ C) → (D ∧ E)

A contradictory expression is clearly not satisfiable and so is described as
being unsatisfiable.

7.9 Equivalence

Consider the following two expressions:

A ∧ B

B ∧ A

It should be fairly clear that these two expressions will always have the same
value for a given pair of values for A and B. In other words, we say that the first
expression is logically equivalent to the second expression. We write this as

A ∧ B � B ∧ A

This means that the ∧ operator is commutative.

Note that this is not the same as implication:

A ∧ B → B ∧ A

although this second statement is also true. The difference is that if for two
expressions e1 and e2:

e1 � e2

then e1 will always have the same value as e2 for a given set of variables. On
the other hand, as we have seen, e1 → e2 is true if e1 is false and e2 is true.

There are a number of logical equivalences that are extremely useful. The
following is a list of a few of the most common:

A ∨ A � A

A ∧ A � A

A ∧ (B ∧ C) � (A ∧ B) ∧ C (∧ is associative)

188 CHAPTER 7 Propositional and Predicate Logic

A ∨ (B ∨ C) � (A ∨ B) ∨ C (∨ is associative)

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C) (∧ is distributive over ∨)

A ∧ (A ∨ B) � A

A ∨ (A ∧ B) � A

A ∧ true � A

A ∧ false � false

A ∨ true � true

A ∨ false � A

All of these equivalences can be proved by drawing up the truth tables for
each side of the equivalence and seeing if the two tables are the same. You
may want to try this to satisfy yourself that all of the equivalences are cor-
rect, particularly for some of the less intuitive ones.

The following is a very important equivalence:

A → B � ¬A ∨ B

You can verify this by checking the truth tables. The reason that this is use-
ful is that it means we do not need to use the → symbol at all—we can
replace it with a combination of ¬ and ∨. Similarly, the following equiva-
lences mean we do not need to use ∧ or ↔:

A ∧ B � ¬(¬A ∨ ¬B)

A ↔ B � ¬(¬(¬A ∨ B) ∨ ¬ (¬B ∨ A))

In fact, any binary logical operator can be expressed using ¬ and ∨. This is a
fact that is employed in electronic circuits, where nor gates, based on an oper-
ator called nor, are used. Nor is represented by ↓, and is defined as follows:

A ↓ B � ¬(A ∨ B)

Finally, the following equivalences are known as DeMorgan’s Laws and will
be used later in this chapter:

A ∧ B � ¬(¬A ∨ ¬B)

A ∨ B � ¬(¬A ∧ ¬B)

By using these and other equivalences, logical expressions can be simpli-
fied. For example,

(C ∧ D) ∨ ((C ∧ D) ∧ E)

7.10 Propositional Logic 189

can be simplified using the following rule:

A ∨ (A ∧ B) � A

hence,

(C ∧ D) ∨ ((C ∧ D) ∧ E) � C ∧ D

In this way, it is possible to eliminate subexpressions that do not contribute
to the overall value of the expression.

7.10 Propositional Logic

There are a number of possible systems of logic. The system we have been
examining so far in this chapter is called propositional logic. The language
that is used to express propositional logic is called the propositional calcu-
lus (although in practice, many people use the expressions logic and calcu-
lus interchangeably in this context).

A logical system can be defined in terms of its syntax (the alphabet of
symbols and how they can be combined), its semantics (what the sym-
bols mean), and a set of rules of deduction that enable us to derive one
expression from a set of other expressions and thus make arguments
and proofs.

7.10.1 Syntax

We have already examined the syntax of propositional calculus. The alpha-
bet of symbols, � is defined as follows

� = {true, false, ¬, →, (,), ∧, ∨, ↔, p1, p2, p3, . . . , pn, . . . }

Here we have used set notation to define the possible values that are con-
tained within the alphabet �. Note that we allow an infinite number of
proposition letters, or propositional symbols, p1, p2, p3, . . . , and so on.
More usually, we will represent these by capital letters P, Q, R, and so on,
although if we need to represent a very large number of them, we will use
the subscript notation (e.g., p1).

An expression is referred to as a well-formed formula (often abbreviated as
wff) or a sentence if it is constructed correctly, according to the rules of the
syntax of propositional calculus, which are defined as follows. In these

190 CHAPTER 7 Propositional and Predicate Logic

rules, we use A, B, C to represent sentences. In other words, we define a sen-
tence recursively, in terms of other sentences. The following are well-
formed sentences:

P, Q, R. . .

true, false

(A)

¬A

A ∧ B

A ∨ B

A → B

A ↔ B

Hence, we can see that the following is an example of a wff:

P ∧ Q ∨ (B ∧ ¬C) → A ∧ B ∨ D ∧ (¬E)

This is not to make any claims about the validity or otherwise of the expres-
sion, simply that it is allowed within the syntax of propositional calculus.

7.10.2 Semantics

The semantics of the operators of propositional calculus can be defined in
terms of truth tables. As we have seen, the meaning of P ∧ Q is defined as
“true when P is true and Q is also true.”

The meaning of symbols such as P and Q is arbitrary and could be ignored
altogether if we were reasoning about pure logic. In other words, reasoning
about sentences such as P ∨ Q ∧ ¬R is possible without considering what P,
Q, and R mean.

Because we are using logic as a representational method for artificial intel-
ligence, however, it is often the case that when using propositional logic, the
meanings of these symbols are very important. The beauty of this represen-
tation is that it is possible for a computer to reason about them in a very
general way, without needing to know much about the real world.

In other words, if we tell a computer, “I like ice cream, and I like chocolate,”
it might represent this statement as A ∧ B, which it could then use to reason
with, and, as we will see, it can use this to make deductions.

7.11 Deduction 191

7.11 Deduction

If we have a set of assumptions {A1, A2, . . . , An}, and from those assump-
tions we are able to derive a conclusion, C, then we say that we have
deduced C from the assumptions, which is written

{A1, A2, . . . , An} � C

If C can be concluded without any assumptions, then we write

� C

To derive a conclusion from a set of assumptions, we apply a set of infer-
ence rules. To distinguish an inference rule from a sentence, we often write
A � B as follows:

Some of the most useful inference rules for propositional logic are as fol-
lows. In these rules, A, B, and C stand for any logical expressions.

7.11.1

This rule is very straightforward. It says: Given A and B, we can deduce A ∧
B. This follows from the definition of ∧.

7.11.2

Similarly,

These rules say that given A ∧ B, we can deduce A and we can also deduce B
separately. Again, these follow from the definition of ∧.

A B
B
∧

A B
A
∧

-Elimination

A B
A B∧

-Introduction

A
�
B

192 CHAPTER 7 Propositional and Predicate Logic

7.11.3 Or-Introduction

These rules say that from A we can deduce the disjunction of A with any
expression. For example, from the statement “I like logic,” we can deduce
expressions such as “I like logic or I like cheese,”“I like logic or I do not like
logic,” “I like logic or fish can sing,” “I like logic or 2 + 2 = 123,” and so on.
This follows because true ∨ B is true for any value of B.

7.11.4 → Elimination

This rule is usually known as modus ponens and is one of the most com-
monly used rules in logical deduction. It is expressed as follows:

In other words, if A is true and A implies B is true, then we know that B is true.

For example, if we replace A with “it is raining” and B with “I need an
umbrella,” then we produce the following:

It is raining. If it’s raining, I need an umbrella. Therefore, I need
an umbrella.

This kind of reasoning is clearly valid.

7.11.5 Reductio Ad Absurdum

We need to introduce a new notation for this rule:

The symbol ⊥ is called falsum, which is used to indicate an absurdity, or a
contradiction. For example, ⊥ can be deduced from A ∧ ¬A.

¬

⊥

A

A

M

A A B
B

→

B
A B∨

A
A B∨

7.11 Deduction 193

The reductio ad absurdum rule simply says that if we assume that A is false
(¬A) and this leads to a contradiction (⊥), then we can deduce that A is
true. This is known as proof by contradiction.

As we will see, this is an extremely powerful concept and is widely used in
logical systems.

7.11.6 → Introduction

This rule shows that if in carrying out a proof we start from an assumption
A and derive a conclusion C, then we can conclude that A → C.

7.11.7 ¬¬ Elimination

This rule states that if we have a sentence that is negated twice, we can con-
clude the sentence itself, without the negation. Clearly, this rule follows
from the definition of ¬.

7.11.8 Example 1

To carry out a proof that one set of sentences follows logically from
another, we selectively apply the rules presented above to the assumptions
until we arrive at the conclusions.

For example, it would be useful to prove the following:

{A, ¬A} � ⊥
In other words, if we start from the set of assumptions A and ¬A, we can
conclude falsum.

First, note that

¬A � A → ⊥
This can be seen by comparing the truth tables for ¬A and for A → ⊥.

¬¬A
A

A

C
A C

M

→

194 CHAPTER 7 Propositional and Predicate Logic

Hence, we can take as our set of assumptions

{A, A → ⊥}

Thus, our proof using modus ponens (the → ELIMINATION rule pre-
sented in Section 7.11.2) is as follows:

7.11.9 Example 2

Let us prove the following:

{A ∧ B} � A ∨ B

The proof is as follows:

A ∧ B assumption

A by ∧ elimination

A ∨ B by ∨ introduction

7.11.10 Example 3

We will use reductio ad absurdum to prove the following:

� (¬A → B) → (¬B → A)

The usual method for carrying out such proofs is based on the idea that in
order to prove something of the form A → B, it is a good idea to start by
assuming A.

We will start with two assumptions: ¬A and (¬A → B). After the first step,
which uses modus ponens, on our original assumptions to prove B, we
introduce a new assumption, which is ¬B. The proof is as follows:

¬A ¬A → B assumptions

B ¬B modus ponens

B B → ⊥ rewriting ¬B

⊥ modus ponens

A reductio ad absurdum

¬B → A → introduction

(¬A → B) → (¬B → A) → introduction

A A → ⊥
⊥

7.12 The Deduction Theorem 195

In carrying out this proof, we have used the relationship between ¬B and B
→ ⊥ as we did in Example 1. We have also used reductio absurdum to show
that if we start by assuming ¬A, we end up with a contradiction (⊥), and
therefore our initial assumption, ¬A, was false. Hence, A must be true.

7.11.11 Example 4

Let us now aim to prove the following:

� (A → B) → ((B → C) → ((C → D) → (A → D)))

To prove this, we will need to make a series of assumptions. We will start by
making two assumptions, A and A → B. Hence, our proof is as follows:

A A → B assumptions

B B → C modus ponens

C C → D modus ponens

D modus ponens

A → D → introduction

(C → D) → (A → D) → introduction

(B → C) → ((C → D) → (A → D)) → introduction

(A → B) → ((B → C) → ((C → D) → (A → D))) → introduction

7.12 The Deduction Theorem

A useful rule known as the deduction theorem provides us with a way to
make propositional logic proofs easier. The rule is as follows:

if A
⋃

{B} � C then A � (B → C)

Here A is a set of wff ’s, which makes up our assumptions. Note that this
rule is true even if A is the empty set. A

⋃
{B} means the union of the set A

with the set consisting of one element, B.

The rule also holds in reverse:

if A � (B → C) then A
⋃

{B} � C

Let us see an example of a proof using the deduction theorem.

Our aim is to prove the following:

{A → B} � A → (C → B)

196 CHAPTER 7 Propositional and Predicate Logic

Recall the axiom that was presented earlier:

A → (B → A)

Because propositional logic is monotonic (see Section 7.18), we can add in
an additional assumption, that A is true:

A

Now, by applying modus ponens to this assumption and our hypothesis, A
→ B, we arrive at

B

We can now apply our axiom

B → (C → B)

And by modus ponens on the above two lines, we get

C → B

Hence, we have shown that

{A → B}
⋃

A � (C → B)

And, therefore, by the deduction theorem

{A → B} � A → (C → B)

7.13 Predicate Calculus

7.13.1 Syntax

Predicate calculus allows us to reason about properties of objects and rela-
tionships between objects. In propositional calculus, we could express the
English statement “I like cheese” by A. This enables us to create constructs
such as ¬A, which means “I do not like cheese,” but it does not allow us to
extract any information about the cheese, or me, or other things that I like.

In predicate calculus, we use predicates to express properties of objects. So
the sentence “I like cheese” might be expressed as

L(me, cheese)

where L is a predicate that represents the idea of “liking.” Note that as well
as expressing a property of me, this statement also expresses a relationship
between me and cheese. This can be useful, as we will see, in describing
environments for robots and other agents. For example, a simple agent may

7.13 Predicate Calculus 197

be concerned with the location of various blocks, and a statement about
the world might be

T(A,B)

which could mean: Block A is on top of Block B.

Thus far we have expressed ideas about specific objects. It is also possible to
make more general statements using the predicate calculus. For example, to
express the idea that everyone likes cheese, we might say

(∀x)(P(x) → L(x, C))

The symbol ∀ is read “for all,” so the statement above could be read as “for
every x it is true that if property P holds for x, then the relationship L holds
between x and C,” or in plainer English: “every x that is a person likes
cheese.” (Here we are interpreting P(x) as meaning “x is a person” or, more
precisely, “x has property P.”)

Note that we have used brackets rather carefully in the statement above.
This statement can also be written with fewer brackets:

∀x P(x) → L(x, C)

∀ is called the universal quantifier.

The quantifier ∃ can be used to express the notion that some values do have
a certain property, but not necessarily all of them:

(∃x)(L(x,C))

This statement can be read “there exists an x such that x likes cheese.” This
does not make any claims about the possible values of x, so x could be a
person, or a dog, or an item of furniture. When we use the existential quan-
tifier in this way, we are simply saying that there is at least one value of x for
which L(x,C) holds.

Note, therefore, that the following is true:

(∀x)(L(x,C)) → (∃x)(L(x,C))

but the following is not:

(∃x)(L(x,C)) → (∀x)(L(x,C))

7.13.2 Relationships between ∀ and ∃
It is also possible to combine the universal and existential quantifiers, such
as in the following statement:

198 CHAPTER 7 Propositional and Predicate Logic

(∀x) (∃y) (L(x,y))

This statement can be read “for all x, there exists a y such that L holds for x
and y,” which we might interpret as “everyone likes something.”

A useful relationship exists between ∀ and ∃. Consider the statement “not
everyone likes cheese.” We could write this as

¬(∀x)(P(x) → L(x,C)) (1)

As we have already seen, A → B is equivalent to ¬A ∨ B. Using DeMorgan’s
laws, we can see that this is equivalent to ¬(A ∧ ¬B). Hence, the statement
(1) above, can be rewritten:

¬(∀x)¬(P(x) ∧ ¬L(x,C)) (2)

This can be read as “It is not true that for all x the following is not true: x is
a person and x does not like cheese.” If you examine this rather convoluted
sentence carefully, you will see that it is in fact the same as “there exists an x
such that x is a person and x does not like cheese.” Hence we can rewrite it as

(∃x)(P(x) ∧ ¬L(x,C)) (3)

In making this transition from statement (2) to statement (3), we have uti-
lized the following equivalence:

∃x � ¬(∀x)¬
In an expression of the form (∀x)(P(x, y)), the variable x is said to be
bound, whereas y is said to be free. This can be understood as meaning that
the variable y could be replaced by any other variable because it is free, and
the expression would still have the same meaning, whereas if the variable x
were to be replaced by some other variable in P(x,y), then the meaning of
the expression would be changed:

(∀x)(P(y, z))

is not equivalent to (∀x)(P(x, y)), whereas (∀x)(P(x, z)) is. Note that a vari-
able can occur both bound and free in an expression, as in

(∀x)(P(x,y,z) → (∃y)(Q(y,z)))

In this expression, x is bound throughout, and z is free throughout; y is free
in its first occurrence but is bound in (∃y)(Q(y,z)). (Note that both occur-
rences of y are bound here.)

Making this kind of change is known as substitution. Substitution is
allowed of any free variable for another free variable.

7.14 First-Order Predicate Logic 199

7.13.3 Functions

In much the same way that functions can be used in mathematics, we can
express an object that relates to another object in a specific way using
functions. For example, to represent the statement “my mother likes
cheese,” we might use

L(m(me),cheese)

Here the function m(x) means the mother of x. Functions can take more
than one argument, and in general a function with n arguments is rep-
resented as

f(x1, x2, x3, . . . , xn)

7.14 First-Order Predicate Logic

The type of predicate calculus that we have been referring to is also called first-
order predicate logic (FOPL).A first-order logic is one in which the quantifiers
∀ and ∃ can be applied to objects or terms, but not to predicates or functions.
So we can define the syntax of FOPL as follows. First, we define a term:

A constant is a term.

A variable is a term.

f(x1, x2, x3, . . . , xn) is a term if x1, x2, x3, . . . , xn are all terms.

Anything that does not meet the above description cannot be a term. For
example, the following is not a term: ∀x P(x). This kind of construction we
call a sentence or a well-formed formula (wff), which is defined as follows.
In these definitions, P is a predicate, x1, x2, x3, . . . , xn are terms, and A,B are
wff ’s. The following are the acceptable forms for wff ’s:

P(x1, x2, x3, . . . , xn)

¬A

A ∧ B

A ∨ B

A → B

A ↔ B

(∀x)A

(∃x)A

An atomic formula is a wff of the form P(x1, x2, x3, . . . , xn).

200 CHAPTER 7 Propositional and Predicate Logic

Higher order logics exist in which quantifiers can be applied to predicates
and functions, and where the following expression is an example of a wff:

(∀P)(∃x)P(x)

In this book, we will stick with first-order logics, in which quantifiers can
only be applied to variables, not predicates or functions.

7.15 Soundness

We have seen that a logical system such as propositional logic consists of a
syntax, a semantics, and a set of rules of deduction. A logical system also
has a set of fundamental truths, which are known as axioms. The axioms
are the basic rules that are known to be true and from which all other theo-
rems within the system can be proved.

An axiom of propositional logic, for example, is

A → (B → A)

A theorem of a logical system is a statement that can be proved by applying
the rules of deduction to the axioms in the system.

If A is a theorem, then we write

� A

A logical system is described as being sound if every theorem is logically
valid, or a tautology.

It can be proved by induction that both propositional logic and FOPL
are sound.

7.16 Completeness

A logical system is complete if every tautology is a theorem—in other
words, if every valid statement in the logic can be proved by applying the
rules of deduction to the axioms. Both propositional logic and FOPL are
complete. The proofs that these systems are complete are rather complex.

7.17 Decidability

A logical system is decidable if it is possible to produce an algorithm that
will determine whether any wff is a theorem. In other words, if a logical
system is decidable, then a computer can be used to determine whether
logical expressions in that system are valid or not.

7.19 Abduction and Inductive Reasoning 201

We can prove that propositional logic is decidable by using the fact that it is
complete. Thanks to the completeness of propositional logic, we can prove
that a wff A is a theorem by showing that it is a tautology. To show if a wff
is a tautology, we simply need to draw up a truth table for that wff and
show that all the lines have true as the result. This can clearly be done algo-
rithmically because we know that a truth table for n values has 2n lines and
is therefore finite, for a finite number of variables.

FOPL, on the other hand, is not decidable. This is due to the fact that it is
not possible to develop an algorithm that will determine whether an arbi-
trary wff in FOPL is logically valid.

7.18 Monotonicity

A logical system is described as being monotonic if a valid proof in the sys-
tem cannot be made invalid by adding additional premises or assumptions.
In other words, if we find that we can prove a conclusion C by applying
rules of deduction to a premise B with assumptions A, then adding addi-
tional assumptions A� and B� will not stop us from being able to deduce C.

Both propositional logic and FOPL are monotonic. Elsewhere in this book,
we learn about probability theory, which is not a monotonic system.

Monotonicity of a logical system can be expressed as follows:

If we can prove {A, B} � C,

then we can also prove: {A, B, A�, B�} � C.

Note that A� and B� can be anything, including ¬A and ¬B. In other words,
even adding contradictory assumptions does not stop us from making the
proof in a monotonic system. In fact, it turns out that adding contradictory
assumptions allows us to prove anything, including invalid conclusions.

This makes sense if we recall the line in the truth table for →, which shows
that false → true. By adding a contradictory assumption, we make our
assumptions false and can thus prove any conclusion.

7.19 Abduction and Inductive Reasoning

The kind of reasoning that we have seen so far in this chapter has been
deductive reasoning, which in general is based on the use of modus ponens
and the other deductive rules of reasoning. This kind of reasoning assumes

202 CHAPTER 7 Propositional and Predicate Logic

that we are dealing with certainties and does not allow us to reason about
things of which we are not certain. As we see elsewhere in this book, there is
another kind of reasoning, inductive reasoning, which does not have the
same logical basis but can be extremely powerful for dealing with situations
in which we lack certainty.

Strangely, another form of reasoning, abduction, is based on a common
fallacy, which can be expressed as

Note that abduction is very similar to modus ponens but is not logically
sound. A typical example of using this rule might be “When Jack is sick, he
doesn’t come to work. Jack is not at work today. Therefore Jack is sick.”

In fact, Jack may be having a holiday, or attending a funeral, or it may be
Sunday or Christmas Day.

Given that this type of reasoning is invalid, why are we discussing it here?
It turns out that although abduction does not provide a logically sound
model for reasoning, it does provide a model that works reasonably well
in the real world because it allows us to observe a phenomenon and pro-
pose a possible explanation or cause for that phenomenon without com-
plete knowledge. Abductive reasoning is discussed in more detail in
Chapter 17.

Inductive reasoning enables us to make predictions about what will hap-
pen, based on what has happened in the past. Humans use inductive rea-
soning all the time without realizing it. In fact, our entire lives are based
around inductive reasoning, for example, “the sun came up yesterday and
the day before, and every day I know about before that, so it will come up
again tomorrow.” It’s possible it won’t, but it seems fairly unlikely. This kind
of reasoning becomes more powerful when we apply probabilities to it, as
in “I’ve noticed that nearly every bird I see is a swallow. Therefore, it’s quite
likely that that bird is a swallow.”

As we will see, these kinds of reasoning are extremely useful for dealing
with uncertainty and are the basis of most of the learning techniques used
in Artificial Intelligence.

B A B
A

→

7.20 Modal Logics and Possible Worlds 203

7.20 Modal Logics and Possible Worlds

The forms of logic that we have dealt with so far deal with facts and prop-
erties of objects that are either true or false. In these classical logics, we do
not consider the possibility that things change or that things might not
always be as they are now.

Modal logics are an extension of classical logic that allow us to reason
about possibilities and certainties. In other words, using a modal logic, we
can express ideas such as “although the sky is usually blue, it isn’t always”
(for example, at night). In this way, we can reason about possible worlds. A
possible world is a universe or scenario that could logically come about.

The following statements may not be true in our world, but they are possible,
in the sense that they are not illogical, and could be true in a possible world:

Trees are all blue.

Dogs can fly.

People have no legs.

It is possible that some of these statements will become true in the future,
or even that they were true in the past. It is also possible to imagine an
alternative universe in which these statements are true now. The following
statements, on the other hand, cannot be true in any possible world:

A ∧ ¬A

(x > y) ∧ (y > z) ∧ (z > x)

The first of these illustrates the law of the excluded middle, which simply
states that a fact must be either true or false: it cannot be both true and
false. It also cannot be the case that a fact is neither true nor false. This is a
law of classical logic, and as we see in Chapter 18, it is possible to have a log-
ical system without the law of the excluded middle, and in which a fact can
be both true and false.

The second statement cannot be true by the laws of mathematics. We are
not interested in possible worlds in which the laws of logic and mathemat-
ics do not hold.

A statement that may be true or false, depending on the situation, is called
contingent. A statement that must always have the same truth value,

204 CHAPTER 7 Propositional and Predicate Logic

regardless of which possible world we consider, is noncontingent. Hence,
the following statements are contingent:

A ∧ B

A ∨ B

I like ice cream.

The sky is blue.

The following statements are noncontingent:

A ∨ ¬A

A ∧ ¬A

If you like all ice cream, then you like this ice cream.

Clearly, a noncontingent statement can be either true or false, but the fact
that it is noncontingent means it will always have that same truth value.

If a statement A is contingent, then we say that A is possibly true, which
is written

�A

If A is noncontingent, then it is necessarily true, which is written

A

7.20.1 Reasoning in Modal Logic

It is not possible to draw up a truth table for the operators � and . (Con-
sider the four possible truth tables for unary operators—it should be clear
that none of these matches these operators.) It is possible, however, to rea-
son about them.

The following rules are examples of the axioms that can be used to reason
in this kind of modal logic:

A → �A

¬A → ¬�A

�A → ¬ A

Although truth tables cannot be drawn up to prove these rules, you should
be able to reason about them using your understanding of the meaning of
the and � operators.

Modal logic, and other nonclassical logics, are discussed in Chapter 17.

7.23 Review Questions 205

7.21 Dealing with Change

As we have seen, classical logics do not deal well with change. They assume
that if an object has a property, then it will always have that property and
always has had it. Of course, this is not true of very many things in the real
world, and a logical system that allows things to change is needed. The sit-
uation and event calculi are covered in more detail in Chapters 17 and 19.

7.22 Chapter Summary

■ Logic is primarily concerned with the logical validity of state-
ments, rather than with truth.

■ Logic is widely used in Artificial Intelligence as a representa-
tional method.

■ Abduction and inductive reasoning are good at dealing with
uncertainty, unlike classical logic.

■ The main operators of propositional logic are ∧, ∨, ¬, →, and ↔
(and, or, not, implies, and iff).

■ The behavior of these logical operators can be expressed in truth
tables. Truth tables can also be used to solve complex problems.

■ Propositional logic deals with simple propositions such as “I like
cheese.” First-order predicate logic allows us to reason about more
complex statements such as “All people who eat cheese like cats,”
using the quantifiers ∀ and ∃ (“for all”, and “there exists”).

■ A statement that is always true in any situation is called a tautology.
A ∨ ¬ A is an example of a tautology.

■ Two statements are logically equivalent if they have the same
truth tables.

■ First-order predicate logic is sound and complete, but not decid-
able. Propositional logic is sound, complete, and decidable.

■ Modal logics allow us to reason about certainty.

7.23 Review Questions

7.1 Explain the meanings of the following terms in the context of logic:

a. truth

b. validity

206 CHAPTER 7 Propositional and Predicate Logic

c. equivalent

d. uncertainty

e. tautology

f. satisfiable

g. sound

h. complete

i. decidable

j. modal logic

7.2 “Inductive reasoning is a reasonable way to think about everyday
life, but it does not provide the logical structure that propositional
logic does.” Discuss.

7.3 Explain what is meant by the following: “Classical logics are not
good at dealing with uncertainty.”

7.4 Explain why the addition of the quantifiers ∀ and ∃ makes predi-
cate calculus so powerful.

7.5 Explain the rule of modus ponens. Explain how it is used in every-
day life.

7.6 Explain in layman’s terms what the law of the excluded middle
means. What difficulties might you encounter in logical deduction
if you ignored the law of the excluded middle?

7.7 Assume the law of the excluded middle is not true, and use this to
prove the equality 1 = 0.

7.8 What does it mean to say that a logic is monotonic? Is proposi-
tional logic monotonic? What complexities do you think nonmo-
notonicity would add to the process of logical deduction? Would
modus ponens still hold in a nonmonotonic logic?

7.24 Exercises

7.1 Translate the following sentences into logical statements, using
either propositional or predicate logic as appropriate:

a. I like apples and pears.

b. When I eat apples and pears, I usually like to have a walk.

c. Every apple that I have ever eaten has been delicious.

d. The fact that some pears are not delicious will not stop me eat-
ing them.

7.24 Exercises 207

e. I can only eat an apple if I have first eaten a pear, and I can only
eat a pear if I eat an apple immediately afterward.

f. There exists a book that includes details of every book.

g. There exists somewhere in the world a book that lists every
single person who doesn’t appear in any other book.

h. If you haven’t read the book that lists all other books, then you
haven’t read any book, unless you’ve read the book that lists
books that do not exist, in which case you’ve read every book.

7.2 Draw a truth table for the following expression:

¬A ∧ (A ∨ B) ∧ (B ∨ C)

7.3 (Hard) Prove that propositional logic and first-order predicate
logic are sound and complete.

7.4 Write expressions in propositional calculus to represent the follow-
ing statements:

a. If you go to Mexico, you will be far away.

b. I cannot hear you when you are far away.

c. When I can’t hear you, I forget what you look like.

d. If I come to Mexico, and I don’t know what you look like, I
won’t be able to find you.

e. Therefore, if you go to Mexico, and I follow you, I won’t be
able to find you.

Prove whether the conclusion follows from the premises or not.

7.5 Write expressions in first-order predicate logic to represent the fol-
lowing statements, and prove whether the conclusion follows from
the premises or not:

a. All dancers love to dance.

b. Everyone who sings and plays an instrument loves to dance.

c. Therefore, all dancers sing and play an instrument.

7.6 Prove the following:

a. � A → A

b. � ((¬A → ¬B) → A) → ((¬B → ¬A) → ¬B)

c. � (¬ ¬ ¬A → ¬ ¬ ¬B) → (¬A → ¬B)

208 CHAPTER 7 Propositional and Predicate Logic

7.25 Further Reading

Most textbooks on Artificial Intelligence provide good coverage of logic.
An excellent, short introduction to logic that provides more detail on most
of the subject than has been provided here is Kelly (1997). Lewis Carroll’s
work, though over 100 years old, still makes for an interesting and relevant
read on the subject of logic and reasoning, although his approach was
rather different from that usually found today.

The idea of abduction was introduced by C. S. Peirce, in his 1878 paper
How to Make Our Ideas Clear, published in Popular Science Monthly.

Francis Bacon introduced the idea of inductive reasoning in 1620. His writ-
ings on the subject can be found in The New Organon, and Related Writ-
ings, published in 1960.

Francis Bacon: The New Organon by Francis Bacon, edited by Lisa Jardine
and Michael Silverthorne (2002 – Cambridge University Press)

Propositional Logic: Deduction and Algorithms by Hans Kleine Büning and
Theodor Lettmann (1999 – Cambridge University Press)

Symbolic Logic and Game of Logic by Lewis Carroll (published in one vol-
ume – 1958 – Dover Books).

Predicate Logic: The Semantic Foundations of Logic by Richard L. Epstein
(2000 – Wadsworth Publishing)

Propositional Logics: The Semantic Foundations of Logic by Richard L.
Epstein (2000 – Wadsworth Publishing)

The Essence of Logic by John Kelly (1997 – Prentice Hall)

Introduction to Logic: Propositional Logic by Howard Pospesel (1999 – Pren-
tice Hall)

Logic for Computer Science by Steve Reeves and Michael Clarke (1993 –
Addison Wesley)

Logical Forms: An Introduction to Philosophical Logic by Mark Sainsbury
(1991 – Blackwell)

Logic and Prolog by Richard Spencer-Smith (1991 – Harvester Wheatsheaf)

8CHAPTER
Inference and Resolution for
Problem Solving

Early work in theorem proving programs for quantified logics culminated in 1965
with Alan Robinson’s development of machine-oriented formulation of first-
order logic called Resolution (Robinson, 1965). There followed an immensely pro-
ductive period of exploration of resolution-based theorem-proving.

—Alan Newell, The Knowledge Level

When you have eliminated the impossible, whatever remains, no matter how
improbable, must be the truth.

—Sir Arthur Conan Doyle, The Sign of Four

At thirty a man suspects himself a fool;
Knows it at forty, and reforms his plan;
At fifty chides his infamous delay,
Pushes his prudent purpose to resolve;
In all the magnanimity of thought
Resolves; and re-resolves; then dies the same.

—Edward Young, Night Thoughts

8.1 Introduction

This chapter introduces the main ideas behind automated reasoning, or theo-
rem proving. The method of resolution is discussed in some detail because it
pertains to both propositional logic and first-order predicate logic (FOPL).

To explain resolution, ideas such as unification, normal forms, and Her-
brand universes are introduced. This chapter is somewhat more advanced

210 CHAPTER 8 Inference and Resolution for Problem Solving

than Chapter 7 and assumes an understanding of propositional calculus
and first-order predicate calculus.

This chapter also briefly explains how PROLOG uses resolution to process
data and to provide solutions to problems. In fact, resolution is fundamen-
tal to the way that PROLOG works. Resolution is an important part of Arti-
ficial Intelligence research and provides a common method for systems to
reason logically and to prove theorems in an automated manner. This has
advantages over other theorem-proving methods that depend more on
intuition and experience and are thus best applied by humans. In this chap-
ter, we show how resolution can be entirely automated and an algorithm
generated for using resolution to prove theorems.

The representational methods discussed in this chapter and Chapter 7 pro-
vide a powerful tool for reasoning logically and, in particular, for enabling
computer systems to automatically reason about a database of facts. This
representational method, though, is not suitable for all problems, and in
many situations it is entirely inadequate.

In particular, predicate logic does not have a mechanism for dealing with
change or with time.We will discuss a number of alternative representations in
Chapters 17 and 18 that overcome some of these difficulties. As we see in these
chapters, and in Chapter 19, intelligent agents and other Artificial Intelligence
systems often need to reason about events, situations, and other time-based
factors. The logic we are looking at here is better suited to static environments,
which is certainly appropriate for solving a number of problems.

8.2 Resolution in Propositional Logic

In Chapter 7, we introduced a method of deductive reasoning in order to
make proofs in predicate and propositional logic. It is not clear how this
process might be automated because at each stage an amount of initiative
was required to choose the right next step. We now introduce a proof
method, resolution, which can be automated because it involves a fixed set
of steps. Before we examine resolution, we must introduce some key ideas.

8.2.1 Normal Forms

A sentence or well-formed formula (wff) is in conjunctive normal form if it
is of the following form:

A1 ∧ A2 ∧ A3 ∧ . . . ∧ An

8.2 Resolution in Propositional Logic 211

where each clause, Ai, is of the form

B1 ∨ B2 ∨ B3 ∨ . . . ∨ Bn

Each Bi is a literal, where a literal is a basic symbol of propositional logic. In
fact, a literal can be more accurately defined as an atom or an atom that is
negated, where an atom is one of the basic object symbols in propositional
logic. Hence, in the following expression:

A ∧ B ∨ (¬C ∧ D)

A is an atom, as are B, C, and D. The literals are A, B, ¬C, and D.

So, an expression is in conjunctive normal form (often written CNF) if it
consists of a set of or phrases anded together, such as:

A ∧ (B ∨ C) ∧ (¬A ∨ ¬B ∨ ¬C ∨ D)

Trivially, a literal is also in CNF.

A sentence is in disjunctive normal form (DNF) if it consists of a set of
and phrases ored together, as in

A ∨ (B ∧ C) ∨ (¬A ∧ ¬B ∧ ¬C ∧ D)

Any wff can be converted to CNF by using the following equivalences,
which we have encountered previously:

1. A ↔ B � (A → B) ∧ (B → A)

2. A → B � ¬A ∨ B

3. ¬(A ∧ B) � ¬A ∨ ¬B

4. ¬(A ∨ B) � ¬A ∧ ¬B

5. ¬¬A � A

6. A ∨ (B ∧ C) � (A ∨ B) ∧ (A ∨ C)

For example, we will convert (A → B) → C to CNF:

(A → B) → C

¬(A → B) ∨ C (2)

¬(¬A ∨ B) ∨ C (3)

(A ∧ ¬B) ∨ C (4)

(A ∨ C) ∧ (¬B ∨ C) (6)

212 CHAPTER 8 Inference and Resolution for Problem Solving

A further example follows:

A ↔ (B ∧ C)

(A → (B ∧ C)) ∧ ((B ∧ C) → A) (1)

(¬A ∨ (B ∧ C)) ∧ (¬(B ∧ C) ∨ A) (2)

(¬A ∨ (B ∧ C)) ∧ (¬B ∨ ¬C ∨ A) (3)

(¬A ∨ B) ∧ (¬A ∨ C) ∧ (¬B ∨ ¬C ∨ A) (6)

Note that this process can be automated, as the equivalences can always be
applied in the order they were listed, replacing symbols and constructions
as they are encountered. As we will see, this is a useful fact: an algorithm
can be expressed that will convert any wff into CNF.

Having converted a wff into CNF, we can now express it as a set of clauses.
So our expression above

(¬A ∨ B) ∧ (¬A ∨ C) ∧ (¬B ∨ ¬C ∨ A)

would be represented in clause form as

{(¬A, B), (¬A, C), (¬B, ¬C, A)}

8.2.2 The Resolution Rule

Now we introduce a new rule to sit alongside the rules presented in Section
7.10, which is called the resolution rule:

This rule is not as immediately obvious as the rules in Section 7.10, but it
does prove to be extremely useful. It can also be written as follows:

In this form, the rule can be seen to be saying that implication is transitive,
or in other words, if A implies B and B implies C, then A implies C.

This can be applied to wff ’s in clause form, as follows:

If a wff contains a clause that contains literal L and another clause that con-
tains literal ¬L, then these two clauses can be combined together, and L and
¬L can be removed from those clauses. For example,

¬ → →
¬ →

A B B C
A C

A B B C
A C

∨ ¬ ∨
∨

8.2 Resolution in Propositional Logic 213

{(A, B), (¬B, C)}

can be resolved to give

{(A, C)}

Similarly,

{(A, B, C), D, (¬A, D, E), (¬D, F)}

can be resolved to give

{(B, C, D, E), D, (¬D, F)}

which can be further resolved to give either

{(B, C, D, E), F}

or

{(B, C, E, F), D}

Note that at the first step, we also had a choice and could have resolved to

{(A, B, C), D, (¬A, E, F)}

which can be further resolved to give

{(B, C, E, F), D}

Now, if wff P resolves to give wff Q, we write

P |= Q

For example, we can resolve (A ∨ B) ∧ (¬A ∨ C) ∧ (¬B ∨ C) as follows:

{(A, B), (¬A, C), (¬B, C)}

{(B, C), (¬B, C)}

{C}

We can express this as

(A ∨ B) ∧ (¬A ∨ C) ∧ (¬B ∨ C) |= C

If we resolve two clauses, we produce the resolvent of those clauses. The
resolvent is a logical consequence of the two clauses.

8.2.3 Resolution Refutation

Now let us resolve the following clauses:

{(¬A, B), (¬A, ¬B, C), A, ¬C}

214 CHAPTER 8 Inference and Resolution for Problem Solving

We begin by resolving the first clause with the second clause, thus eliminat-
ing B and ¬B:

{(¬A, C), A, ¬C}

{C, ¬C}

⊥
The fact that this resolution has resulted in falsum means that the original
clauses were inconsistent. We have refuted the original clauses, using reso-
lution refutation. We can write

{(¬A, B), (¬A, ¬B, C), A, ¬C} |= ⊥
The idea behind resolution refutation is explained in more detail in Sec-
tion 8.2.4.

8.2.4 Proof by Refutation

Proof by refutation (also known as proof by contradiction), as used in
resolution refutation, is a powerful method for solving problems. For
example, let us imagine that we want to determine whether the following
logical argument is valid:

If it rains and I don’t have an umbrella, then I will get wet.

It is raining, and I don’t have an umbrella.

Therefore, I will get wet.

We can rewrite this in propositional calculus as follows:

(A ∧ ¬B) → C

A ∧ ¬B

∴C

To prove this by refutation, we first negate the conclusion and convert the
expressions into clause form. The first expression is the only one that is not
already in CNF, so first we convert this to CNF as follows:

(A ∧ ¬B) → C

� ¬(A ∧ ¬B) ∨ C

� ¬A ∨ B ∨ C

8.2 Resolution in Propositional Logic 215

Now, to prove that our conclusion is valid, we need to show that

{(¬A, B, C), A, ¬B, ¬C} |= ⊥
We resolve these clauses as follows:

{(B, C), ¬B, ¬C}

{C, ¬C}

⊥
Hence, in showing that by negating our conclusion we lead to a contradic-
tion, we have shown that our original conclusion must have been true.

If this process leads to a situation where some clauses are unresolved, and
falsum cannot be reached, we have shown that the clauses with the negated
conclusion are not contradictory and that therefore the original conclusion
was not valid.

Because following resolution explanations in this way can be confusing, it is
often preferable to present a resolution proof in the form of a tree, where pairs
of resolved clauses are connected together, as shown in the following proof:

A → B

B → C

C → D

D → E ∨ F

∴ A → F

First we negate the conclusion, to give: ¬(A → F). Next we convert to
clause form:

D → E ∨ F

� ¬D ∨ (E ∨ F)

and

¬(A → F)

� ¬(¬A ∨ F)

� A ∧ ¬F

So, our clauses are

{(¬A, B), (¬B, C), (¬C, D), (¬D, E, F), A, ¬F)}

216 CHAPTER 8 Inference and Resolution for Problem Solving

Our proof in tree form is as follows:

We have not been able to reach falsum because we are left with a single
clause {E}, which cannot be resolved with anything. Hence, we can con-
clude that our original conclusion was not valid. You can prove this for
yourself using a truth table.

8.3 Applications of Resolution

Clearly, resolution can be used to automate the process of proving whether
a conclusion can be derived in a valid way from a set of premises or not.
This is certainly useful, but resolution is not limited in its applications to
just proving logical arguments.

A combinatorial search problem is a problem where there are a number of
variables, each of which can be assigned a particular value. For example, a
jigsaw puzzle can be seen as a problem where each piece is represented by a
variable, and the position that each piece is placed in is the value assigned
to that variable. Of course, the point of the puzzle is that there is only one
correct way to place the pieces, so correspondingly, there would only be one
set of assignments of values to variables that would be correct. We have
already examined combinatorial search problems and seen ways to solve
them in Chapter 5. Although resolution cannot help us to solve such prob-
lems, it can help by telling us whether a solution exists or not.

An example of a combinatorial search problem is the three-coloring prob-
lem: Given a map, is it possible to color the countries using three colors
such that no two countries that are next to each other have the same color?

(¬ A, B)

(¬ A, C)

(¬ A, D)

(¬ B, C) (¬ C, D) (¬ D, E, F)

(¬ A, E, F)

(E, F)

¬ FA

E

8.3 Applications of Resolution 217

A

B C D

Figure 8.1
A graph representing a
three-coloring problem

A

B

C

D

Figure 8.2
Graph that cannot be
three-colored

A slightly more general version of the three-coloring problem for maps is
to represent the countries in the three-coloring problem as nodes on a
graph, as in Figure 8.1. The problem now is to assign values from a set of
three possible values to each of the nodes in the graph, such that no two
nodes that are joined by an edge have been assigned the same value.

For example, in the graph in Figure 8.1, the following assignments would
be a suitable three-coloring:

A = red

B = green

C = blue

D = green

Note that in the graph shown in Figure 8.2, no suitable three-coloring exists.

Also note that some graphs do not represent maps of countries, as in the
case of a graph with five nodes where every pair of nodes is connected by
an edge. However, any map of countries can be represented by a graph, and
solving the three-coloring problem for that graph is equivalent to solving
the three-coloring problem for the map.

The three-coloring problem for graphs can be solved using resolution and
propositional logic, by representing the graph as a set of clauses and deter-
mining whether the clauses can be satisfied.

218 CHAPTER 8 Inference and Resolution for Problem Solving

The representation is generated as follows:

First we can represent which color has been assigned to a vertex, as follows:

Ar means that vertex A has been colored red.

Ag means that vertex A has been colored green.

Ab means that vertex A has been colored blue.

And so on for all vertices.

Hence, for each vertex, we can generate the following set of clauses to repre-
sent that it must be given a color, but cannot be given more than one color:

Ar ∨ Ag ∨ Ab

¬Ar ∨ ¬Ag (� Ar → ¬Ag)

¬Ag ∨ ¬Ab

¬Ab ∨ ¬Ar

Similarly, for each edge, we can represent the fact that the two nodes at
either end of the edge must have different colors:

If (A,B) is an edge, then:

¬Ar ∨ ¬Br

¬Ab ∨ ¬Bb

¬Ag ∨ ¬Bg

Now, if we ∧ these sets of clauses together, and apply resolution to the
result, we can see if the set is satisfiable. If so, then a three-coloring solution
does exist for the graph. If not, then it does not.

In the same way, any instance of a combinatorial search problem can be
represented as a set of clauses, and their satisfiability can be tested using
resolution. This method tells us if a solution exists but does not tell us what
that solution is. We have already seen in Part 2 of this book how solutions
to such problems can be found using search.

8.4 Resolution in Predicate Logic

Resolution as applied to propositional logic can also be applied to FOPL by
reducing FOPL expressions to a suitable normal form. The methods used
to carry out this process are described in the following sections.

8.5 Normal Forms for Predicate Logic 219

8.5 Normal Forms for Predicate Logic

To apply resolution to FOPL expressions, we first need to deal with the
presence of the quantifiers ∀ and ∃. The method that is used is to move
these quantifiers to the beginning of the expression, resulting in an expres-
sion that is in prenex normal form.

In converting a wff to prenex normal form, we use the same rules as we
used to convert a wff to CNF:

1. A ↔ B � (A → B) ∧ (B → A)

2. A → B � ¬A ∨ B

3. ¬(A ∧ B) � ¬A ∨ ¬B

4. ¬(A ∨ B) � ¬A ∧ ¬B

5. ¬¬A � A

6. A ∨ (B ∧ C) � (A ∨ B) ∧ (A ∨ C)

In addition, we use the following rules to move the quantifiers to the front:

7. ¬(∀x)A(x) � (∃x)¬A(x)

8. ¬(∃x)A(x) � (∀x)¬A(x)

9. (∀x)A(x) ∧ B � (∀x)(A(x) ∧ B)

10. (∀x)A(x) ∨ B � (∀x)(A(x) ∨ B)

11. (∃x)A(x) ∧ B � (∃x)(A(x) ∧ B)

12. (∃x)A(x) ∨ B � (∃x)(A(x) ∨ B)

13. (∀x)A(x) ∧ (∀y)B(y) � (∀x)(∀y)(A(x) ∧ B(y))

14. (∀x)A(x) ∧ (∃ y)B(y) � (∀x)(∃y)(A(x) ∧ B(y))

15. (∃x)A(x) ∧ (∀y)B(y) � (∃x)(∀y)(A(x) ∧ B(y))

16. (∃x)A(x) ∧ (∃y)B(y) � (∃x)(∃y)(A(x) ∧ B(y))

Note that rules 9, 10, 11, and 12 can be used only if x does not occur in B.

Let us briefly examine why some of these rules make logical sense. Rule 7,
for example, can be stated in layman’s terms as “if it is not true that all x’s
have property A, then there must exist some x for which A is not true.” This
is clearly valid.

220 CHAPTER 8 Inference and Resolution for Problem Solving

Similarly, rule 8 states “if there does not exist an x for which A is true, then
A is not true for any x.”

Rules 9 through 12 take advantage of the fact that x is not present in B.
Hence, if B is true, then it is also true for all x:

B → ∀xB

provided x is not free in B.

Rules 13 through 16 similarly take advantage of the fact that x is not pres-
ent in B(y) and that y is not present in A(x).

A further set of rules (17–20) can be generated by replacing ∧ with ∨ in
rules 13 through 16.

For example, let us convert the following wff to prenex normal form:

(∀x)(A(x) → B(x)) → (∃y)(A(y) ∧ B(y))

¬(∀x)(A(x) → B(x)) ∨ (∃y)(A(y) ∧ B(y)) (2)

¬(∀x)(¬A(x) ∨ B(x)) ∨ (∃y)(A(y) ∧ B(y)) (2)

(∃x)¬(¬A(x) ∨ B(x)) ∨ (∃y)(A(y) ∧ B(y)) (7)

(∃x)(¬¬A(x) ∧ ¬B(x)) ∨ (∃y)(A(y) ∧ B(y)) (4)

(∃x)(A(x) ∧ ¬B(x)) ∨ (∃y)(A(y) ∧ B(y)) (5)

(∃x)(∃y)((A(x) ∧ ¬B(x)) ∨ (A(y) ∧ B(y))) (19)

(∃x)(∃y)(((A(x) ∨ A(y)) ∧ (¬B(x) ∨ A(y)) ∧ (A(x) ∨ B(y)) ∧
(¬B(x) ∨ B(y)))) (6)

8.6 Skolemization

Before resolution can be carried out on a wff, we need to eliminate all the
existential quantifiers, ∃, from the wff.

This is done by replacing a variable that is existentially quantified by a con-
stant, as in the following case:

∃(x) P(x)

would be converted to

P(c)

8.6 Skolemization 221

where c is a constant that has not been used elsewhere in the wff. Although
P(c) is not logically equivalent to ∃(x) P(x), we are able to make this substi-
tution in the process of resolution because we are interested in seeing
whether a solution exists. If there exists some x for which P(x) holds, then
we may as well select such an x and name it c. This process is called skolem-
ization, and the variable c is called a skolem constant.

The variable c can be thought of as an example of a suitable value for x. It is
extremely important that c not appear anywhere else in the expression
because that would create a conflict. Imagine, for example, replacing x with
b in the following expression:

∃x(x ∨ b)

This would leave us with

b ∨ b

which reduces to

b

This clearly is not the same expression, and, in fact, it should be skolemized
using a different constant, such as:

c ∨ b

Skolemization must proceed slightly differently in cases where the ∃ follows
a ∀ quantifier, as in the following example:

(∀x)(∃y)(P(x,y))

In this case, rather than replacing y with a skolem constant, we must replace
it with a skolem function, such as in the following:

(∀x)(P(x,f(x))

Note that the skolem function is a function of the variable that is univer-
sally quantified, in this case, x.

Having removed the existential quantifiers in this way, the wff is said to be
in skolem normal form, and has been skolemized.

8.6.1 Example of Skolemization

The following expression

(∀x)(∃y)(∀z)(P(x) ∧ Q(y, z))

222 CHAPTER 8 Inference and Resolution for Problem Solving

would be skolemized as follows:

(∀x)(∀z)(P(x) ∧ Q(f(x), z)

Note that y has been replaced by f(x) because ∃y occurred after ∀x.

8.6.2 Second Example of Skolemization

The following expression:

(∀w)(∀x)(∃y)(∀z)(P(x) ∧ Q(w, y, z))

would be skolemized as follows:

(∀w)(∀x)(∀z)(P(x) ∧ Q(w, f(w,x), z)

Here y has been replaced by a function of both w and x: f(w,x) because ∃y
occurred after ∀w and ∀x.

To proceed with resolution, this wff must now be represented as set of
clauses. To do this, we first drop the universal quantifiers. Hence, our
expression above will be represented as the following set of two clauses:

{(P(x)), (Q(w, f(w,x), z))}

8.6.3 Unification

To carry out resolution on wff ’s in FOPL, we need to carry out one final
stage, which is to make substitutions.

For example, if we had the following set of clauses:

{(P(w,x)), (¬P(y,z))}

It seems clear that we should be able to resolve P with ¬P, but they are not
currently identical because they have different arguments. These clauses
can be resolved by making a substitution. We will replace w with y and x
with z, to result in the following clauses:

{(P(y,z)), (¬P(y,z))}

These can now clearly be resolved to give falsum.

The substitution that was made here can be written as

{y/w, z/x}

In this case, it was easy to see which substitution to make, but with more
complex clauses, it can be harder. A formal process exists for determining

8.6 Skolemization 223

how to make these substitutions, which of course means the process can be
automated.

In general, we use the symbol � to indicate a substitution, and we can write

� = {y/w, z/x}

A = P(w,x)

B = ¬P(y,z)

A� = P(y,z)

B� = ¬P(y,z)

In general, if a substitution can be applied to a set of clauses {A, B, C,
. . . } such that

A� = B� = C� = . . .

Then � is called a unifier for the set {A, B, C, . . . }.

In some cases, more than one substitution needs to be applied to produce a
form that can be resolved. The operator, o, can be applied to two substitu-
tions to provide the composition of those two substitutions, which produces
a third substitution that is effectively the same as applying both substitutions.

Let us take two substitutions �1 and �2, defined as follows:

�1 = {a1/x1, a2/x2, . . . , am/xm}

�2 = {b1/y1, b2/y2, . . . , bn/yn}

Now we define the composition of these two substitutions as follows:

�1 o �2 = {a1�2/x1, a2�2/x2, . . . , an�2/xn, b1/y1, b2/y2, . . . , bn/yn}

Certain elements on the composite set can be eliminated:

If yi = xj then bi/yi can be eliminated.

If ai�2 = xi then ai�2/xi can be eliminated.

For example, let us form the composition of the following two substitutions:

�1 = {a/x, x/y, f(a)/z}

�2 = {y/x, f(z)/y}

�1 o �2 = {a�2/x, x�2/y, f(a)�2/z, y/x, f(z)/y}

= {a/x, y/y, f(a)/z, y/x, f(z)/y}

= {a/x, f(a)/z, f(z)/y}

224 CHAPTER 8 Inference and Resolution for Problem Solving

Notice that y/y is removed because this is a form of ai�2 = xi and that y/x is
removed because this matches the elimination rule where yi = xj.

Now let us find �2 o �1:

�1 = {a/x, x/y, f(a)/z}

�2 = {y/x, f(z)/y}

�2 o �1 = {y�1/x, f(z)�1/y, a/x, x/y, f(a)/z}

= {x/x, f(f(a))/y, a/x, x/y, f(a)/z}

= {f(f(a))/y, f(a)/z}

Hence, the o operator is not commutative, as �1 o �2 ≠ �2 o �1.

Some rules determine the way in which unifiers can be applied:

1. A constant, such as a, cannot be replaced by a variable.

2. A variable x cannot be replaced by a term that contains x.

Hence, for example, the following substitutions are not valid unifiers:

{P(x)/x}

{x/a}

8.6.4 Most General Unifiers

A unifier u1 is called a most general unifier for a set S = {A, B, C, . . . } if
any other unifier u2 can be expressed as the composition of u1 with some
other substitution (i.e., u2 = u1 o u3).

A most general unifier (mgu) is a unique unifier that provides the most
general set of substitutions to unify a set of clauses. By most general, we
mean where possible variables are used in place of constants because con-
stants are specific and variables are general.

8.6.5 Unification Algorithm

To automate the process of resolution in FOPL, we need an algorithm for
generating a most general unifier, in order to put clauses in a form that can
be resolved.

8.6 Skolemization 225

The unification algorithm is expressed as follows:

To unify a set of clauses, S0:

Initialize: �0 = {}

i = 0

Loop: If Si has only one element, terminate and report that �i is
the mgu for S0.

If Si has more than one element, find the disagreement set
Di of Si (i.e., the substitutions that need to be made).

If Di contains a variable x and a term t where x is not con-
tained within t, then we say:

�i	1= �i o {t/x}

Si	1 = Si {t/x}

Increment i, and repeat the loop.

8.6.6 Unification Example

Let us find the mgu for the following set of clauses:

S0 = {P(a, x, y, z), P (x, y, z, w)}

(a is a constant, and x, y, z are variables).

We initialize �0 = {} and i = 0.

Now we proceed as follows:

D0 = {a,x}

�1= �o o {a/x} = {a/x}

S1 = So {a/x} = {P(a, a, y, z), P (a, y, z, w)}

D1 = {a,y}

�2 = {a/x} o {a/y} = {a/x, a/y}

S2 = S1 {a/x, a/y} = {P(a, a, a, z), P (a, a, z, w)}

D2 = {a, z}

�3 = {a/x, a/y} o {a/z} = {a/x, a/y, a/z}

S3 = S2 {a/x, a/y, a/z} = {P(a, a, a, a), P(a, a, a, w)}

226 CHAPTER 8 Inference and Resolution for Problem Solving

D3 = {a, w}

�4 = {a/x, a/y, a/z} o {a/w} = {a/x, a/y, a/z, a/w}

S4 = S3 {a/x, a/y, a/z, a/w} = {P(a, a, a, a), P(a, a, a, a)}

= {P(a, a, a, a)}

Now we stop because S4 has just one element, and we have found a mgu, �4,
which is {a/x, a/y, a/z, a/w}.

The following is also a unifier of S0:

�5 = {x/a, x/y, x/z, x/w}

However, this is not a mgu because we can find another substitution �6

such that the composition �5 o �6 gives the mgu, �4:

{x/a, x/y, x/z, x/w} o {a/x}

gives

{x{a/x}/a, x{a/x}/y, x{a/x}/z, x{a/x}/w}

which in turn leads to

{a/a, a/x, a/y, a/z, a/w}

We can eliminate a/a, which gives us

{a/x, a/y, a/z, a/w}

which is the mgu �4. because �4 is a mgu, we could find another substitu-
tion �x for any other unifier �u, such that �u o �x = �4.

8.7 Resolution Algorithm

Now we have all the tools we need to produce an automated system for gen-
erating proofs using resolution on FOPL expressions. Given a set of
assumptions and a conclusion, we can prove whether the assumption logi-
cally follows from the assumptions as follows:

■ First, negate the conclusion and add it to the list of assumptions.

■ Now convert the assumptions into prenex normal form.

■ Next, skolemize the resulting expression.

■ Now convert the expression into a set of clauses.

Now we resolve the clauses using the following method:

8.8 Horn Clauses and PROLOG 227

If our clauses are {A, B, C, . . . } and A has a literal LA and B has a literal LB

such that LA and ¬LB have a mgu �, then we can resolve A and B to give the
resolvent of these clauses, which is:

(A� � LA�)
⋃

(B� � LB�)

where ∪ is the set union operator, and � is the set difference operator. For
example, in resolving the following clauses:

{A(x,y), B(f(y)), C(x, y, z)}

{A(f(x), z), ¬B(z), C(f(a), b, z)}

we note that B(f(y)) and B(z) have a mgu that is {f(y)/z}. Hence, we apply
this unifier to the two clauses to give:

{A(x,y), B(f(y)), C(x, y, z)}{f(y)/z} � B(f(y)){f(y)/z}
⋃

(A(f(x), z), ¬B(z), C(f(a), b, z)} � ¬B(z){f(y)/z}

= {A(x,y), C(x, y, z)} U {A(f(x), z), C(f(a), b, z)}

= {A(x,y), C(x, y, z), A(f(x), z), C(f(a), b, z)}

In this way, we have removed the two literals ¬B(z) and B(f(y)), and by con-
tinuing this process until no further literals can be resolved, a set of clauses
can be tested for contradiction. Note that each stage of this process can be
expressed as an algorithm, and so the process of resolution can be used by
computers to prove the validity of deductions in FOPL.

8.8 Horn Clauses and PROLOG

A Horn clause, or Horn sentence, is a clause that has, at most, one positive
literal. Hence, the following Horn clause takes the following form:

A ∨ ¬B ∨ ¬C ∨ ¬D ∨ ¬E . . .

where A, B, C, D, E, and so on are positive literals.

This Horn clause can also be written as an implication:

B ∧ C ∧ D ∧ E → A

In the programming language PROLOG, this would be written in reverse,
with the conclusion on the left, as follows:

A :− B, C, D, E

Horn clauses can take three forms. The type we have seen above, where there is
one positive literal, and one or more negative literals is called a rule relation.

228 CHAPTER 8 Inference and Resolution for Problem Solving

A clause with no negative literals is called a fact:

A :−
Finally, a clause with no positive literal is called a goal, or a headless clause:

:− B, C, D, E

Unfortunately, not all expressions can be represented as Horn clauses (e.g., A∨
B). However, this representation does have the benefit of efficiency, and it also
means that if a set of clauses has a contradiction, then resolution by depth-first
search (see Chapter 4) is guaranteed to result in the empty clause

:−
thus proving the original assertion.

A program in PROLOG consists of a set of Horn clauses. PROLOG applies
unification and resolution to attempt to derive conclusions from a set of
rules that are defined in the language.

In fact, the programmer is able to define rules and facts, and to set up a
goal that the PROLOG system must attempt to prove, using unification and
resolution.

Rules and their uses in programming are briefly mentioned in Chapter 3
and are examined in more detail in Chapter 9.

The rule for resolution in PROLOG can be expressed as follows:

Hence, for example, a PROLOG programmer might start by establishing
the following facts:

speaks (Bob, French).

spoken_in (French, France).

located_in (Task1, France).

Next, the programmer writes a rule:

assign_task (X, P) :− located_in (X, C),

spoken_in (L, C),

speaks (P, L)

D :— A, B, G:— D, E,
G :— A, B, E,

K K

K

8.9 Herbrand Universes 229

Finally, the goal is set up:

assign_task (Task1, Bob)

This is simply asking, should Task1 be assigned to Bob?

First, the system needs to use unification to be able to carry out resolution.

Clearly, our goal could be resolved with the rule if we made the following
substitution:

{Task1 / X, Bob / P}

After applying this substitution and resolution, we are left with a new goal:

:− located_in (Task1, C),

spoken_in (L, C),

speaks (Bob, L)

Now we apply a further substitution:

{France / C, French / L}

which enables us to resolve this new goal with the three established facts to
result in the empty clause:

:−
Hence, the goal has been proved.

8.9 Herbrand Universes

For a set of clauses, S, the Herbrand universe, HS, is defined as being the set
of constants that are contained within S, and the set of functions in S
applied to those constants. These constants and functions are known as
ground terms because they do not contain variables.

For example,

S is {{A(x), B(y, a), C(z)}, {D(x, a, b), ¬E(y, c, b)}}

then HS, the Herbrand universe of S, is defined as follows:

HS = {a, b, c}

Because there are no functions in S, the Herbrand universe consists just of
the constants in S, which are a, b, and c.

230 CHAPTER 8 Inference and Resolution for Problem Solving

A further example follows:

S is {{A(x), B(y, a), C(z)}, {D(x, a, b), ¬E(y, f(x, y))}}

In this case, where S contains a function, the Herbrand universe is infinite:

HS = {a, b, c, f(a, a), f(a, b), f (b, a), f(b, b), f(f(a), a), f(f(a), f(a)) . . . }

In the following case, S contains no functions or constants:

S is {{A(x), B(y, z), C(z)}, {D(x, y, z), ¬E(y, x)}}

In such cases, we define the Herbrand universe to contain the constant a:

HS = {a}

A ground instance of a clause in S is a version of that clause in which any
variables it contains have been replaced by ground terms from HS.

For instance, given the following definition of S:

S is {{A(x), B(y, a), C(z)}, {D(x, a, b), ¬E(y, c, b)}}

a ground instance of the first clause could be

{A(a), B(b, a), C(a)}

Another ground instance of the same clause is

{A(c), B(a, a), C(c)}

8.9.1 The Herbrand Base

The Herbrand base of S, HS(S), is defined as the set of ground atoms that
can be obtained by replacing variables in S by members of HS. A ground
atom is a formula that contains no variables, only ground terms.

For example,

S is {{A(x), B(y, a), C(z)}, {D(x, a, b), ¬E(y, c, b)}}

then

HS = {a, b, c}

and

HS(S) = {{A(a), B(a, a), C(a), D(a, a, b), ¬E(a, c, b),

A(b), B(b, a), C(b), D(b, a, b), ¬E(b, c, b),

. . . }

8.9 Herbrand Universes 231

In this case, where there are no functions in S, the Herbrand base is finite
(although it will consist of a large number of clauses). As with the Her-
brand universe, if the clauses contain functions, then the Herbrand base
will be infinite.

8.9.2 Herbrand Interpretations

A Herbrand interpretation for S is defined as a set of assignments of true
and false to the elements of the Herbrand base, HS(S).

For example,

S is {{A(x, y), B(a, x)}, {¬C(z, a), D(a, z)}

HS = {a}

HS(S) = {A(a, a), B(a, a), C(a, a), D(a, a)}

Then two possible Herbrand interpretations of S are

{¬A(a, a), B(a, a), C(a, a), D(a, a)}

{A(a, a), ¬B(a, a), C(a, a), ¬D(a, a)}

In the first interpretation, all the elements of HS(S) have been assigned the
value true, apart from A(a, a), which has been assigned false. In general, if
we assign a value true to A, we write A, and if we assign the value false to A,
we write ¬A. In the second interpretation, the second and fourth elements
of HS(S) have been assigned the value false, and the first and third have
been assigned the value true.

For this set, S, there will be 16 possible Herbrand interpretations because
there are four elements in the Herbrand base. In general, if there are n ele-
ments in the Herbrand base, there will be 2n Herbrand interpretations.

Now we come back to the idea of satisfiability. In some cases, a given Her-
brand interpretation of a set S will be set to satisfy S.

Let us use our previous example again:

S is {{A(x, y), B(a, x)}, {¬C(z, a), D(a, z)}

We presented two Herbrand interpretations for this S:

{¬A(a, a), B(a, a), C(a, a), D(a, a)}

{A(a, a), ¬B(a, a), C(a, a), ¬D(a, a)}

Now we say that a given interpretation for S satisfies S if the assignments
from the interpretation make each clause in S true.

232 CHAPTER 8 Inference and Resolution for Problem Solving

For example, replacing the variables in S with the constants from the Her-
brand universe, we get the following:

{{A(a, a), B(a, a)}, {¬C(a, a), D(a, a)}

Now, if we use the first interpretation where A(a, a) was the only element
that had been assigned the value false, we see that the clauses become

{{false, true}, {false, true}}

Now, recall that clauses are a set of conjunctions of disjunctions, and so we
can rewrite this as

(false ∨ true) ∧ (false ∨ true)

which clearly is true. Hence, this interpretation satisfies S.

Using the second interpretation, the clauses become

{{true, false}, {false, false}}

which is not true. So the second interpretation does not satisfy S.

It can be shown that if no Herbrand interpretation exists for a set of clauses
S that satisfies S, then S is not satisfiable. This is, in fact, the basis for reso-
lution because it can further be shown that if a set of clauses is unsatisfi-
able, then resolving that set of clauses will lead to falsum.

8.9.3 Example

We have seen that the satisfiability of a set of clauses can be proved or dis-
proved by examining the Herbrand interpretations for the set. We now
present an example:

S = {{¬A(y, a), B(y)}, {¬B(x)}, {B(a), A(x, a)}}

Then we can define the Herbrand universe as

HS = {a}

Next, we define the Herbrand base:

HS(S) = {A(a, a), B(a)}

8.10 Resolution for Problem Solving 233

Thus, there are four possible Herbrand interpretations for S:

1. {A(a, a), B(a)}

2. {A(a, a), ¬B(a)}

3. {¬A(a, a), B (a)}

4. {¬A(a, a), ¬B(a)}

You should be able to see that none of these interpretations satisfies S.
Hence, we have proved that S is unsatisfiable.

8.10 Resolution for Problem Solving

Although it seems complex, resolution is made up a series of simple steps.
Because each of those steps can be readily automated, resolution is widely
used. As has already been explained, PROLOG systems use resolution to
solve problems.

Let us now see how resolution can be used to solve a simple logic problem.

Consider the following set of premises:

1. Some children will eat any food.

2. No children will eat food that is green.

3. All children like food made by Cadbury’s.

We now wish to prove that the following conclusion follows from these
premises:

No food made by Cadbury’s is green.

First, we need to represent the premises and the conclusion in predicate
calculus. We will use the following symbols:

C(x) means “x is a child.”

F(x) means “x is food.”

L(x, y) means “x likes y.”

G(x) means “x is green.”

M(x, y) means “x makes y.”

c means “Cadbury’s.”

234 CHAPTER 8 Inference and Resolution for Problem Solving

So our premises can be represented as:

1. (∃x)(C(x) ∧ (∀y)(F(y) → L(x,y)))

2. (∀x)(C(x) → (∀y)((F(y) ∧ G(y)) → ¬L(x,y)))

3. (∀x)((F(x) ∧ M(c,x)) → (∀y)(C(y) → L(y,x)))

Our conclusion can be represented as follows:

(∀x)((F(x) ∧ M(c,x)) → ¬G(x))

First, we must negate the conclusion and add it to the set of premises,
which means we must now prove that the following expression cannot be
satisfied:

(∃x)(C(x) ∧ (∀y)(F(y) → L(x,y)))

∧ (∀x)(C(x) → (∀y)((F(y) ∧ G(y)) → ¬L(x,y)))

∧ (∀x)((F(x) ∧ M(c,x)) → (∀y)(C(y) → L(y,x)))

∧ ¬ ((∀x)((F(x) ∧ M(c,x)) → ¬G(x)))

We will convert this into a set of clauses, starting with expression 1:

(∃x)(C(x) ∧ (∀y)(F(y) → L(x,y)))

→ must be eliminated first:

(∃x)(C(x) ∧ (∀y)(¬F(y) ∨ L(x,y)))

Next, we bring the quantifiers to the front of the expression:

(∃x)(∀y)(C(x) ∧ (¬F(y) ∨ L(x,y)))

Now we skolemize this expression, to eliminate the existential quantifier:

(∀y)(C(a) ∧ (¬F(y) ∨ L(a,y)))

This can be expressed as the following clauses:

{C(a)}, {¬F(y), L(a,y)}

Next, we deal with expression 2 in the same way:

(∀x)(C(x) → (∀y)((F(y) ∧ G(y)) → ¬L(x,y)))

→ is eliminated first:

(∀x)(¬C(x) ∨ (∀y)(¬(F(y) ∧ G(y)) ∨ ¬L(x,y)))

8.10 Resolution for Problem Solving 235

Now DeMorgan’s law is applied:

(∀x)(¬C(x) ∨ (∀y)(¬F(y) ∨ ¬G(y) ∨ ¬L(x,y)))

Quantifiers are moved to the front:

(∀x)(∀y)(¬C(x) ∨ ¬F(y) ∨ ¬G(y) ∨ ¬L(x,y))

This can be written as the following single clause:

{¬C(x), ¬F(y), ¬(G(y), ¬L(x,y)}

Now, for expression 3:

(∀x)((F(x) ∧ M(c,x)) → (∀y)(C(y) → L(y,x)))

We first eliminate →:

(∀x)(¬(F(x) ∧ M(c,x)) ∨ (∀y)(¬C(y) ∨ L(y,x)))

Next, we apply DeMorgan’s law:

(∀x)(¬F(x) ∨ ¬M(c,x) ∨ (∀y)(¬C(y) ∨ L(y,x)))

Now we bring the quantifiers to the front of the expression:

(∀x)(∀y)(¬F(x) ∨ ¬M(c,x) ∨ ¬C(y) ∨ L(y,x))

This can be expressed as the following single clause:

{¬F(x), ¬M(c,x), ¬C(y), L(y,x)}

Now we deal with the conclusion, which has been negated:

¬(∀x)((F(x) ∧ M(c,x)) → ¬G(x))

First, we eliminate →:

¬(∀x)(¬(F(x) ∧ M(c,x)) ∨ ¬G(x))

Now we apply the quantifier equivalence to move the ¬ from the front of
the expression:

(∃x)¬(¬(F(x) ∧ M(c,x)) ∨ ¬G(x))

DeMorgan’s law can now be applied:

(∃x)(¬¬(F(x) ∧ M(c,x)) ∧ ¬¬G(x))

We can now remove ¬¬:

(∃x)(F(x) ∧ M(c,x) ∧ G(x))

236 CHAPTER 8 Inference and Resolution for Problem Solving

This expression is now skolemized:

F(b) ∧ M(c,b) ∧ G(b))

This can be expressed as the following set of clauses:

{{F(b)}, {M(c,b)}, {G(b)}}

Now we have arrived at a set of clauses, upon which resolution can be
applied. The clauses we have are the following:

1. {C(a)}

2. {¬F(y), L(a,y)}

3. {¬C(x), ¬F(y), ¬(G(y), ¬L(x,y)}

4. {¬F(x), ¬M(c,x), ¬C(y), L(y,x)}

5. {F(b)}

6. {M(c,b)}

7. {G(b)}

We now apply resolution as follows:

First, we unify lines 1 and 3 using {a/x} and resolve these two, to give

8. {¬F(y), ¬(G(y), ¬L(a,y)}

Similarly, the unifier {b/y} can be applied to lines 2 and 5, which are then
resolved to give

9. {L(a,b)}

Now we apply {b/y} to resolve line 5 with line 8 to give

10. {¬(G(b), ¬L(a,b)}

Now lines 9 and 10 can be resolved to give

11. {¬(G(b)}

Finally, line 7 can be resolved with line 11 to give

12. ⊥
Hence, we have proven that the set of clauses derived from the premises 1,
2, and 3, and the negation of the conclusion, are unsatisfiable. Thus we have
successfully proved that the conclusion does indeed follow from the prem-
ises, and so the argument is a valid one.

8.11 Chapter Summary 237

8.11 Chapter Summary

■ Any well-formed formula (wff) can be expressed in conjunctive
normal form (CNF) or disjunctive normal form (DNF). An
expression in CNF is a conjunction of disjunctions, and an expres-
sion in DNF is a disjunction of conjunctions.

■ An algorithm can be generated that will convert any wff into CNF.

■ The resolution rule says that if you know (A ∨ B) and you know
(¬B ∨ C), then you can eliminate the instances of B from these two
expressions, to produce (A ∨ C).

■ By negating a conclusion, and proving that the resultant set of
expressions is unsatisfiable, one can prove that an argument is
valid. Such reasoning is called proof by refutation (or proof by
contradiction). The traditional method for using resolution is to
prove arguments valid by refutation.

■ Any combinatorial problem can be represented as a set of clauses,
and the existence of a solution to the problem can be determined
using resolution on those clauses.

■ To apply resolution in first-order predicate logic, an expression
needs to be first converted to prenex normal form (where the
quantifiers are at the beginning) and then skolemized, which
involves removing variables that are existentially quantified by
replacing them with constants and functions.

■ Unification involves using a unifier to resolve two similar clauses
that do not have the same variables. An algorithm can be generated
to unify any sets of clauses that can be unified.

■ A unifier u1 is a most general unifier if any other unifier, u2, can
be expressed as the composition of u1 with another unifier, u3: u2

= u1 o u3.

■ Resolution can be applied to a set of clauses that have been skolem-
ized. This process can be automated because each step can be
expressed algorithmically.

■ A Horn clause is one with, at most, one positive literal. PROLOG
uses resolution on Horn clauses to solve problems.

■ If no Herbrand interpretation exists for a set of clauses that satis-
fies that set, then the clauses are not satisfiable.

238 CHAPTER 8 Inference and Resolution for Problem Solving

8.12 Review Questions

8.1 Explain the concept of proof by refutation.

8.2 Explain how and to what extent combinatorial problems can be
solved using resolution.

8.3 Explain what is meant by prenex normal form and skolem normal
form.

8.4 Explain each step of the algorithm for resolution in first-order
predicate logic.

8.5 Explain the following terms:

■ Herbrand universe

■ Herbrand base

■ Herbrand interpretation

8.13 Exercises

8.1 Convert the following expression to CNF and to DNF:

A ∨ (B ∧ C) ∨ (D ∧ E ∧ ¬ (A ∨ B))

8.2 Convert the following expressions to a set of clauses:

(∀x)(P(x) → (A(x) ∧ B(x) ∨ ¬ C(x, a))

(∃y)(Q(y, a) ∧ ((∀z) A(z) → ¬ B(y))).

8.3 Prove that the resolution rule is valid.

8.4 Generate the full set of clauses for the map-coloring graph in Fig-
ure 8.1. Resolve these clauses to prove that a three-coloring solu-
tion does exist for the graph.

8.5 Use resolution to determine whether the following is valid:

(((∀x)(A (x) → B(x))) ∧ (¬ B(x))) → ¬ A(x)

8.6 Use resolution to determine whether the following is valid:

(∀x)(∃y) (((A (x) ∧ B(y)) → (A (y) ∧ B(x))) → (A(x) → B(x)))

8.7 Use resolution to prove that the following logical argument,
devised by Lewis Carroll, is valid:

No shark ever doubts that it is well fitted out

8.14 Further Reading 239

A fish, that cannot dance a minuet, is contemptible

No fish is quite certain that it is well fitted out, unless it has three rows
of teeth

All fishes, except sharks, are kind to children

No heavy fish can dance a minuet

A fish with three rows of teeth is not to be despised

Conclusion:

No heavy fish is unkind to children

8.14 Further Reading

Resolution is covered by most of the standard Artificial Intelligence texts,
but you may need to look in the specialized books such as Chang and Lee
(1973) to find deeper coverage of the subject. Reeves (1990) provides a
good introduction to resolution.

A Resolution Principle for a Logic With Restricted Quantifiers by H. J. Burck-
ert (1992 – Springer Verlag)

The Resolution Calculus by Alexander Leitsch (1997 – Springer Verlag)

Automated Theorem Proving: A Logical Basis by Donald W. Loveland (1978
– Elsevier Science – out of print)

Automated Theorem Proving: Theory and Practice by Monty Newborn
(2001 – Springer Verlag)

Logic, Form and Function: The Mechanization of Deductive Reasoning by
John Alan Robinson (1980 – Elsevier Science)

Using Sophisticated Models in Resolution Theorem Proving (Lecture Notes in
Computer Science, Vol. 90) by David M. Sandford (1981 – Springer Verlag)

Resolution Proof Systems: An Algebraic Theory (Automated Reasoning Series,
Vol. 4) by Zbigniew Stachniak (1996 – Kluwer Academic Publishers)

Symbolic Logic and Mechanical Theorem Proving by Chin-Liang Chang and
Richard Char-Tung Lee (1973 – Academic Press)

This page intentionally left blank

9CHAPTER
Rules and Expert Systems

Any problem that can be solved by your in-house expert in a 10–30 minute
telephone call can be developed as an expert system.

—M. Firebaugh, Artificial Intelligence: A Knowledge-Based Approach

‘Rule Forty-two. All persons more than a mile high to leave the court.’
‘That’s not a regular rule: you invented it just now.’
‘It’s the oldest rule in the book,’ said the King.
‘Then it ought to be number one,’ said Alice.

—Lewis Carroll, Alice’s Adventures in Wonderland

These so-called expert systems were often right, in the specific areas for which
they had been built, but they were extremely brittle. Given even a simple prob-
lem just slightly beyond their expertise, they would usually get a wrong
answer. Ask a medical program about a rusty old car, and it might blithely
diagnose measles.

—Douglas B. Lenat, Programming Artificial Intelligence

9.1 Introduction

In this chapter, we introduce the ideas behind production systems, or
expert systems, and explain how they can be built using rule-based systems,
frames, or a combination of the two.

242 CHAPTER 9 Rules and Expert Systems

This chapter explains techniques such as forward and backward chaining,
conflict resolution, and the Rete algorithm. It also explains the architecture
of an expert system and describes the roles of the individuals who are
involved in designing, building, and using expert systems.

9.2 Rules for Knowledge Representation

One way to represent knowledge is by using rules that express what must
happen or what does happen when certain conditions are met. Rules are
usually expressed in the form of IF . . . THEN . . . statements, such as:

IF A THEN B

This can be considered to have a similar logical meaning as the following:

A → B

As we saw in Chapter 7, A is called the antecedent and B is the consequent
in this statement. In expressing rules, the consequent usually takes the form
of an action or a conclusion. In other words, the purpose of a rule is usu-
ally to tell a system (such as an expert system) what to do in certain cir-
cumstances, or what conclusions to draw from a set of inputs about the
current situation.

In general, a rule can have more than one antecedent, usually combined
either by AND or by OR (logically the same as the operators ∧ and ∨ we
saw in Chapter 7). Similarly, a rule may have more than one consequent,
which usually suggests that there are multiple actions to be taken.

In general, the antecedent of a rule compares an object with a possible value,
using an operator. For example, suitable antecedents in a rule might be

IF x > 3

IF name is “Bob”

IF weather is cold

Here, the objects being considered are x, name, and weather; the operators
are “>” and “is”, and the values are 3, “Bob,” and cold. Note that an object is
not necessarily an object in the real-world sense—the weather is not a real-
world object, but rather a state or condition of the world. An object in this
sense is simply a variable that represents some physical object or state in the
real world.

An example of a rule might be

9.3 Rule-Based Systems 243

IF name is “Bob”

AND weather is cold

THEN tell Bob ‘Wear a coat’

This is an example of a recommendation rule, which takes a set of inputs
and gives advice as a result. The conclusion of the rule is actually an action,
and the action takes the form of a recommendation to Bob that he should
wear a coat. In some cases, the rules provide more definite actions such as
“move left” or “close door,” in which case the rules are being used to repre-
sent directives.

Rules can also be used to represent relations such as:

IF temperature is below 0

THEN weather is cold

9.3 Rule-Based Systems

Rule-based systems or production systems are computer systems that use
rules to provide recommendations or diagnoses, or to determine a course
of action in a particular situation or to solve a particular problem.

A rule-based system consists of a number of components:

■ a database of rules (also called a knowledge base)

■ a database of facts

■ an interpreter, or inference engine

In a rule-based system, the knowledge base consists of a set of rules that rep-
resent the knowledge that the system has. The database of facts represents
inputs to the system that are used to derive conclusions, or to cause actions.

The interpreter, or inference engine, is the part of the system that controls
the process of deriving conclusions. It uses the rules and facts, and com-
bines them together to draw conclusions.

As we will see, these conclusions are often derived using deduction,
although there are other possible approaches. Using deduction to reach a
conclusion from a set of antecedents is called forward chaining. An alter-
native method, backward chaining, starts from a conclusion and tries to
show it by following a logical path backward from the conclusion to a set of
antecedents that are in the database of facts.

244 CHAPTER 9 Rules and Expert Systems

9.3.1 Forward Chaining

Forward chaining employs the same deduction method that we saw in
Chapter 7. In other words, the system starts from a set of facts, and a set of
rules, and tries to find a way of using those rules and facts to deduce a con-
clusion or come up with a suitable course of action.

This is known as data-driven reasoning because the reasoning starts from
a set of data and ends up at the goal, which is the conclusion.

When applying forward chaining, the first step is to take the facts in the fact
database and see if any combination of these matches all the antecedents of
one of the rules in the rule database. When all the antecedents of a rule are
matched by facts in the database, then this rule is triggered. Usually, when
a rule is triggered, it is then fired, which means its conclusion is added to
the facts database. If the conclusion of the rule that has fired is an action or
a recommendation, then the system may cause that action to take place or
the recommendation to be made.

For example, consider the following set of rules that is used to control an
elevator in a three-story building:

Rule 1

IF on first floor and button is pressed on first floor

THEN open door

Rule 2

IF on first floor

AND button is pressed on second floor

THEN go to second floor

Rule 3

IF on first floor

AND button is pressed on third floor

THEN go to third floor

Rule 4

IF on second floor

AND button is pressed on first floor

9.3 Rule-Based Systems 245

AND already going to third floor

THEN remember to go to first floor later

This represents just a subset of the rules that would be needed, but we can
use it to illustrate how forward chaining works.

Let us imagine that we start with the following facts in our database:

Fact 1

At first floor

Fact 2

Button pressed on third floor

Fact 3

Today is Tuesday

Now the system examines the rules and finds that Facts 1 and 2 match the
antecedents of Rule 3. Hence, Rule 3 fires, and its conclusion

Go to third floor

is added to the database of facts. Presumably, this results in the elevator
heading toward the third floor. Note that Fact 3 was ignored altogether
because it did not match the antecedents of any of the rules.

Now let us imagine that the elevator is on its way to the third floor and has
reached the second floor, when the button is pressed on the first floor. The fact

Button pressed on first floor

Is now added to the database, which results in Rule 4 firing. Now let us imag-
ine that later in the day the facts database contains the following information:

Fact 1

At first floor

Fact 2

Button pressed on second floor

Fact 3

Button pressed on third floor

In this case, two rules are triggered—Rules 2 and 3. In such cases where
there is more than one possible conclusion, conflict resolution needs to be
applied to decide which rule to fire.

246 CHAPTER 9 Rules and Expert Systems

9.3.2 Conflict Resolution

In a situation where more than one conclusion can be deduced from a set
of facts, there are a number of possible ways to decide which rule to fire
(i.e., which conclusion to use or which course of action to take).

For example, consider the following set of rules:

IF it is cold

THEN wear a coat

IF it is cold

THEN stay at home

IF it is cold

THEN turn on the heat

If there is a single fact in the fact database, which is “it is cold,” then clearly
there are three conclusions that can be derived. In some cases, it might be
fine to follow all three conclusions, but in many cases the conclusions are
incompatible (for example, when prescribing medicines to patients).

In one conflict resolution method, rules are given priority levels, and when
a conflict occurs, the rule that has the highest priority is fired, as in the fol-
lowing example:

IF patient has pain

THEN prescribe painkillers priority 10

IF patient has chest pain

THEN treat for heart disease priority 100

Here, it is clear that treating possible heart problems is more important
than just curing the pain.

An alternative method is the longest-matching strategy. This method involves
firing the conclusion that was derived from the longest rule. For example:

IF patient has pain

THEN prescribe painkiller

IF patient has chest pain

9.3 Rule-Based Systems 247

AND patient is over 60

AND patient has history of heart conditions

THEN take to emergency room

Here, if all the antecedents of the second rule match, then this rule’s con-
clusion should be fired rather than the conclusion of the first rule because
it is a more specific match.

A further method for conflict resolution is to fire the rule that has matched
the facts most recently added to the database.

In each case, it may be that the system fires one rule and then stops (as in
medical diagnosis), but in many cases, the system simply needs to choose a
suitable ordering for the rules (as when controlling an elevator) because
each rule that matches the facts needs to be fired at some point.

9.3.3 Meta Rules

In designing an expert system, it is necessary to select the conflict resolu-
tion method that will be used, and quite possibly it will be necessary to use
different methods to resolve different types of conflicts. For example, in
some situations it may make most sense to use the method that involves fir-
ing the most recently added rules. This method makes most sense in situa-
tions in which the timeliness of data is important. It might be, for example,
that as research in a particular field of medicine develops, new rules are
added to the system that contradict some of the older rules. It might make
most sense for the system to assume that these newer rules are more accu-
rate than the older rules.

It might also be the case, however, that the new rules have been added by an
expert whose opinion is less trusted than that of the expert who added the
earlier rules. In this case, it clearly makes more sense to allow the earlier
rules priority.

This kind of knowledge is called meta knowledge—knowledge about
knowledge. The rules that define how conflict resolution will be used, and
how other aspects of the system itself will run, are called meta rules.

The knowledge engineer who builds the expert system is responsible for
building appropriate meta knowledge into the system (such as “expert A is

248 CHAPTER 9 Rules and Expert Systems

to be trusted more than expert B” or “any rule that involves drug X is not to
be trusted as much as rules that do not involve X”).

Meta rules are treated by the expert system as if they were ordinary rules
but are given greater priority than the normal rules that make up the
expert system. In this way, the meta rules are able to override the normal
rules, if necessary, and are certainly able to control the conflict resolu-
tion process.

9.3.4 Backward Chaining

Forward chaining applies a set of rules and facts to deduce whatever con-
clusions can be derived, which is useful when a set of facts are present, but
you do not know what conclusions you are trying to prove. In some cases,
forward chaining can be inefficient because it may end up proving a num-
ber of conclusions that are not currently interesting. In such cases, where a
single specific conclusion is to be proved, backward chaining is more
appropriate.

In backward chaining, we start from a conclusion, which is the hypothesis
we wish to prove, and we aim to show how that conclusion can be reached
from the rules and facts in the database.

The conclusion we are aiming to prove is called a goal, and so reasoning in
this way is known as goal-driven reasoning.

As we see in Chapter 16, backward chaining is often used in formulating
plans. A plan is a sequence of actions that a program (such as an intelli-
gent agent) decides to take to solve a particular problem. Backward chain-
ing can make the process of formulating a plan more efficient than
forward chaining.

Backward chaining in this way starts with the goal state, which is the set of
conditions the agent wishes to achieve in carrying out its plan. It now
examines this state and sees what actions could lead to it. For example, if
the goal state involves a block being on a table, then one possible action
would be to place that block on the table. This action might not be possible
from the start state, and so further actions need to be added before this
action in order to reach it from the start state. In this way, a plan can be for-
mulated starting from the goal and working back toward the start state.

9.3 Rule-Based Systems 249

The benefit in this method is particularly clear in situations where the first
state allows a very large number of possible actions. In this kind of situa-
tion, it can be very inefficient to attempt to formulate a plan using forward
chaining because it involves examining every possible action, without pay-
ing any attention to which action might be the best one to lead to the goal
state. Backward chaining ensures that each action that is taken is one that
will definitely lead to the goal, and in many cases this will make the plan-
ning process far more efficient.

9.3.5 Comparing Forward and Backward Chaining

Let us use an example to compare forward and backward chaining. In this
case, we will revert to our use of symbols for logical statements, in order to
clarify the explanation, but we could equally well be using rules about ele-
vators or the weather.

Rules:

Rule 1 A ∧ B → C
Rule 2 A → D
Rule 3 C ∧ D → E
Rule 4 B ∧ E ∧ F → G
Rule 5 A ∧ E → H
Rule 6 D ∧ E ∧ H → I

Facts:

Fact 1 A
Fact 2 B
Fact 3 F

Goal:

Our goal is to prove H.

First let us use forward chaining. As our conflict resolution strategy, we will
fire rules in the order they appear in the database, starting from Rule 1.

In the initial state, Rules 1 and 2 are both triggered. We will start by firing
Rule 1, which means we add C to our fact database. Next, Rule 2 is fired,
meaning we add D to our fact database.

We now have the facts A, B, C, D, F, but we have not yet reached our goal,
which is G.

250 CHAPTER 9 Rules and Expert Systems

Now Rule 3 is triggered and fired, meaning that fact E is added to the data-
base. As a result, Rules 4 and 5 are triggered. Rule 4 is fired first, resulting in
Fact G being added to the database, and then Rule 5 is fired, and Fact H is
added to the database. We have now proved our goal and do not need to go
on any further.

This deduction is presented in the following table:

Facts Rules triggered Rule fired

A, B, F 1, 2 1

A, B, C, F 2 2

A, B, C, D, F 3 3

A, B, C, D, E, F 4, 5 4

A, B, C, D, E, F, G 5 5

A, B, C, D, E, F, G, H 6 STOP

Now we will consider the same problem using backward chaining. To do so,
we will use a goals database in addition to the rule and fact databases. In
this case, the goals database starts with just the conclusion, H, which we
want to prove. We will now see which rules would need to fire to lead to this
conclusion. Rule 5 is the only one that has H as a conclusion, so to prove H,
we must prove the antecedents of Rule 5, which are A and E.

Fact A is already in the database, so we only need to prove the other
antecedent, E. Therefore, E is added to the goal database. Once we have
proved E, we now know that this is sufficient to prove H, so we can remove
H from the goals database.

So now we attempt to prove Fact E. Rule 3 has E as its conclusion, so to
prove E, we must prove the antecedents of Rule 3, which are C and D. Nei-
ther of these facts is in the fact database, so we need to prove both of them.
They are both therefore added to the goals database. D is the conclusion of
Rule 2 and Rule 2’s antecedent, A, is already in the fact database, so we can
conclude D and add it to the fact database.

Similarly, C is the conclusion of Rule 1, and Rule 1’s antecedents, A and B,
are both in the fact database. So, we have now proved all the goals in the
goal database and have therefore proved H and can stop.

9.4 Rule-Based Expert Systems 251

This process is represented in the table below:

Facts Goals Matching rules

A, B, F H 5

A, B, F E 3

A, B, F C, D 1

A, B, C, F D 2

A, B, C, D, F STOP

In this case, backward chaining needed to use one fewer rule. If the rule data-
base had had a large number of other rules that had A, B, and F as their
antecedents, then forward chaining might well have been even more inefficient.

In many situations, forward chaining is more appropriate, particularly in
a situation where a set of facts is available, but the conclusion is not
already known.

In general, backward chaining is appropriate in cases where there are few
possible conclusions (or even just one) and many possible facts, not very
many of which are necessarily relevant to the conclusion. Forward chaining
is more appropriate when there are many possible conclusions.

The way in which forward or backward chaining is usually chosen is to
consider which way an expert would solve the problem. This is particularly
appropriate because rule-based reasoning is often used in expert systems.

9.4 Rule-Based Expert Systems

An expert system is one designed to model the behavior of an expert in
some field, such as medicine or geology. Rule-based expert systems are
designed to be able to use the same rules that the expert would use to draw
conclusions from a set of facts that are presented to the system.

9.4.1 The People Involved in an Expert System

The design, development, and use of expert systems involves a number of
people. The end-user of the system is the person who has the need for the
system. In the case of a medical diagnosis system, this may be a doctor, or it
may be an individual who has a complaint that they wish to diagnose.

252 CHAPTER 9 Rules and Expert Systems

Fact
Database

Knowledge
Base

Inference
Engine

Explanation
System

Knowledge
Base Editor

Expert
System
Shell

User Interface

UserFigure 9.1
Architecture of an expert
system

The knowledge engineer is the person who designs the rules for the sys-
tem, based on either observing the expert at work or by asking the expert
questions about how he or she works.

The domain expert is very important to the design of an expert system. In
the case of a medical diagnosis system, the expert needs to be able to
explain to the knowledge engineer how he or she goes about diagnosing
illnesses.

9.4.2 Architecture of an Expert System

A typical expert system architecture is shown in Figure 9.1.

The knowledge base contains the specific domain knowledge that is used by
an expert to derive conclusions from facts. In the case of a rule-based expert
system, this domain knowledge is expressed in the form of a series of rules.

The explanation system provides information to the user about how the
inference engine arrived at its conclusions. This can often be essential, par-
ticularly if the advice being given is of a critical nature, such as with a med-
ical diagnosis system. If the system has used faulty reasoning to arrive at its

9.4 Rule-Based Expert Systems 253

conclusions, then the user may be able to see this by examining the data
given by the explanation system.

The fact database contains the case-specific data that are to be used in a
particular case to derive a conclusion. In the case of a medical expert sys-
tem, this would contain information that had been obtained about the
patient’s condition.

The user of the expert system interfaces with it through a user interface,
which provides access to the inference engine, the explanation system, and
the knowledge-base editor. The inference engine is the part of the system
that uses the rules and facts to derive conclusions. The inference engine will
use forward chaining, backward chaining, or a combination of the two to
make inferences from the data that are available to it.

The knowledge-base editor allows the user to edit the information that is
contained in the knowledge base. The knowledge-base editor is not usually
made available to the end user of the system but is used by the knowledge
engineer or the expert to provide and update the knowledge that is con-
tained within the system.

9.4.3 The Expert System Shell

Note that in Figure 9.1, the parts of the expert system that do not contain
domain-specific or case-specific information are contained within the
expert system shell. This shell is a general toolkit that can be used to build
a number of different expert systems, depending on which knowledge base
is added to the shell.

An example of such a shell is CLIPS (C Language Integrated Production
System), which is described in more detail in Section 9.4. Other examples
in common use include OPS5, ART, JESS, and Eclipse.

9.4.4 The Rete Algorithm

One potential problem with expert systems is the number of comparisons
that need to be made between rules and facts in the database. In some cases,
where there are hundreds or even thousands of rules, running comparisons
against each rule can be impractical.

The Rete Algorithm is an efficient method for solving this problem and is
used by a number of expert system tools, including OPS5 and Eclipse.

254 CHAPTER 9 Rules and Expert Systems

The Rete is a directed, acyclic, rooted graph (or a search tree, which was
discussed in great detail in Chapters 3 and 4).

Each path from the root node to a leaf in the tree represents the left-hand
side of a rule. Each node stores details of which facts have been matched by
the rules at that point in the path.

As facts are changed, the new facts are propagated through the Rete from
the root node to the leaves, changing the information stored at nodes
appropriately. This could mean adding a new fact, or changing information
about an old fact, or deleting an old fact.

In this way, the system only needs to test each new fact against the rules,
and only against those rules to which the new fact is relevant, instead of
checking each fact against each rule.

The Rete algorithm depends on the principle that in general, when using
forward chaining in expert systems, the values of objects change relatively
infrequently, meaning that relatively few changes need to be made to the
Rete. In such cases, the Rete algorithm can provide a significant improve-
ment in performance over other methods, although it is less efficient in
cases where objects are continually changing.

9.4.5 Knowledge Engineering

Knowledge engineering is a vital part of the development of any expert sys-
tem. The knowledge engineer does not need to have expert domain knowl-
edge but does need to know how to convert such expertise into the rules
that the system will use, preferably in an efficient manner. Hence, the
knowledge engineer’s main task is communicating with the expert, in order
to understand fully how the expert goes about evaluating evidence and
what methods he or she uses to derive conclusions.

Having built up a good understanding of the rules the expert uses to draw
conclusions, the knowledge engineer must encode these rules in the expert
system shell language that is being used for the task.

In some cases, the knowledge engineer will have freedom to choose the
most appropriate expert system shell for the task. In other cases, this deci-
sion will have already been made, and the knowledge engineer must work
with what he is given.

9.5 CLIPS (C Language Integrated Production System) 255

9.5 CLIPS (C Language Integrated Production System)

CLIPS is a freely available expert system shell that has been implemented in
C. It provides a language for expressing rules and mainly uses forward
chaining to derive conclusions from a set of facts and rules.

The notation used by CLIPS is very similar to that used by LISP. The fol-
lowing is an example of a rule specified using CLIPS:

(defrule birthday
(firstname ?r1 John)
(surname ?r1 Smith)
(haircolor ?r1 Red)
=>
(assert (is-boss ?r1)))

?r1 is used to represent a variable, which in this case is a person. Assert is
used to add facts to the database, and in this case the rule is used to draw a
conclusion from three facts about the person: If the person has the first
name John, has the surname Smith, and has red hair, then he is the boss.

This can be tried in the following way:

(assert (firstname x John))
(assert (surname x Smith))
(assert (haircolor x Red))
(run)

At this point, the command (facts) can be entered to see the facts that are
contained in the database:

CLIPS> (facts)
f-0 (firstname x John)
f-1 (surname x Smith)
f-2 (haircolor x Red)
f-3 (is-boss x)

So CLIPS has taken the three facts that were entered into the system and
used the rule to draw a conclusion, which is that x is the boss. Although this
is a simple example, CLIPS, like other expert system shells, can be used to
build extremely sophisticated and powerful tools.

For example, MYCIN is a well-known medical expert system that was
developed at Stanford University in 1984. MYCIN was designed to assist
doctors to prescribe antimicrobial drugs for blood infections. In this way,
experts in antimicrobial drugs are able to provide their expertise to other
doctors who are not so expert in that field. By asking the doctor a series of

256 CHAPTER 9 Rules and Expert Systems

questions, MYCIN is able to recommend a course of treatment for the
patient. Importantly, MYCIN is also able to explain to the doctor which
rules fired and therefore is able to explain why it produced the diagnosis
and recommended treatment that it did.

MYCIN has proved successful: for example, it has been proven to be able to
provide more accurate diagnoses of meningitis in patients than most doctors.

MYCIN was developed using LISP, and its rules are expressed as LISP
expressions. The following is an example of the kind of rule used by
MYCIN, translated into English:

IF the infection is primary-bacteria
AND the site of the culture is one of the sterile sites
AND the suspected portal of entry is the gastrointestinal tract
THEN there is suggestive evidence (0.7) that infection is bacteroid

In Chapter 17, we learn more about how MYCIN uses certainty factors to
aid its diagnosis process.

The following is a very simple example of a CLIPS session where rules are
defined to operate an elevator:

CLIPS> (defrule rule1
(elevator ?floor_now)
(button ?floor_now)
=>
(assert (open_door)))
CLIPS> (defrule rule2
(elevator ?floor_now)
(button ?other_floor)
=>
(assert (goto ?other_floor)))
CLIPS> (assert (elevator floor1))
==> f-0 (elevator floor1)
<Fact-0>
CLIPS> (assert (button floor3))
==> f-1 (button floor3)
<Fact-1>
<CLIPS> (run)
==>f-2 (goto floor3)

The segments in bold are inputs by the knowledge engineer, and the plain
text sections are CLIPS.

Note that ?floor_now is an example of a variable within CLIPS, which
means that any object can match it for the rule to trigger and fire. In our

9.6 Backward Chaining in Rule-Based Expert Systems 257

example, the first rule simply says: If the elevator is on a floor, and the but-
ton is pressed on the same floor, then open the door. The second rule says:
If the elevator is on one floor, and the button is pressed on a different floor,
then go to that floor.

After the rules, two facts are inserted into the database. The first fact says
that the elevator is on floor 1, and the second fact says that the button has
been pressed on floor 3.

When the (run) command is issued to the system, it inserts a new fact into
the database, which is a command to the elevator to go to floor 3.

9.6 Backward Chaining in Rule-Based Expert Systems

A common method for building expert systems is to use a rule-based sys-
tem with backward chaining. Typically, a user enters a set of facts into the
system, and the system tries to see if it can prove any of the possible
hypotheses using these facts. In some cases, it will need additional facts, in
which case the expert system will often ask the user questions, to ascertain
facts that could enable further rules to fire.

The algorithm is applied as follows:

To prove a conclusion, we must prove a set of hypotheses, one of which is
the conclusion. For each hypothesis, H:

If H is in the facts database, it is proved.

Otherwise, if H can be determined by asking a question, then enter
the user’s answer in the facts database. Hence, it can be determined
whether H is true or false, according to the user’s answer.

Otherwise, find a rule whose conclusion is H. Now apply this algo-
rithm to try to prove this rule’s antecedents.

If none of the above applies, we have failed to prove H.

Typically, backward chaining is used in combination with forward chain-
ing. Whenever a new fact is added to the database, forward chaining is
applied to see if any further facts can be derived. Backward chaining is then
used to try to prove each possible hypothesis.

Let us imagine a simple medical expert system that is designed to diagnose
and treat patients’ diseases. The rules might be as follows:

Rule 1: If headache then prescribe painkiller

258 CHAPTER 9 Rules and Expert Systems

Rule 2: If headache and sore throat and coughing then diagnose flu

Rule 3: If tired and headache then diagnose glandular fever

Rule 4: If tired and sore throat then diagnose tonsillitis

Rule 5: If tired then diagnose stress

Now we might imagine a session between the user (the patient) and the
expert system as follows:

Patient: I have a headache

System: I suggest you take a painkiller. Do you have a sore throat?

Patient: Yes, I do.

System: Have you been coughing?

Patient: No, why do you ask?

System: If you had a headache and a sore throat and had been
coughing, I would have concluded you might have flu. It
doesn’t sound as though you have flu. Have you been feel-
ing tired recently?

Patient: Yes, I have.

System: It sounds as though you may have glandular fever or tonsillitis.

This was a rather simplistic example, but it illustrates the way that the sys-
tem uses forward chaining to derive new facts and asks questions in order
to carry out its backward chaining analysis. For example, having been told
that the patient has a headache, the system first applies forward chaining
with Rule 1 and, as a result, adds “prescribe painkiller” to its database of
facts. This fact has an action, or a recommendation, associated with it, and
so the system advises the patient that she should take a painkiller.

Next, the system tries to see if it can prove any other hypotheses. The possi-
ble hypotheses are flu, tonsillitis, glandular fever, and stress. First, the sys-
tem uses backward chaining to try to prove the hypothesis that the patient
has the flu.

To prove this hypothesis, the antecedents of Rule 2 must be proved: that the
patient has a headache and a sore throat and has been coughing. The
patient has already said that she has a headache, so this fact is already in the
fact database. Next, the system must establish whether the patient has a
sore throat. She says that she does, so this fact is added to the fact database.

9.7 CYC 259

She has not been coughing, though, so the system concludes that she does
not have flu.

At this point also note that the patient asks why the system asked the last
question. The system is able to use its explanation facility to provide an
explanation for why it asked the question and what conclusion it was able
to draw from the answer.

Finally, the patient says that she has been feeling tired, and as a result of this
fact being added to the database, Rules 3, 4, and 5 are all triggered. In this
case, conflict resolution has been applied in a rather simplistic way, such
that Rules 3 and 4 both fire, but 5 does not. In a real medical expert system,
it is likely that further questions would be asked, and more sophisticated
rules applied to decide which condition the patient really had.

9.7 CYC

CYC is an example of a frame-based representational system of knowledge,
which is, in a way, the opposite of an expert system. Whereas an expert sys-
tem has detailed knowledge of a very narrow domain, the developers of CYC
have fed it information on over 100,000 different concepts from all fields of
human knowledge. CYC also has information of over 1,000,000 different
pieces of “common sense” knowledge about those concepts. The system has
over 4000 different types of links that can exist between concepts, such as
inheritance, and the “is–a” relationship that we have already looked at.

The idea behind CYC was that humans function in the world mainly on the
basis of a large base of knowledge built up over our lifetimes and our ances-
tors’ lifetimes. By giving CYC access to this knowledge, and the ability to
reason about it, they felt they would be able to come up with a system with
common sense. Ultimately, they predict, the system will be built into word
processors. Then word processors will not just correct your spelling and
grammar, but will also point out inconsistencies in your document. For
example, if you promise to discuss a particular subject later in your docu-
ment, and then forget to do so, the system will point this out to you. They
also predict that search engines and other information retrieval systems
(see Chapter 20) will be able to find documents even though they do not
contain any of the words you entered as your query.

CYC’s knowledge is segmented into hundreds of different contexts to avoid
the problem of many pieces of knowledge in the system contradicting each

260 CHAPTER 9 Rules and Expert Systems

other. In this way, CYC is able to know facts about Dracula and to reason
about him, while also knowing that Dracula does not really exist.

CYC is able to understand analogies, and even to discover new analogies for
itself, by examining the similarities in structure and content between differ-
ent frames and groups of frames. CYC’s developers claim, for example, that
it discovered an analogy between the concept of “family” and the concept of
“country.”

9.8 Chapter Summary

■ IF . . . THEN . . . rules can be used to represent knowledge
about objects.

■ Rule-based systems, or production systems, use rules to attempt to
derive diagnoses or to provide instructions.

■ Rule systems can work using forward chaining, backward chaining,
or both. Forward chaining works from a set of initial facts, and
works toward a conclusion. Backward chaining starts with a
hypothesis and tries to prove it using the facts and rules that are
available.

■ Conflict resolution methods are used to determine what to do
when more than one solution is provided by a rule-based system.

■ Knowledge from a domain expert is translated by a knowledge
engineer into a form suitable for an expert system, which is then
able to help an end-user solve problems that would normally
require a human expert.

■ In many cases, expert systems use backward chaining and ask ques-
tions of the end user to attempt to prove a hypothesis.

■ Expert systems are usually built on an expert system shell (such as
CLIPS), which provides a generic toolkit for building expert systems.

■ The Rete algorithm provides an efficient method for chaining in
rule-based systems where there are many rules and where facts do
not change frequently.

■ Semantic nets and frame-based systems are also used as the basis
for expert systems.

9.11 Further Reading 261

■ CYC is a system built with knowledge of over 100,000 objects and
is able to make complex deductions about the real world.

9.9 Review Questions

9.1 Explain why expert systems are so called.

9.2 Explain the difference between forward chaining and backward
chaining. Explain the advantages and disadvantages of each method.

9.3 Explain the various methods of conflict resolution that can be used
in rule-based expert systems. For each of these, give an example of
a scenario where using it would not give the correct result.

9.4 What is the purpose of meta rules? Would an expert system have
any advantages if it knew the difference between meta rules and
normal rules?

9.5 Describe the architecture of an expert system, and describe the
roles of the various people involved in it.

9.6 What is the purpose of the Rete algorithm? Describe how it works.

9.7 Explain the relationships between rules, logic, semantic nets, and
frames. Give an example of a situation where you might use each of
them. Which system has the greatest representational adequacy?
Which has the least? Why?

9.10 Exercises

9.1 Extend the CLIPS rules given in Section 9.5 to produce a more use-
ful system for running an elevator on a building with five floors.

9.2 Implement a rule-based or frame-based expert system shell in the
programming language of your choice. Implement an expert sys-
tem in your expert system shell to solve problems in an area in
which you have expertise (for example, solving computer science
problems, or identifying films or songs).

9.11 Further Reading

Negnevitsky (2002) provides an excellent overview of rule- and frame-
based expert systems.

262 CHAPTER 9 Rules and Expert Systems

For a more detailed description of the Rete algorithm, see Rete: A Fast Algo-
rithm for the Many Pattern / Many Object Pattern Match Problem by C. L.
Forgy from Artificial Intelligence, Vol. 19, pp. 17–37, 1982.

Winston (1993) also covers the Rete algorithm.

A brief description of the CYC expert system, and some of the difficulties
faced in building it can be found in Douglas B. Lenat’s article, Programming
Artificial Intelligence, which was first published in Scientific American in
September 1995 and can also be found in Fritz (2002).

Deeper coverage of CYC can be found in Lenat and Guha (1990).

Discussion of productions systems and an example of an expert system
implementation in PROLOG can be found in Logic and Prolog by Richard
Spencer-Smith (1991).

An interesting discussion of some of the limitations of MYCIN can be
found in McCarthy (1983). In particular, he points out that the system is
not aware of its own limitations and so is liable to make confident recom-
mendations that are potentially dangerous.

Fundamentals of Expert System Technology: Principles and Concepts by
Samuel J. Biondo (1990 – Intellect)

Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuris-
tic Programming Project by B. G. Buchanan and E. H. Shortliffe (1984 –
Addison Wesley)

Prolog Programming for Students: With Expert Systems and Artificial Intelli-
gence Topics by David Callear (2001 – Continuum)

Artificial Intelligence: A Knowledge-Based Approach by Morris W. Firebaugh
(1988 – Boyd & Fraser Publishing Company – out of print)

Understanding Artificial Intelligence (Science Made Accessible) compiled by
Sandy Fritz (2002 – Warner Books)

Expert Systems: Principles and Programming by Joseph C. Giarratano (1998
– Brooks Cole)

Managing Uncertainty in Expert Systems by Jerzy W. Grzymala-Busse (1991
– Kluwer Academic Publishers)

Expert Systems: Artificial Intelligence in Business by Paul Harmon (1985 –
John Wiley & Sons – out of print)

9.11 Further Reading 263

Introduction to Expert Systems by Peter Jackson (1999 – Addison Wesley)

Knowledge Acquisition for Expert Systems: A Practical Handbook by Alison L.
Kidd (1987 – Plenum Publishing Corporation)

Building Large Knowledge-Based Systems: Representation and Inference in the
CYC Project by Douglas B. Lenat and R. V. Guha (1990 – Addison Wesley)

The Logic of Knowledge Bases by Hector J. Levesque and Gerhard Lakemeyer
(2001 – MIT Press)

Some Expert Systems Need Common Sense by John McCarthy (1983 – in
Computer Culture: The Scientific, Intellectual and Social Impact of the Com-
puter edited by Heinz Pagels, Vol. 426)

Building Expert Systems in Prolog by Dennis Merritt (1995 – Springer Verlag)

Artificial Intelligence: A Guide to Intelligent Systems by Michael Negnevitsky
(2002 – Addison Wesley)

Computer Based Medical Consultations: Mycin by Edward Shortliffe (1976 –
Elsevier Science, out of print)

Logic and Prolog by Richard Spencer-Smith (1991 – Harvester Wheatsheaf)

Managing Expert Systems edited by Efraim Turban and Jay Liebowitz (1992
– Idea Group Publishing)

This page intentionally left blank

Machine Learning
4

Introduction to Part 4

Part 4 is divided into five chapters:

Introduction to Machine Learning

This chapter introduces a number of techniques for
machine learning, such as ID3 for learning decision trees,
version spaces, and the nearest neighbor algorithm. It also
introduces the ideas behind neural networks, which are
covered in more detail in Chapter 11.

This chapter explains the idea of inductive bias and why it
is important in machine learning.

Neural Networks

This chapter expands on the ideas introduced in Chapter 10
and gives a more detailed coverage of neural networks. It
explains the relationship between artificial neurons and
biological neurons, and introduces perceptions. The chap-
ter then explains multilayer networks and introduces back-
propagation as a way to train multilayer networks. It also
introduces recurrent networks, such as Hopfield networks.

This chapter explains unsupervised neural networks (such
as Kohonen maps) as well as supervised ones.

Finally, this chapter briefly introduces the idea of evolving
neural networks, combining ideas from this chapter with
ideas from Chapters 13 and 14.

PART
10

CHAPTER

11
CHAPTER

Probabilistic Reasoning and Bayesian Belief Networks

This chapter introduces probabilistic reasoning and
explains how it can be used to deal with situations in which
there is uncertainty about some variables. The chapter
explains the notation that is used and introduces condi-
tional probability. It explains Bayes’ theorem and shows
how it can be used with some practical examples. It then
introduces methods that use Bayesian reasoning to learn,
including the optimal Bayes’ classifier, which provides the
best possible classification of unseen data.

Artificial Life: Learning through Emergent Behavior

Chapter 13 provides a broad overview of the subject of arti-
ficial life. It starts with a question: What is life? It then
explains how artificial life techniques model nature. A
number of techniques and experimental findings are dis-
cussed, including cellular automata, genetic programming,
evolutionary programming, and L-systems.

The chapter also discusses the idea of emergent behavior
and the reason that evolution is such an important concept.

Some concepts relating to genetic algorithms are intro-
duced in this chapter and explored further in Chapter 14.

Genetic Algorithms

Chapter 14 builds on the ideas introduced in Chapter 13,
by explaining in more detail the ideas behind genetic algo-
rithms. The chapter explains the methods used in building
genetic algorithms, such as crossover and mutation, and
attempts to provide a basis for understanding why genetic
algorithms work.

A concrete example is given of how a genetic algorithm could
be built to play a simple game—the Prisoner’s Dilemma.

12
CHAPTER

13
CHAPTER

14
CHAPTER

10CHAPTER
Introduction to
Machine Learning

O, what learning is!

—William Shakespeare, Romeo and Juliet

Much learning doth make thee mad.

—The Acts of the Apostles, Chapter 26, Verse 24

Whence is thy learning? Hath thy toil

O’er books consumed the midnight oil?

—John Gay, Fables

Learning and intelligence are intimately related to each other. It is usually
agreed that a system capable of learning deserves to be called intelligent; and
conversely, a system being considered as intelligent is, among other things,
usually expected to be able to learn. Learning always has to do with the self-
improvement of future behaviour based on past experience.

—Sandip Sen and Gerhard Weiss, Learning in Multiagent Systems

10.1 Introduction

Machine learning is an extremely important part of Artificial Intelligence.
This chapter provides a brief overview of some of the main methods and
ideas that are used in machine learning and also provides a very brief intro-
duction to neural networks, which are covered in more detail in Chapter 11.

268 CHAPTER 10 Introduction to Machine Learning

In this chapter, concept learning methods are explored, which are able to
generalize from a set of training data to be able to correctly classify data
that has not been seen before. Decision-tree learning is examined, and the
ID3 algorithm is explained.

10.2 Training

In most learning problems, the task is to learn to classify inputs according
to a finite (or sometimes infinite) set of classifications. Typically, a learning
system is provided with a set of training data, which have been classified by
hand. The system then attempts to learn from these training data how to
classify the same data (usually a relatively easy task) and also how to classify
new data that it has not seen.

Learning to classify unseen data clearly assumes that there is some relation-
ship between the data and the classifications—in other words, some function
f can be generated such that if a piece of data x belongs in classification y, then

f(x) = y

For example, if the equality function were used, the learning task would be
relatively simple because each datum would be classified as itself. Clearly
most real-world problems are not so simple, and producing a function that
approximates the correct mapping is one of the main challenges of
machine learning.

In fact, in most learning problems, the input data consist of more than
one variable.

For example, let us consider a system that is to learn how to evaluate static
chess positions.

First, we will consider a number of variables:

x1: Number of white pieces on the board

x2: Number of black pieces on the board

x3: Number of black pieces threatened by white pieces

x4: Number of white pieces threatened by black pieces

x5: Can white checkmate on the next go?

10.2 Training 269

x6: Can black checkmate on the next go?

x7: Number of different moves white can make

x8: Number of different moves black can make

Clearly, this is an oversimplification because a real chess system would need
to use a much more complex set of variables to evaluate a position.

Note that the variables are not all of the same type: most of the variables are
numeric, but two of them are Boolean (can each side achieve checkmate on
the next go). Many learning problems will involve data of a number of dif-
ferent types.

The evaluation of each position is to be calculated as a high positive in the
event that white has the better position and a high negative if black has the
better position. A value of 0 indicates a level position, and a score of
100
indicates that one side has won the game, or is about to win.

It seems probable that a simple linear weighted function of these variables
will suffice: We will write our evaluation function f as follows:

f(x1, x2, x3, x4, x5, x6, x7, x8) =

w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8

where w1 to w8 are the weights associated with the eight variables. The aim
of the system is to determine suitable values for these weights, based on the
training data that are provided.

An item of training data might be

f(10, 2, 1, 0, true, false, 10, 1) = 100

This suggests that the position described by the training data is a definite
win for white.

Clearly, there are an extraordinarily large number of possible sets of train-
ing data for this function, and it may not even be the case that a suitable
function exists for this representation. A superior representation, for which
a suitable function certainly exists, would be to map the positions of all 32
pieces to the 64 squares on the board. In this case, a system could certainly
be trained to determine whether any given position was better for white or

270 CHAPTER 10 Introduction to Machine Learning

for black, but the enormous number of possible input data makes the prob-
lem somewhat harder.

In Chapter 11, we see how artificial neural networks can be used to provide
extremely accurate mappings from input data to classifications for prob-
lems such as this.

In this chapter, we will look at methods that are primarily used to learn
somewhat simpler mappings, although these methods can certainly be
extended to work with more complex sets of data.

10.3 Rote Learning

The simplest way for a computer to learn from experience is simply to learn
by rote. Training involves storing each piece of training data and its classi-
fication. Thereafter, a new item of data is classified by looking to see if it is
stored in memory. If it is, then the classification that was stored with that
item is returned. Otherwise, the method fails.

Hence, a rote learner is able to classify only data that it has already seen,
and no attempt is made to approximate the mapping function, which is a
major weakness.

10.4 Learning Concepts

We will now look at a number of methods that can be used to learn con-
cepts. Concept learning involves determining a mapping from a set of
input variables to a Boolean value.

The methods described here are known as inductive-learning methods.
These methods are based on the principle that if a function is found that
correctly maps a large set of training data to classifications, then it will also
correctly map unseen data. In doing so, a learner is able to generalize from
a set of training data.

To illustrate these methods, we will use a simple toy problem, as follows:

Our learning task will be to determine whether driving in a particular man-
ner in particular road conditions is safe or not. We will use the following
attributes:

10.4 Learning Concepts 271

Attribute Possible values

Speed slow, medium, fast

Weather wind, rain, snow, sun

Distance from car in front 10ft, 20ft, 30ft, 40ft, 50ft, 60ft

Units of alcohol driver has drunk 0, 1, 2, 3, 4, 5

Time of day morning, afternoon, evening, night

Temperature cold, warm, hot

We will consider a hypothesis to be a vector of values for these attributes. A
possible hypothesis is

h1 = <slow, wind, 30ft, 0, evening, cold>

We also want to represent in a hypothesis that we do not care what value an
attribute takes. This is represented by “?”, as in the following hypothesis:

h2 = <fast, rain, 10ft, 2, ?, ?>

h2 represents the hypothesis that driving quickly in rainy weather, close to
the car in front after having drunk two units of alcohol is safe, regardless of
the time of day or the temperature. Clearly, this hypothesis is untrue and
would be considered by the learner to be a negative training example.

In other cases, we need to represent a hypothesis that no value of a particu-
lar attribute will provide a positive example. We write this as “∅”, as in the
following hypothesis:

h3 = <fast, rain, 10ft, 2, ∅, ∅>

h3 states the opposite of h2—that driving quickly in rainy weather, close to
the car in front after having drunk two units of alcohol cannot be safe,
regardless of the time of day or the temperature.

The task of the concept learner is to examine a set of positive and negative
training data and to use these to determine a hypothesis that matches all
the training data, and which can then be used to classify instances that have
not previously been seen.

Concept learning can be thought of as search through a search space that
consists of all possible hypotheses, where the goal is the hypothesis that
most closely represents the correct mapping.

272 CHAPTER 10 Introduction to Machine Learning

10.5 General-to-Specific Ordering

Consider the following two hypotheses:

hg = <?, ?, ?, ?, ?, ?>

hs = <∅, ∅, ∅, ∅, ∅, ∅>

hg is the hypothesis that it is safe to drive regardless of the conditions—this
is the most general hypothesis.

hs is the most specific hypothesis, which states that it is never safe to drive,
under any circumstances.

These hypotheses represent two extremes, and clearly a useful hypothesis
that accurately represents the mapping from attribute values to a Boolean
value will be somewhere in between these two.

One method for concept learning is based on the idea that a partial order
exists over the space of hypotheses. This partial order is represented by the
relationship “more general than”:

≥g

We write

h1 ≥g h2

which states that h1 is more general than (or as general as) h2. Similarly, we
could write

h1 >g h2

in the case where h1 is certainly more general than h2.

≥g defines a partial order over the hypothesis space, rather than a total
order, because some hypotheses are neither more specific nor more general
than other hypotheses. For example, consider the following hypotheses:

h1 = <?, ?, ?, ?, evening, cold>

h2 = <medium, snow, ?, ?, ?, ?>

We cannot express any relationship between h1 and h2 in terms of generality.

One hypothesis is more general than (or equally general as) another
hypothesis if every instance that is matched by the second hypothesis is also
matched by the first hypothesis.

10.5 General-to-Specific Ordering 273

For example,

<slow, ?, ?, ?, ?, ?> ≥ g <slow, ?, ?, ?, ?, cold>

It should be clear that a more general hypothesis matches more instances
than a less general hypothesis.

10.5.1 A Simple Learning Algorithm

The following algorithm uses the general-to-specific ordering of hypotheses to
search the hypothesis space for a suitable hypothesis. The method is as follows:

Start with the most specific hypothesis. In our example above, this would
be <∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅>.

Now, for each positive training example, determine whether each attribute in
the example is matched by the current hypothesis. If it is not, replace the
attributes in the hypothesis with the next more general value that does match.

For example, let us consider the following set of positive training data:

<slow, wind, 30ft, 0, evening, cold>

<slow, rain, 20ft, 0, evening, warm>

<slow, snow, 30ft, 0, afternoon, cold>

First, let us compare the first item of training data with the current hypoth-
esis, which is <∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅>. Clearly, none of the attributes are
matched by this hypothesis. The next most general value for each attribute
than ∅ that matches the training data is the value contained in the training
data. So we replace our hypothesis with the following hypothesis:

<slow, wind, 30ft, 0, evening, cold>

Clearly, the hypothesis <?, ?, ?, ?, ?, ?, ?, ?> would have been more general than
the initial hypothesis, but the method we are using is to select the next more
general value for each attribute. In this way, we move from a hypothesis that
is too specific to one that is general enough to match all the training data.

We will now consider the second item of training data:

<slow, rain, 20ft, 0, evening, warm>

Now we compare each attribute value with the corresponding value in our
current hypothesis. Where the values match, we do not need to make any
change. Where they do not match, we need to replace the value with “?” so

274 CHAPTER 10 Introduction to Machine Learning

that the hypothesis matches both items of training data. Hence, our new
hypothesis is

<slow, ?, ?, 0, evening, ?>

By comparing with our final item of training data, we arrive at the follow-
ing hypothesis:

<slow, ?, ?, 0, ?, ?>

This hypothesis states that it is only safe to drive if one drives slowly and
has not drunk any alcohol, and that this is true regardless of the road or
weather conditions.

This hypothesis is consistent with the training examples, which means that
it maps each of them to the correct classification.

This algorithm will generate the most specific hypothesis that matches
all of the training data. There are a number of problems with this algo-
rithm: first of all, it may not be desirable to identify the most specific
hypothesis—it may be that the most general hypothesis that matches the
training data provides a better solution. Secondly, the most specific
hypothesis identified by the algorithm may not be the only solution—
there may be other most specific hypotheses that match the data, one of
which may be a preferable solution. Additionally, this algorithm does
not make any use of negative examples. As we will see, most useful
learning methods are able to make use of negative as well as positive
training examples.

Finally, the method does not deal well with inconsistent or incorrect train-
ing data. In real-world problems, an ability to deal with such errors is vital,
as we see later in this part of the book.

10.6 Version Spaces

Given a set of training examples (positive and negative), the set of hypothe-
ses that correctly map each of the training examples to its classification is
called the version space.

One method for learning from a set of data is thus to start from a complete
version space that contains all hypotheses and systematically remove all
the hypotheses that do not correctly classify each training example.
Although this method might work well on small problems, for problems of

10.7 Candidate Elimination 275

any reasonable size, the task of enumerating all hypotheses would be
impractical.

10.7 Candidate Elimination

We now explore another method that uses version spaces to learn. The
aim of these methods is to identify a single hypothesis, if possible, that
correctly describes the problem. The more training data that are avail-
able, the fewer hypotheses are contained in the version space. If all the
training data have been used, and the version space contains just a single
hypothesis, then this matches all the training data and should also match
unseen data.

The candidate elimination learning method operates in a similar manner
to the simple algorithm presented in Section 10.5.1. Unlike the earlier sim-
ple method, the candidate elimination method stores not just a single
hypothesis, but two sets of hypotheses. In addition to maintaining a set of
most specific hypotheses that match the training data, this method also
maintains a set of hypotheses that starts out as a set with the single item
<?, ?, ?, ?, ?, ?, ?, ?> and ends up being a set of the most general hypotheses
that match all the training data. This algorithm is thus able to make use of
negative training data as well as positive training data.

The method operates as follows: Two sets are maintained of hypotheses, hs

and hg: hs is initialized as {<∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅>} and hg is initialized
as {<?, ?, ?, ?, ?, ?, ?, ?>}.

When a positive training example is encountered, it is compared with the
hypotheses contained in hg. If any of these hypotheses does not match the
training example, it is removed from hg. The positive training data are then
compared with the hypotheses contained in hs. If one of these hypotheses
does not match the training data, it is replaced by the set of slightly more
general hypotheses that are consistent with the data, and such that there is
at least one hypothesis in hg that is more general.

This method is applied in reverse for negative training data. By applying
this method to each item of training data, the sets hg and hs move closer to
each other and eventually between them contain the full version space of
hypotheses that match all the training data.

276 CHAPTER 10 Introduction to Machine Learning

10.8 Inductive Bias

All learning methods have an inductive bias. Inductive bias refers to the
restrictions that are imposed by the assumptions made in the learning
method. For example, in the above discussions we have been assuming
that the solution to the problem of road safety can be expressed as a con-
junction of a set of eight concepts. This does not allow for more complex
expressions that cannot be expressed as a conjunction. This inductive
bias means that there are some potential solutions that we cannot
explore, and which are, therefore, not contained within the version space
we examine.

This may seem like an unfortunate limitation, but in fact inductive bias is
essential for learning. In order to have an unbiased learner, the version
space would have to contain every possible hypothesis that could possibly
be expressed. This would impose a severe limitation: the solution that the
learner produced could never be any more general than the complete set of
training data. In other words, it would be able to classify data that it had
previously seen (as the rote learner could) but would be unable to general-
ize in order to classify new, unseen data.

The inductive bias of the candidate elimination algorithm is that it is only
able to classify a new piece of data if all the hypotheses contained within its
version space give the data the same classification. Hence, the inductive bias
does impose a limitation on the learning method.

In the 14th century, William of Occam proposed his famous “Occam’s
razor,” which simply states that it is best to choose the simplest hypothesis
to explain any phenomenon. We can consider this to be a form of inductive
bias, which states that the best hypothesis to fit a set of training data is the
simplest hypothesis. We will see later how this inductive bias can be useful
in learning decision trees.

10.9 Decision-Tree Induction

In Chapter 3, we see a tree that was used to determine which species a par-
ticular bird belonged to, based on various observed features of the bird. A
variation of this kind of tree, where the leaf nodes are all Boolean values is

10.9 Decision-Tree Induction 277

Country of
Origin

USA Europe Rest of World

Comedy
Romance

Science FictionYes No

GenreBig Star

falsefalsetruefalsetrue

false

Figure 10.1
A simple decision tree
for determining whether
or not a film will be a
box-office success

called a decision tree. A decision tree takes in a set of attribute values and
outputs a Boolean decision.

An example of a decision tree is shown in Figure 10.1. This decision tree can be
used to determine whether or not a given film will be a success at the box office.

To use the decision tree, we start at the top and apply the question to the
film. If the film is made in the United States, we move down the first branch
of the tree; if it is made in Europe the second; and if elsewhere then we
explore the third branch. The final boxes represent the Boolean value, true
or false, which expresses whether a film is a success or not.

According to this extremely simplistic (and possibly somewhat con-
tentious) decision tree, a film can only be a box-office success if it is made
in the United States and has a big star, or if it is a European comedy.

Whereas version spaces are able to represent expressions that consist solely
of conjunctions, decision trees can represent more complex expressions,
involving disjunctions and conjunctions. For example, the decision tree in
Figure 10.1 represents the following expression:

((Country = USA) ∧ (Big Star = yes)) ∨ ((Country = Europe) ∧
(Genre = comedy))

Decision-tree induction (or decision-tree learning) involves using a set of
training data to generate a decision tree that correctly classifies the training
data. If the learning has worked, this decision tree will then correctly clas-
sify new input data as well.

278 CHAPTER 10 Introduction to Machine Learning

The best-known decision tree induction algorithm is ID3, which was devel-
oped by Quinlan in the 1980s.

The ID3 algorithm builds a decision tree from the top down. The nodes are
selected by choosing features of the training data set that provide the most
information about the data and turning those features into questions. For
example, in the above example, the first feature to be noted might be that
the country of origin is a significant determinant of whether a film will be
a success or not. Hence, the first question to be placed into the decision tree
is “what is the film’s country of origin?”.

The most important feature of ID3 is how the features are chosen. It would
be possible to produce a decision tree by selecting the features in an arbi-
trary order, but this would not necessarily produce the most efficient deci-
sion tree. The ID3 algorithm finds the shortest possible decision tree that
correctly classifies the training data.

10.9.1 Information Gain

The method used by ID3 to determine which features to use at each stage of
the decision tree is to select, at each stage, the feature that provides the
greatest information gain. Information gain is defined as the reduction in
entropy. The entropy of a set of training data, S, is defined as

H(S) = �p1 log2 p1 � p0 log2 p0

where p1 is defined as the proportion of the training data that includes
positive examples, and p0 is defined as the proportion that includes neg-
ative examples. The entropy of S is zero when all the examples are posi-
tive, or when all the examples are negative. The entropy reaches its
maximum value of 1 when exactly half of the examples are positive and
half are negative.

The information gain of a particular feature tells us how closely that feature
represents the entire target function, and so at each stage, the feature that
gives the highest information gain is chosen to turn into a question.

10.9 Decision-Tree Induction 279

10.9.2 Example

We will start with the training data given below:

Film Country of origin Big star Genre Success

Film 1 United States yes Science Fiction true

Film 2 United States no Comedy false

Film 3 United States yes Comedy true

Film 4 Europe no Comedy true

Film 5 Europe yes Science fiction false

Film 6 Europe yes Romance false

Film 7 Rest of World yes Comedy false

Film 8 Rest of World no Science fiction false

Film 9 Europe yes Comedy true

Film 10 United States yes Comedy true

We will now calculate the information gain for the three different attributes
of the films, to select which one to use at the top of the tree.

First, let us calculate the information gain of the attribute “country of ori-
gin.” Our collection of training data consists of five positive examples and
five negative examples, so currently it has an entropy value of 1.

Four of the training data are from the United States, four from Europe, and
the remaining two from the rest of the world.

The information gain of this attribute is the reduction in entropy that it
brings to the data. This can be calculated as follows:

First, we calculate the entropy of each subset of the training data as broken
up by this attribute. In other words, we calculate the entropy of the items
that are from the United States, the entropy of the items from Europe, and
the entropy of the items from the rest of the world.

280 CHAPTER 10 Introduction to Machine Learning

Of the films from the United States, three were successes and one was not.
Hence, the entropy of this attribute is

H(USA) = �(3/4) log2 (3/4) � (1/4) log2 (1/4)

= 0.311 + 0.5

= 0.811

Similarly, we calculate the entropies of the other two subsets as divided by
this attribute:

H(Europe) = 1

(since half of the European films were successes, and half were not).

H(Rest of world) = 0

(since none of these films were successes).

The total information gain is now defined as the original entropy of the set
minus the weighted sum of these entropies, where the weight applied to
each entropy value is the proportion of the training data that fell into that
category. For example, four-tenths of the training data were from the
United States, so the weight applied to H(USA) is 4/10 = 0.4.

The information gain is defined as:

Gain = 1 � (0.4 � 0.811) � (0.4 � 1) � (0.2 � 0)

= 1 � 0.3244 � 0.4 � 0

= 0.2756

Hence, at this stage, the information gain for the “country of origin” attrib-
ute is 0.2756.

For the “Big star” attribute

H(yes) = 0.9852

H(no) = 1

10.9 Decision-Tree Induction 281

so, the information gain for this attribute is

Gain = 1 � (0.7 � 0.9852) � (0.3 � 1)

= 1 � 0.68964 � 0.3

= 0.01

For the “Genre” attribute

H(science fiction) = 0.918296

H(comedy) = 0.918296

H(romance) = 0

(note that we treat 0 � log20 as 0)

hence, the information gain for this attribute is

Gain = 1 � (0.3 � 0.918296) � (0.6 � 0.918296) � (0.1 � 0)

= 1 � 0.2754888 � 0.5509776 � 0

= 0.17

Hence, at this stage, the category “Country of origin” provides the greatest
entropy gain and so is placed at the top of the decision tree. This method is
then applied recursively to the sub-branches of the tree, examining the
entropy gain achieved by subdividing the training data further.

10.9.3 Inductive Bias of ID3

ID3’s inductive bias is that it tends to produce the shortest decision tree
that will correctly classify all of the training data. This fits very well with
Occam’s razor, which was briefly introduced in Section 10.8. It is not the
case that Occam’s razor can be applied in all situations to provide the opti-
mal solution: it is, however, the case that ID3 tends to produce adequate
results. Additionally, a smaller decision tree is clearly easier for humans to
understand, which in some circumstances can be very useful, for example if
the need arises to debug the learner and find out why it makes a mistake on
a particular piece of unseen data.

282 CHAPTER 10 Introduction to Machine Learning

Figure 10.2
Illustration of the problem
of overfitting

10.10 The Problem of Overfitting

In some situations, decision trees (and other learning methods) can run
into the problem of overfitting. Overfitting usually occurs when there is
noise in the training data, or when the training data do not adequately rep-
resent the entire space of possible data. In such situations, it can be possible
for one decision tree to correctly classify all the training data, but to per-
form less well at classifying unseen data than some other decision tree that
performs poorly at classifying the training data. In other words, if the train-
ing data do not adequately and accurately represent the entire data set, the
decision tree that is learned from it may not match unseen data.

This problem does not just apply to decision trees, but also to other learn-
ing methods. It can best be understood by examining the illustration in
Figure 10.2.

In the first diagram in Figure 10.2, black dots are positive training data, and
white dots are negative training data. The two lines represent two hypothe-
ses that have been developed to distinguish the training data. The thin line
is a relatively simple hypothesis, which incorrectly classifies some of the
training data—it should have all positive examples below it and all negative
examples above it. The thicker line correctly classifies all the training data,
using a more complex hypothesis, which is somewhat warped by noise in
the data. In the next diagram, the thin line is shown to map reasonably
effectively the full set of data. It does make some errors, but it reasonably

10.11 The Nearest Neighbor Algorithm 283

closely represents the trend in the data. The third diagram, however, shows
that the more complex solution does not at all represent the full set of data.
This hypothesis has been overfitted to the training data, allowing itself to
be warped by noise in the training data.

Overfitting is, perhaps, a good illustration of why Occam’s razor can some-
times be a useful inductive bias: selecting a complex solution to accommo-
date all of the training data can be a bad idea when the training data
contain errors.

10.11 The Nearest Neighbor Algorithm

The nearest neighbor algorithm is an example of instance-based learning.
Instance-based learning methods do not attempt to generalize from train-
ing data to produce a hypothesis to match all input data, instead, they store
the training data and use these data to determine a classification for each
new piece of data as it is encountered.

The nearest neighbor algorithm operates in situations where each instance
can be defined by an n-dimensional vector, where n is the number of attrib-
utes used to describe each instance, and where the classifications are dis-
crete numerical values. The training data are stored, and when a new
instance is encountered it is compared with the training data to find its
nearest neighbors. This is done by computing the Euclidean distance
between the instances in n-dimensional space. In two-dimensional space,
for example, the distance between <x1, y1> and <x2, y2> is

Typically, the nearest neighbor algorithm obtains the classifications of the
nearest k neighbors to the instance that is to be classified and assigns it the
classification that is most commonly returned by those neighbors.

An alternative approach is to weight the contribution of each of the neigh-
bors according to how far it is from the instance that is to be classified. In
this way, it is possible to allow every instance of training data to contribute
to the classification of a new instance. When used in this way, the algorithm
is known as Shepard’s method (see Shepard 1968).

Unlike decision-tree learning, the nearest neighbor algorithm performs
very well with noisy input data. Its inductive bias is to assume that

x x y y1 2
2

1 2
2−() + −()()

284 CHAPTER 10 Introduction to Machine Learning

instances that are close to each other in terms of Euclidean distance will
have similar classifications. In some cases, this can be an erroneous
assumption; for example, in a situation where 10 attributes are used to
define each instance, but only 3 of those attributes play any part in deter-
mining the classification of the instance. In this situation, instances can be
very far apart from each other in 10-dimensional space and yet have the
same classification. This problem can be avoided to some extent by neglect-
ing to include unimportant attributes from the calculations.

10.12 Learning Neural Networks

An artificial neural network is a network of simple processing nodes,
which is roughly modeled on the human brain. The human brain is a mas-
sively parallel computation device, which achieves its power through the
enormous connectivity between its neurons. Each neuron is a very simple
device that can either fire or not fire, but by combining billions of these
neurons together, the brain is able to achieve levels of complexity as yet
unattainable by machines.

The word artificial is often used to describe neural networks to differentiate
them from the biological neural networks that make up the human brain,
but in this book we shall simply refer to them as neural networks because it
should be clear from the context which type of network we are referring to.

Neural networks consist of a number of nodes, each of which can be
thought of as representing a neuron. Typically, these neurons are arranged
into layers, and the neurons from one layer are connected to the neurons in
the two layers on either side of it.

Typically, the network is arranged such that one layer is the input layer,
which receives inputs that are to be classified. These inputs cause some of the
neurons in the input layer to fire, and these neurons in turn pass signals to
the neurons to which they are connected, some of which also fire, and so on.
In this way, a complex pattern of firings is arranged throughout the network,
with the final result being that some neurons in the final output layer fire.

The connections between neurons are weighted, and by modifying these
weights, the neural network can be arranged to perform extremely complex
classification tasks such as handwriting analysis and face recognition.

As we see in Chapter 11 where we discuss them in more detail, neural net-
works have a number of advantages over other learning methods. Many of

10.14 Unsupervised Learning 285

these advantages derive from features of the human brain. For example,
neural networks are extremely robust, both to errors in any training data
and to damage that may be caused to the network itself.

10.13 Supervised Learning

Supervised learning networks learn by being presented with preclassified
training data. The techniques we have discussed so far in this chapter use
forms of supervised learning. Neural networks that use supervised learning
learn by modifying the weights of the connections within their networks to
more accurately classify the training data. In this way, neural networks are
able to generalize extremely accurately in many situations from a set of
training data to the full set of possible inputs.

One of the most commonly used methods for supervised learning is back-
propagation, which will be discussed in Chapter 11.

10.14 Unsupervised Learning

Unsupervised learning methods learn without any human intervention. A
good example of an unsupervised learning network is a Kohonen map. A
Kohonen map is a neural network that is able to learn to classify a set of
input data without being told what the classifications are and without
being given any training data. This method is particularly useful in situa-
tions where data need to be classified, or clustered, into a set of classifica-
tions but where the classifications are not known in advance.

For example, given a set of documents retrieved from the Internet (perhaps
by an intelligent information agent), a Kohonen map could cluster similar
documents together and automatically provide an indication of the distinct
subjects that are covered by the documents.

Another method for unsupervised learning in neural networks was pro-
posed by Donald Hebb in 1949 and is known as Hebbian learning. Hebbian
learning is based on the idea that if two neurons in a neural network are
connected together, and they fire at the same time when a particular input
is given to the network, then the connection between those two neurons
should be strengthened. It seems likely that something not dissimilar from
Hebbian learning takes place in the human brain when learning occurs
(Edelman 1987).

286 CHAPTER 10 Introduction to Machine Learning

10.15 Reinforcement Learning

Classifier systems, which are discussed in Chapter 13, use a form of rein-
forcement learning. A system that uses reinforcement learning is given a
positive reinforcement when it performs correctly and a negative reinforce-
ment when it performs incorrectly. For example, a robotic agent might
learn by reinforcement learning how to pick up an object. When it success-
fully picks up the object, it will receive a positive reinforcement.

The information that is provided to the learning system when it performs
its task correctly does not tell it why or how it performed it correctly, simply
that it did.

Some neural networks learn by reinforcement. The main difficulty with
such methods is the problem of credit assignment. The classifier systems
(which are discussed in Chapter 13) use a bucket brigade algorithm for
deciding how to assign credit (or blame) to the individual components of
the system. Similar methods are used with neural networks to determine to
which neurons to give credit when the network performs correctly and
which to blame when it does not.

10.16 Chapter Summary

■ Many learning methods use some form of training to learn to gen-
eralize from a set of preclassified training data to be able to cor-
rectly classify unseen data.

■ Rote learning involves simply memorizing the classifications of
training data. A rote learning system is not able to generalize and
so is only able to classify data it has seen before.

■ A general-to-specific ordering of hypotheses can be used to learn
to generalize from a set of training data to a hypothesis that
matches all input data. This is known as concept learning.

■ A version space, which consists of all possible hypotheses that
match a given set of training data, can be used to generalize from
those training data to learn to classify unseen data.

■ Candidate elimination is a method that uses the general-to-specific
ordering to produce a set of hypotheses that represent the entire
version space for a problem.

10.17 Review Questions 287

■ The inductive bias of a learning method is the assumptions it
makes about the possible hypotheses that can be used. A learning
system with no inductive bias is not capable of generalizing beyond
the training data it is given.

■ Decision-tree induction can be used to learn a decision tree that
will correctly classify a set of input data. The inductive bias of deci-
sion-tree induction is to prefer shorter trees.

■ The problem of overfitting occurs when there is noise in the train-
ing data that causes a learning method to develop a hypothesis that
correctly matches the training data but does not perform well on
other input data.

■ The nearest neighbor algorithm simply memorizes the classifica-
tions of the training data, and when presented with a new piece of
data gives the majority answer given by the closest neighbors to
this piece of data in n-dimensional space.

■ Neural networks are based on biological networks of neurons con-
tained within the human brain.

■ Supervised learning methods learn from manually classified
training data.

■ Unsupervised learning methods such as Kohonen maps learn
without any manual intervention.

■ A system that uses reinforcement learning is given a positive rein-
forcement when it performs correctly. Credit and blame assign-
ment are important features of such methods.

10.17 Review Questions

10.1 Explain the idea behind learning by generalization.

10.2 What is meant by inductive bias? Is it a good thing? What is the
inductive bias of the ID3 algorithm?

10.3 Explain how candidate elimination uses version spaces to learn.

10.4 Explain how a system can learn by building decision trees, using
the ID3 algorithm.

10.5 How does the nearest neighbor algorithm work?

10.6 Explain the problem of overfitting and how it can be avoided.

288 CHAPTER 10 Introduction to Machine Learning

10.7 Explain the differences and similarities between the following
three types of learning methods:

supervised

unsupervised

reinforcement

10.18 Exercises

10.1 Use the ID3 algorithm to build the full decision tree for the data set
given in Section 10.9.2.

10.2 Implement the nearest neighbor algorithm in the programming
language of your choice. The algorithm should work with vectors
of up to 10 integer values and allow up to 10 integer classifications.
By mapping each value to a number, use your program to learn
from the training data given in Section 10.9.2. Have your program
now classify the following films:

Film Country of origin Big star Genre

Film 11 United States no Science fiction

Film 12 United States yes Romance

Film 13 United States no Romance

Film 14 Europe no Science fiction

Film 15 Rest of world no Romance

Comment on the results.

10.19 Further Reading

Mitchell (1997) provides an excellent coverage of many aspects of machine
learning. An excellent background from a biological perspective is pro-
vided by Pfeifer and Scheier (1999). Winston (1992) developed many of the
concepts that are used today in machine learning.

Further references on neural networks are given in the Further Reading
section of Chapter 11 of this book.

10.19 Further Reading 289

Learning from Data: Concepts, Theory, and Methods by Vladimir Cher-
kassky and Filip Mulier (1998 – Wiley Interscience)

Neural Darwinism: The Theory of Neuronal Group Selection by Gerald M.
Edelman (1990 – Oxford University Press)

Learning and Soft Computing: Support Vector Machines, Neural Networks,
and Fuzzy Logic Models (Complex Adaptive Systems) by Vojislav Kecman
(2001 – MIT Press)

Machine Learning by Tom M. Mitchell (1997 – McGraw Hill)

Machine Learning: A Theoretical Approach by Balas K. Natarajan (1991 –
Morgan Kaufmann)

Understanding Intelligence by Rolf Pfeifer and Christian Scheier (1999 –
MIT Press)

Induction of Decision Trees by J. R. Quinlan (1986 – from Machine Learning,
Vol. 1, pp. 81–106)

A Two Dimensional Interpolation Function for Irregularly Spaced Data by
D. Shepard (1968 - Proceedings of the 23rd National Conference of the ACM,
pp. 517–523)

Reinforcement Learning: An Introduction (Adaptive Computation and Machine
Learning) by Richard S. Sutton and Andrew G. Barto (1998 – MIT Press)

Statistical Learning Theory by Vladimir N.Vapnik (1998 – Wiley Interscience)

An Introduction to Computational Learning Theory by Michael J. Kearns
and Umesh V. Vazirani (1994 – MIT Press)

Learning and Generalization: With Applications to Neural Networks by
Mathukumalli Vidyasagar (2002 – Springer Verlag)

This page intentionally left blank

11CHAPTER
Neural Networks

Man, unlike any other thing organic or inorganic in the universe, grows
beyond his work, walks up the stairs of his concepts, emerges ahead of his
accomplishments.

—John Steinbeck, The Grapes of Wrath

Behind a pot of ferns the wagging clock
Tells me the hour’s word, the neural meaning
Flies on the shafted disc, declaims the morning
And tells the windy weather in the cock.

—Dylan Thomas, Especially When the October Wind

His high pitched voice already stood out above the general murmur of well-
behaved junior executives grooming themselves for promotion within the Bell
corporation. Then he was suddenly heard to say: ‘No, I’m not interested in
developing a powerful brain. All I’m after is just a mediocre brain, something
like the President of the American Telephone and Telegraph Company.’

—Alan Turing, quoted in Alan Turing the
Enigma of Intelligence by A. Hodge

11.1 Introduction

This chapter introduces the relationship between biological neurons, which
make up human brains, and artificial neurons, which are used in artificial
neural networks. McCulloch and Pitts neurons are explained, and the capa-
bilities and limitations of perceptrons are examined. Multilayer neural

292 CHAPTER 11 Neural Networks

OUTPUT

AXONSOMA

SYNAPSE

DENDRITES

Figure 11.1
A neuron in the human
brain

networks are explored, and the backpropagation algorithm for supervised
learning in multilayer networks is explained. Recurrent networks, such as
Hopfield networks and other bidirectional associative memories, are also
explained. Unsupervised learning is explained through the use of Kohonen
maps and Hebb’s law.

Although the neural networks presented in this chapter are very simplistic,
real-world networks can be extremely complex, consisting of hundreds or
even thousands of neurons. Networks of this size can often appear like a
“black box,” in the sense that it is not clear why they behave in the way they
do. In fact, the behavior of complex neural networks is often emergent.

11.2 Neurons

11.2.1 Biological Neurons

The human brain contains over ten billion neurons, each of which is con-
nected, on average, to several thousand other neurons. These connections
are known as synapses, and the human brain contains about 60 trillion
such connections.

Neurons are in fact very simple processing elements. Each neuron contains
a soma, which is the body of the neuron, an axon, and a number of den-
drites. A simplified diagram of a biological neuron is shown in Figure 11.1.

The neuron receives inputs from other neurons along its dendrites, and
when this input signal exceeds a certain threshold, the neuron “fires”—in

11.2 Neurons 293

fact, a chemical reaction occurs, which causes an electrical pulse, known as
an action potential, to be sent down the axon (the output of the neuron),
toward synapses that connect the neuron to the dendrites of other neurons.

Although each neuron individually is extremely simple, this enormously
complex network of neurons is able to process information at a great rate
and of extraordinary complexity. The human brain far exceeds in terms of
complexity any device created by man, or indeed, any naturally occurring
object or structure in the universe, as far as we are aware today.

The human brain has a property known as plasticity, which means that neu-
rons can change the nature and number of their connections to other neu-
rons in response to events that occur. In this way, the brain is able to learn. As
is explained in Chapter 10, the brain uses a form of credit assignment to
strengthen the connections between neurons that lead to correct solutions to
problems and weakens connections that lead to incorrect solutions. The
strength of a connection, or synapse, determines how much influence it will
have on the neurons to which it is connected, and so if a connection is weak-
ened, it will play less of a role in subsequent computations.

11.2.2 Artificial Neurons

Artificial neural networks are modeled on the human brain and consist of
a number of artificial neurons. Neurons in artificial neural networks tend
to have fewer connections than biological neurons, and neural networks
are all (currently) significantly smaller in terms of number of neurons than
the human brain.

The neurons that we examine in this chapter were invented by McCulloch
and Pitts (1943) and so are often referred to as McCulloch and Pitts neurons.

Each neuron (or node) in a neural network receives a number of inputs. A
function called the activation function is applied to these input values,
which results in the activation level of the neuron, which is the output
value of the neuron. There are a number of possible functions that can be
used in neurons. Some of the most commonly used activation functions
are illustrated in Figure 11.2.

In Figure 11.2, the x-axis of each graph represents the input value to the neu-
ron, and the y-axis represents the output, or the activation level, of the neuron.

294 CHAPTER 11 Neural Networks

Y Y

+1 +1

t
X X

Y

X

–1

(a) Step function (b) Sigmoid function (c) Linear function
Figure 11.2
Three activation functions

One of the most commonly used functions is the step function, or linear
threshold function. In using this function, the inputs to the neuron are
summed (having each been multiplied by a weight), and this sum is com-
pared with a threshold, t. If the sum is greater than the threshold, then the
neuron fires and has an activation level of +1. Otherwise, it is inactive and has
an activation level of zero. (In some networks, when the sum does not exceed
the threshold, the activation level is considered to be �1 instead of 0).

Hence, the behavior of the neuron can be expressed as follows:

X is the weighted sum of the n inputs to the neuron, x1 to xn, where each
input, xn is multiplied by its corresponding weight wn. For example, let us
consider a simple neuron that has just two inputs. Each of these inputs has
a weight associated with it, as follows:

w1 = 0.8

w2 = 0.4

The inputs to the neuron are x1 and x2:

x1 = 0.7

x2 = 0.9

So, the summed weight of these inputs is

(0.8 � 0.7) + (0.4 � 0.9) = 0.92

The activation level Y, is defined for this neuron as

Y
for X t

for X t
=

+ >
≤

1

0

X w xi i
i

n
=

=
∑

1

11.3 Perceptrons 295

Hence, if t is less than or equal to 0.92, then this neuron will fire with this
particular set of inputs. Otherwise, it will have an activation level of zero.

A neuron that uses the linear activation function simply uses the weighted
sum of its inputs as its activation level. The sigmoid function converts inputs
from a range of �� to +� into an activation level in the range of 0 to +1.

A neural network consists of a set of neurons that are connected together.
Later in this chapter we explore the ways in which neurons are usually con-
nected together. The connections between neurons have weights associated
with them, and each neuron passes its output on to the inputs of the neu-
rons to which it is connected. This output depends on the application of
the activation function to the inputs it receives. In this way, an input signal
to the network is processed by the entire network and an output (or multi-
ple outputs) produced. There is no central processing or control mecha-
nism—the entire network is involved in every piece of computation that
takes place.

The way in which neurons behave over time is particularly interesting.
When an input is given to a neural network, the output does not appear
immediately because it takes some finite period of time for signals to pass
from one neuron to another. In artificial neural networks this time is usu-
ally very short, but in the human brain, neural connections are surprisingly
slow. It is only the enormously parallel nature of the brain that enables it to
calculate so quickly.

For neural networks to learn, the weight associated with each connection
(equivalent to a synapse in the biological brain) can be changed in response
to particular sets of inputs and events. As is mentioned in Chapter 10, Heb-
bian learning involves increasing the weight of a connection between two
neurons if both neurons fire at the same time. We learn more about this
later in the chapter.

11.3 Perceptrons

The perceptron, which was first proposed by Rosenblatt (1958), is a simple
neuron that is used to classify its inputs into one of two categories.

The perceptron can have any number of inputs, which are sometimes
arranged into a grid. This grid can be used to represent an image, or a field
of vision, and so perceptrons can be used to carry out simple image classi-
fication or recognition tasks.

296 CHAPTER 11 Neural Networks

A perceptron uses a step function that returns +1 if the weighted sum of the
inputs, X, is greater than a threshold, t, and �1 if X is less than or equal to t:

This function is often written as Step (X):

in which case, the activation function for a perceptron can be written as

Note that here we have allowed i to run from 0 instead of from 1. This
means that we have introduced two new variables: w0 and x0. We define x0

as 1, and w0 as �t.

A single perceptron can be used to learn a classification task, where it
receives an input and classifies it into one of two categories: 1 or 0. We can
consider these to represent true and false, in which case the perceptron can
learn to represent a Boolean operator, such as AND or OR.

The learning process for a perceptron is as follows:

First, random weights are assigned to the inputs. Typically, these weights
will be chosen between �0.5 and +0.5.

Next, an item of training data is presented to the perceptron, and its output
classification observed. If the output is incorrect, the weights are adjusted
to try to more closely classify this input. In other words, if the perceptron
incorrectly classifies a positive piece of training data as negative, then the
weights need to be modified to increase the output for that set of inputs.
This can be done by adding a positive value to the weight of an input that
had a negative input value, and vice versa.

The formula for this modification, as proposed by Rosenblatt (Rosenblatt
1960) is as follows:

Y Step w xi i
i

n
=

=

∑
0

Step X
for X t

for X t
() =

+ >
≤

1

0

X w x

Y
for X t

for X t

i i
i

n
=

=
+ >

≤

=
∑

1

1

0

11.3 Perceptrons 297

wi ← wi + (a � xi � e)

where e is the error that was produced, and a is the learning rate, where 0 <
a < 1; e is defined as 0 if the output is correct, and otherwise it is positive if
the output is too low and negative if the output is too high. In this way, if the
output is too high, a decrease in weight is caused for an input that received
a positive value. This rule is known as the perceptron training rule.

Once this modification to the weights has taken place, the next piece of
training data is used in the same way. Once all the training data have been
applied, the process starts again, until all the weights are correct and all
errors are zero. Each iteration of this process is known as an epoch.

Let us examine a simple example: we will see how a perceptron can learn to
represent the logical-OR function for two inputs. We will use a threshold of
zero (t = 0) and a learning rate of 0.2.

First, the weight associated with each of the two inputs is initialized to a
random value between �1 and +1:

w1 = �0.2

w2 = 0.4

Now, the first epoch is run through. The training data will consist of the
four combinations of 1’s and 0’s possible with two inputs.

Hence, our first piece of training data is

x1 = 0

x2 = 0

and our expected output is x1 ∨ x2 = 0.

We apply our formula for Y:

Hence, the output Y is as expected, and the error, e, is therefore 0. So the
weights do not change.

Now, for x1 = 0 and x2 = 1:

Y Step w x

Step

i i
i

n
=

= × −() + ×()()
=

=
∑

0

0 0 2 0 0 4

0

. .

298 CHAPTER 11 Neural Networks

Y = Step ((0 � �0.2) + (1 � 0.4))

= Step (0.4)

= 1

Again, this is correct, and so the weights do not need to change.

For x1 = 1 and x2 = 0:

Y = Step ((1 � �0.2) + (0 � 0.4))

= Step (�0.2)

= 0

This is incorrect because 1 ∨ 0 = 1, so we should expect Y to be 1 for this set
of inputs. Hence, the weights are adjusted.

We will use the perceptron training rule to assign new values to the weights:

wi ← wi + (a � xi � e)

Our learning rate is 0.2, and in this case, the e is 1, so we will assign the fol-
lowing value to w1:

w1 = �0.2 + (0.2 � 1 � 1)

= �0.2 + (0.2)

= 0

We now use the same formula to assign a new value to w2:

w2 = 0.4 + (0.2 � 0 � 1)

= 0.4

Because w2 did not contribute to this error, it is not adjusted.

The final piece of training data is now used (x1 = 1 and x2= 1):

Y = Step ((0 � 1) + (0.4 � 1))

= Step (0 + 0.4)

= Step (0.4)

= 1

This is correct, and so the weights are not adjusted.

This is the end of the first epoch, and at this point the method runs again
and continues to repeat until all four pieces of training data are classified
correctly.

11.3 Perceptrons 299

Table 11.1 A sample run showing how the weights change for a simple perceptron
when it learns to represent the logical OR function

Epoch X1 X2 Expected Y Actual Y Error w1 w2

1 0 0 0 0 0 �0.2 0.4

1 0 1 1 1 0 �0.2 0.4

1 1 0 1 0 1 0 0.4

1 1 1 1 1 0 0 0.4

2 0 0 0 0 0 0 0.4

2 0 1 1 1 0 0 0.4

2 1 0 1 0 1 0.2 0.4

2 1 1 1 1 0 0.2 0.4

3 0 0 0 0 0 0.2 0.4

3 0 1 1 1 0 0.2 0.4

3 1 0 1 1 0 0.2 0.4

3 1 1 1 1 0 0.2 0.4

Table 11.1 shows the complete sequence—it takes just three epochs for the
perceptron to correctly learn to classify input values. Lines in which an
error was made are marked in bold.

After just three epochs, the perceptron learns to correctly model the logi-
cal-OR function.

In the same way, a perceptron can be trained to model other logical func-
tions such as AND, but there are some functions that cannot be modeled
using a perceptron, such as exclusive OR.

The reason for this is that perceptrons can only learn to model functions
that are linearly separable. A linearly separable function is one that can be
drawn in a two-dimensional graph, and a single straight line can be drawn
between the values so that inputs that are classified into one classification
are on one side of the line, and inputs that are classified into the other are
on the other side of the line. Figure 11.3 shows how such a line can be
drawn for the OR function, but not for the exclusive-OR function. Four

300 CHAPTER 11 Neural Networks

x2

1

x1
10

x2

1

x1
10

Figure 11.3
Illustrating the difference
between a linearly separa-
ble function and one
which is not

points are plotted on each graph, and a solid dot represents true, and a hol-
low dot represents a value of false. It should be clear that no dashed line
could be drawn in the second case, for the exclusive OR function, that
would separate solid dots from hollow ones.

The reason that a single perceptron can only model functions that are lin-
early separable can be seen by examining the following function:

Using these functions, we are effectively dividing the search space using a
line for which X = t. Hence, in a perceptron with two inputs, the line that
divides one class from the other is defined as follows:

w1x1 + w2x2 = t

The perceptron functions by identifying a set of values for wi, which gener-
ates a suitable function. In cases where no such linear function exists, the
perceptron cannot succeed.

11.4 Multilayer Neural Networks

Most real-world problems are not linearly separable, and so although per-
ceptrons are an interesting model for studying the way in which artificial
neurons can work, something more powerful is needed.

As has already been indicated, neural networks consist of a number of neu-
rons that are connected together, usually arranged in layers.

X w x

Y
for X t

for X t

i i
i

n
=

=
+ >
− ≤

=
∑

1

1

1

11.4 Multilayer Neural Networks 301

Figure 11.4
A simple three-layer feed-
forward neural network

A single perceptron can be thought of as a single-layer perceptron. Multi-
layer perceptrons are capable of modeling more complex functions, includ-
ing ones that are not linearly separable, such as the exclusive-OR function.

To see that a multilayer network is capable of modeling a function that is
not linearly separable, such as exclusive-OR, note that the functions NOR
and NAND are both linearly separable and so can be represented by a sin-
gle perceptron. By combining these functions together, all other Boolean
functions can be generated. Hence, by combining single perceptrons in just
two layers, any binary function of two inputs can be generated.

A typical architecture for a multilayer neural network is shown in Figure 11.4.

The network shown in Figure 11.4 is a feed-forward network, consisting of
three layers.

The first layer is the input layer. Each node (or neuron) in this layer
receives a single input signal. In fact, it is usually the case that the nodes in
this layer are not neurons, but simply act to pass input signals on to the
nodes in the next layer, which is in this case a hidden layer.

A network can have one or more hidden layers, which contain the neurons
that do the real work. Note that each input signal is passed to each of the
nodes in this layer and that the output of each node in this layer is passed to
each node in the final layer, which is the output layer. The output layer car-
ries out the final stage of processing and sends out output signals.

The network is called feed-forward because data are fed forward from the
input nodes through to the output nodes. This is in contrast with recur-
rent networks, which we examine in Section 11.5, where some data are
passed back from the output nodes to the input nodes.

302 CHAPTER 11 Neural Networks

A typical feed-forward neural network consists of an input layer, one or
two hidden layers, and an output layer, and may have anywhere between 10
and 1000 neurons in each layer.

11.4.1 Backpropagation

Multilayer neural networks learn in much the same way as single percep-
trons. The main difference is that in a multilayer network, each neuron has
weights associated with its inputs, and so there are a far greater number of
weights to be adjusted when an error is made with a piece of training data.
Clearly, an important question is how to assign blame (or credit) to the var-
ious weights. One method that is commonly used is backpropagation.

Rather than using the simple Step function that single perceptrons use,
multilayer backpropagation networks usually use the sigmoid function,
which is illustrated in Figure 11.2(b).

The sigmoid function is defined as follows:

This function is easy to differentiate because

This is in contrast with the Step function used by perceptrons, which has
no simple derivative.

As with the single perceptron, the backpropagation algorithm starts by ini-
tializing the weights in the network to random values, which are usually set
to small values, say in the range of �0.5 to 0.5. Alternatively, the weights
can be normally distributed over the range from �2.4/n to 2.4/n, where n is
the number of inputs to the input layer.

Each iteration of the algorithm involves first feeding data through the net-
work from the inputs to the outputs. The next phase, which gives the algo-
rithm its name, involves feeding errors back from the outputs to the inputs.
These error values feed back through the network, making changes to the
weights of nodes along the way. The algorithm repeats in this way until the
outputs produced for the training data are sufficiently close to the desired
values—in other words, until the error values are sufficiently small.

d x
dx

x x
σ

σ σ() = () ⋅ − ()()1

σ x
e x() =

+ −
1

1

11.4 Multilayer Neural Networks 303

Because the sigmoid function cannot actually reach 0 or 1, it is usual to
accept a value such as 0.9 as representing 1 and 0.1 as representing 0.

Now we shall see the formulae that are used to adjust the weights in the
backpropagation algorithm. We will consider a network of three layers and
will use i to represent nodes in the input layer, j to represent nodes in the
hidden layer, and k to represent nodes in the output layer. Hence, for exam-
ple, wij refers to the weight of a connection between a node in the input
layer and a node in the hidden layer.

The function that is used to derive the output value for a node j in the net-
work is as follows:

where n is the number of inputs to node j; wij is the weight of the connec-
tion between each node i and node j; �j is the threshold value being used for
node j, which is set to a random value between 0 and 1; xi is the input value
for input node I; and yj is the output value produced by node j.

Once the inputs have been fed through the network to produce outputs, an
error gradient is calculated for each node k in the output layer.

The error signal for k is defined as the difference between the desired value
and the actual value for that node:

ek = dk � yk

dk is the desired value for node k, and yk is the actual value, in this iteration.

The error gradient for output node k is defined as the error value for this
node multiplied by the derivative of the activation function:

xk is the weighted sum of the input values to the node k.

Because y is defined as a sigmoid function of x, we can use the formula that
was given above for the derivative of the sigmoid function to obtain the fol-
lowing formula for the error gradient:

δk
k

k
k

y
x

e= ∂
∂

⋅

X x w

Y
e

j i ij j
i

n

j X j

= ⋅ −

=
+

=

−

∑ θ
1

1

1

304 CHAPTER 11 Neural Networks

Similarly, we calculate an error gradient for each node j in the hidden layer,
as follows:

where n is the number of nodes in the output layer, and thus the number of
outputs from each node in the hidden layer.

Now each weight in the network, wij or wjk, is updated according to the fol-
lowing formula:

where xi is the input value to input node i, and � is the learning rate, which
is a positive number below 1, and which should not be too high.

This method is known as gradient descent because it involves following
the steepest path down the surface that represents the error function to
attempt to find the minimum in the error space, which represents the set of
weights that provides the best performance of the network.

In fact, the iteration of the backpropagation algorithm is usually termi-
nated when the sum of the squares of the errors of the output values for all
training data in an epoch is less than some threshold, such as 0.001.

Note that this method assigns blame to individual nodes within the net-
work by comparing the weights attached to each node with the error asso-
ciated with that node. In the case of hidden nodes, there is no error value
because there is no specific desired output value for these nodes. In this
case, the weight of each connection between a hidden layer node and an
output node is multiplied by the error of that output node to attempt to
distribute the blame between the nodes in the hidden layer according to
how much each one contributes to the error.

Unlike Hebbian learning, which is discussed in more detail in Section
11.6.3, backpropagation does not appear to occur in the human brain.
Additionally, it is rather inefficient and tends to be too slow for use in solv-

w w x

w w y

ij ij i j

jk jk j k

← + ⋅ ⋅

← + ⋅ ⋅

α δ

α δ

δ δj j j jk k
k

n
y y w= ⋅ −()

=
∑1

1

δk k k ky y e= ⋅ −() ⋅1

11.4 Multilayer Neural Networks 305

ing real-world problems. With some simple problems it can take hundreds
or even thousands of epochs to reach a satisfactorily low level of error.

11.4.2 Improving the Performance of Backpropagation

A common method used to improve the performance of backpropagation
is to include momentum in the formula that is used to modify the weights.
The momentum takes into account the extent to which a particular weight
was changed on the previous iteration. We shall use t to represent the cur-
rent iteration, and t � 1 to represent the previous iteration. Hence, we can
write our learning rules as follows:

wij(t) is the amount that is added to the weight of the connection between
nodes i and j, wij at iteration t; � is the momentum value, which is a positive
number between 0 and 1. Typically, a fairly high value such as 0.95 is used.
If � is zero, this is the same as the backpropagation algorithm without
using momentum.

This rule, including the momentum value, is known as the generalized
delta rule.

The inclusion of the momentum value has the benefit of enabling the
backpropagation method to avoid local minima and also to move more
quickly through areas where the error space is not changing.

An alternative method of speeding up backpropagation is to use the hyper-
bolic tangent function, tanh, instead of the sigmoid function, which tends
to enable the network to converge on a solution in fewer iterations. The
tanh function is defined as:

where a and b are constants, such as a = 1.7 and b = 0.7.

A final way to improve the performance of backpropagation is to vary the
value of the learning rate, � during the course of training the network. Two
heuristics proposed by R. A. Jacobs (1988) use the direction of change

tanh x
a

e
a

bx() =
+

−−
2

1

∆ ∆

∆ ∆

w t x w t

w t y w t
ij i j ij

jk j k jk

() = ⋅ ⋅ + −()
() = ⋅ ⋅ + −()

α δ β
α δ β

1

1

306 CHAPTER 11 Neural Networks

(increase or decrease) of the sum of the square of the errors from one
epoch to the next to determine the change in learning rate:

If for several epochs the sum of the square of the errors changes in the same
direction, increase the learning rate.

1. If for several epochs the sum of the square of the errors changes in
the same direction, increase the learning rate.

2. If the sum of the square of the errors alternates its change in
direction over several epochs, decrease the learning rate.

By using these heuristics in combination with the generalized delta rule,
the performance of the backpropagation algorithm can be significantly
improved.

11.5 Recurrent Networks

The neural networks we have been studying so far are feed-forward net-
works. A feed-forward network is acyclic, in the sense that there are no
cycles in the network, because data passes from the inputs to the outputs,
and not vice versa,. Once a feed-forward network has been trained, its state
is fixed and does not alter as new input data is presented to it. In other
words, it does not have memory.

A recurrent network can have connections that go backward from output
nodes to input nodes and, in fact, can have arbitrary connections between
any nodes. In this way, a recurrent network’s internal state can alter as sets
of input data are presented to it, and it can be said to have a memory.

This is particularly useful in solving problems where the solution depends
not just on the current inputs, but on all previous inputs. For example,
recurrent networks could be used to predict the stock market price of a par-
ticular stock, based on all previous values, or it could be used to predict what
the weather will be like tomorrow, based on what the weather has been.

Clearly, due to the lack of memory, feed-forward networks are not able to
solve such tasks.

When learning, the recurrent network feeds its inputs through the net-
work, including feeding data back from outputs to inputs, and repeats this
process until the values of the outputs do not change. At this point, the net-
work is said to be in a state of equilibrium or stability. For this reason,

11.5 Recurrent Networks 307

recurrent networks are also known as attractor networks because they are
attracted to certain output values. The stable values of the network, which
are also known as fundamental memories, are the output values used as
the response to the inputs the network received.

Hence, a recurrent network can be considered to be a memory, which is
able to learn a set of states—those that act as attractors for it. Once such a
network has been trained, for any given input it will output the attractor
that is closest to that input.

For example, a recurrent network can be used as an error-correcting net-
work. If only a few possible inputs are considered “valid,” the network can
correct all other inputs to the closest valid input.

It is not always the case that a recurrent network will reach a stable state:
some networks are unstable, which means they oscillate between different
output values.

11.5.1 Hopfield Networks

In the 1980s, John Hopfield invented a form of recurrent network that has
come to be known as a Hopfield network.

The activation function used by most Hopfield networks is the sign activa-
tion function, which is defined as:

Note that this definition does not provide a value for Sign(0). This is
because when a neuron that uses the sign activation function receives an
input of 0, it stays in the same state—in other words, it continues to output
1 if it was outputting 1 in the previous iteration, and continues to output
�1 if it was outputting �1.

When considering the operation of a Hopfield network, it is usual to use
matrix arithmetic. The weights of the network are represented by a matrix,
W, which is calculated as follows:

W X X Ni i
t

i

N
= −

=
∑ I

1

Sign X
for X

for X
() =

+ >
− <

1 0

1 0

308 CHAPTER 11 Neural Networks

where each Xi is an input vector, representing the m input values to the
network; Xi

t is the matrix transposition of Xi; I is the m � m identity
matrix; N is the number of states (Xi) that are to be learned. The trans-
position of a matrix is simply one where the rows and columns are
swapped. If

then the transposition of X1 is

The identity matrix, I, is a matrix with zeros in every row and column, but
with 1s along the leading diagonal. For example,

Now let us examine an example. We will imagine a single-layer Hopfield
network with five nodes and three training inputs that are to be learned by
the network. We will have our network learn the following three states:

We thus have three states (vectors) that are to be learned, each of which
consists of five input values. The inputs can be either 1 or �1; similarly, the
output values can be either 1 or �1, and so the output can be represented
as a similar vector of five values, each of which is either 1 or �1.

The weight matrix is calculated as follows:

X X X1 2 3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

=

=

−
−
−
−
−

=
−

−

I =

1 0 0

0 1 0

0 0 1

Xi
t = −[]1 1 1

X1

1

1

1

= −

11.5 Recurrent Networks 309

=

0 1 3 3 1

1 0 1 1 3

3 1 0 3 1

3 1 3 0 1

1 3 1 1 0

=

+

+

− −
− − −

− −
− −

−

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 −− −

−

1 1 1

3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

=

[] +

−
−
−
−
−

− − − − −[] +

−

−

− −[] −

1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1 1 1 1 1 3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 00

0 0 0 1 0

0 0 0 0 1

W X X

X X X X X X

i i
t

i

i
t

i
t

i
t

= −

= + + −
=
∑ 3

3
1

3

1 2 3

I

I

310 CHAPTER 11 Neural Networks

Note that the weight matrix has zeros along its leading diagonal. This
means that each node in the network is not connected to itself (i.e., wii = 0
for all i). A further property of a Hopfield network is that the two connec-
tions between a pair of nodes have the same weight. In other words, wij =
wji for any nodes i and j.

The three training states used to produce the weight matrix will be stable
states for the network. We can test this by determining the output vectors
for each of them.

The output vector is defined by

where θ is the threshold matrix, which contains the thresholds for each of
the five inputs. We will assume that the thresholds are all set at zero.

Hence, the first input state is a stable state for the network. Similarly, we can
show that Y2 = X2 and that Y3 = X3.

Now let us see how the network treats an input that is different from the
training data. We will use

Y Sign

Sign

1

0 1 3 3 1

1 0 1 1 3

3 1 0 3 1

3 1 3 0 1

1 3 1 1 0

1

1

1

1

1

0

0

0

0

0

8

6

8

8

6

=

−

=

=

=

1

1

1

1

1

1X

Y Sign Xi i= −()W θ

11.5 Recurrent Networks 311

Note that this vector differs from X1 in just one value, so we would expect
the network to converge on X1 when presented with this input.

Now we will try an input that is very different from the training data:

X5

1

1

1

1

1

=

−

−

Y Sign

Sign

4

0 1 3 3 1

1 0 1 1 3

3 1 0 3 1

3 1 3 0 1

1 3 1 1 0

1

1

1

1

1

0

0

0

0

0

2

4

8

2

4

=

−

−

=

=

=

1

1

1

1

1

1X

X4

1

1

1

1

1

= −

312 CHAPTER 11 Neural Networks

Let us apply the network to this input data:

Because this is different from X5 and is not one of the attractors, we need to
apply the rule again:

The use of the Hopfield network involves three stages. In the first stage, the
network is trained to learn the set of attractor states. This can be thought of
as a storage or memorization stage. This is done by setting the weights of
the network according to the values given by the weights matrix, W, which
is calculated as described above.

The second phase involves testing the network, by providing the attractor
states as inputs, and checking that the outputs are identical. The final stage

Y Sign

Sign

5

0 1 3 3 1

1 0 1 1 3

3 1 0 3 1

3 1 3 0 1

1 3 1 1 0

1

1

1

1

1

0

0

0

0

0

2

4

2

8

4

=

−

−

=

=

=

1

1

1

1

1

1X

Y Sign

Sign

5

0 1 3 3 1

1 0 1 1 3

3 1 0 3 1

3 1 3 0 1

1 3 1 1 0

1

1

1

1

1

0

0

0

0

0

2

2

2

4

2

=

−

−

−

=
−

=
−

1

1

1

1

1

11.5 Recurrent Networks 313

involves using the network, in which the network, in acting as a memory, is
required to retrieve data from its memory.

In each case, the network will retrieve the attractor closest to the input that
it is given. In this case, the nearest attractor is X1, which differs in just two
inputs. The measure of distance that is usually used for such vectors is the
Hamming distance. The Hamming distance measures the number of ele-
ments of the vectors that differ. The Hamming distance between two vec-
tors, X and Y, is written ||X, Y ||.
For the vectors we have used

Hence, the Hopfield network is a memory that usually maps an input vec-
tor to the memorized vector whose Hamming distance from the input vec-
tor is least.

In fact, although a Hopfield network always converges on a stable state, it
does not always converge on the state closest to the original input. No
method has yet been found for ensuring that a Hopfield network will
always converge on the closest state.

A Hopfield network is considered to be an autoassociative memory, which
means that it is able to remember an item itself, or a similar item that might
have been modified slightly, but it cannot use one piece of data to remem-
ber another. The human brain is fully associative, or heteroassociative,
which means one item is able to cause the brain to recall an entirely differ-
ent item. A piece of music or a smell will often cause us to remember an old
memory: this is using the associative nature of memory. A Hopfield net-
work is not capable of making such associations.

11.5.2 Bidirectional Associative Memories (BAMs)

A Bidirectional Associative Memory, or BAM, is a neural network first
discussed by Bart Kosko (1988) that is similar in structure to the Hopfield
network and which can be used to associate items from one set to items in
another set.

X X

X X

1 4

1 5

1

2

,

,

=

=

314 CHAPTER 11 Neural Networks

The network consists of two layers of nodes, where each node in one layer
is connected to every other node in the other layer—this means that the
layers are fully connected. This is in contrast to the Hopfield network,
which consists of just a single layer of neurons: in the Hopfield network,
each neuron is connected to every other neuron within the same layer,
whereas in the BAM, each neuron is connected just to neurons in the other
layer, not to neurons in its own layer.

As with Hopfield networks, the weight matrix is calculated from the items
that are to be learned. In this case, two sets of data are to be learned, so that
when an item from set X is presented to the network, it will recall a corre-
sponding item from set Y.

The weights matrix W is defined as:

The BAM uses a neuron with a sign activation function, which is also used
by a Hopfield network.

When the network is given a vector Xi as an input, it will recall the correspon-
ding vector Yi, and similarly, when presented with Yi, the network will recall Xi.

Let us examine a simple example:

We are using our network to learn two sets of vectors. The network has two
layers: the input layer has two neurons, and the output layer has three neurons.

The weights matrix is calculated as follows:

W =

[] +

−
−

 − − −[]

=

1

1
1 1 1

1

1
1 1 1

2 2 2

2 2 2

X

Y

1 2

1 2

1

1

1

1

1

1

1

1

1

1

=

 =

−
−

=

=
−
−
−

X

Y

W X Y= ∑ i i
t

i

n

11.5 Recurrent Networks 315

Now we will test the network. When presented with input X1, the network
will output the following vector:

If the network is functioning correctly, this should be equal to Y1:

So the network has correctly recalled Y1 when presented with X1.

Similarly, the association should work in reverse: when presented with Y1,
the network should recall X1:

Note that in this case, we are using the output layer as if it were an input
layer, and vice versa—hence, the network is bidirectional.

Like a Hopfield network, the BAM is guaranteed to produce a stable output for
any given inputs and for any training data. In fact, a Hopfield network is a type
of BAM, with the additional requirement that the weight matrix be square and

Sign

Sign

Sign

WY

X

1

1

2 2 2

2 2 2

1

1

1

6

6

1

1

()

=

=

 =

 =

Sign Sign

Sign

tW X1

1

2 2

2 2

2 2

1

1

4

4

4

1

1

1

() =

=

=

= Y

Sign tW X1()

316 CHAPTER 11 Neural Networks

that each neuron not have a connection to itself (or to its corresponding neu-
ron in the other layer). BAMs are extremely useful neural networks, although
their capabilities (and limitations) are not yet fully understood.

11.6 Unsupervised Learning Networks

The networks we have studied so far in this chapter use supervised learn-
ing: they are presented with preclassified training data before being asked
to classify unseen data. We will now look at a number of methods that are
used to enable neural networks to learn in an unsupervised manner.

11.6.1 Kohonen Maps

A Kohonen map, or self-organizing feature map, is a form of neural net-
work invented by Kohonen in the 1980s. The Kohonen map uses the win-
ner-take-all algorithm, which leads to a form of unsupervised learning
known as competitive learning. The winner-take-all algorithm uses the
principle that only one neuron provides the output of the network in
response to a given input: the neuron that has the highest activation level.
During learning, only connections to this neuron have their weights altered.

The purpose of a Kohonen map is to cluster input data into a number of clus-
ters. For example, a Kohonen map could be used to cluster news stories into
subject categories.A Kohonen map is not told what the categories are: it deter-
mines the most useful segmentation itself. Hence, a Kohonen map is particu-
larly useful for clustering data where the clusters are not known in advance.

A Kohonen map has two layers: an input layer and a cluster layer, which
serves as the output layer. Each input node is connected to every node in
the cluster layer, and typically the nodes in the cluster layer are arranged in
a grid formation, although this is not essential.

The method used to train a Kohonen map is as follows: Initially, all weights
are set to small random values. The learning rate, �, is also set, usually to a
small positive value.

An input vector is presented to the input layer of the map. This layer feeds
the input data to the cluster layer. The neuron in the cluster layer that most
closely matches the input data is declared the winner. This neuron provides
the output classification of the map and also has its weights updated.

11.6 Unsupervised Learning Networks 317

To determine which neuron wins, its weights are treated as a vector, and
this vector is compared with the input vector. The neuron whose weight
vector is closest to the input vector is the winner.

The Euclidean distance di from the input vector x of a neuron with weight
vector wi is calculated as follows:

where n is the number of neurons in the input layer and hence the number
of elements in the input vector.

For example, let us calculate the distance between the following two vectors:

So the Euclidean distance between these two vectors is 4.

The neuron for which di is the smallest is the winner, and this neuron has
its weight vector updated as follows:

This adjustment moves the weight vector of the winning neuron closer to
the input vector that caused it to win.

In fact, rather than just the winning neuron having its weights updated, a
neighborhood of neurons around the winner are usually updated. The
neighborhood is usually defined as a radius within the two-dimensional
grid of neurons around the winning neuron.

w w x wij ij j ij← + −()α

w x

d

i

i

=
−

= −

∴ = −() + +() + − −()

= + +

=

=

1

2

1

3

1

2

1 3 2 1 1 2

4 3 9

16

4

2 2 2

d w xi ij j
j

n
= −()

=
∑

2

1

318 CHAPTER 11 Neural Networks

1 2 3

4 5 6

7 8 9

Figure 11.5
The cluster layer of a
simple Kohonen map

Typically, the radius decreases over time as the training data are examined,
ending up fixed at a small value. Similarly, the learning rate is often reduced
during the training phase.

This training phase usually terminates when the modification of weights
becomes very small for all the cluster neurons. At this point, the network has
extracted from the training data a set of clusters, where similar items are con-
tained within the same cluster, and similar clusters are near to each other.

11.6.2 Kohonen Map Example

Let us examine a simplified example of a Kohonen map.

Our Kohonen map has just two inputs and nine cluster neurons, which are
arranged into a 3�3 grid, as shown in Figure 11.5.

Figure 11.5 shows how the neurons are arranged in a grid. Each node in the
cluster layer is connected to each of the two input nodes. The cluster layer
nodes are not connected to each other. The grid shown in Figure 11.5 does
not represent physical connection, but rather spatial proximity—node 1 is
close to nodes 2 and 4. This spatial proximity of neurons is used to calculate
the neighborhood set that is used to determine which weights to update
during the training phase.

Note that this square arrangement is by no means necessary. The nodes are
often arranged in a rectangular grid, but other shapes can be used equally
successfully.

Because there are two input nodes in the network, we can represent each
input as a position in two-dimensional space. Figure 11.6 shows the nine
input values that are to be used to train this network.

In Figure 11.6, x1 and x2 are the two input values that are to be presented to
the input layer, which contains two neurons.

11.6 Unsupervised Learning Networks 319

X2

X1

Figure 11.6
Training data for the
Kohonen map shown in
Figure 11.5

1

2
3

4
56

7

8 9

w2

w1

Figure 11.7
Initial weight vectors for
the Kohonen map

Note that the training data have been selected randomly from the available
space, such that they fill as much of the space as possible. In this way the
data will be as representative as possible of all available input data, and so
the Kohonen map will be able to cluster the input space optimally.

Because each neuron in the cluster layer has connections to the two input
layer neurons, their weight vectors can be plotted in two-dimensional
space. These weight vectors are initially set to random values, which are
shown in Figure 11.7. The connections between nodes in Figure 11.7 repre-
sent spatial proximity again, as in Figure 11.5.

Because there are nine cluster nodes and nine pieces of training data, we
expect the network to assign each neuron to one piece of training data.
Most real Kohonen maps consist of far more neurons, and many more
training data are usually used.

In our simple example, by running a number of iterations of the Kohonen
map, the weight vectors are modified to those shown in Figure 11.8.

In this case, it is easy to see what the map has done: by modifying the
weight vector of each neuron so that it closely resembles one training vec-
tor, the nodes have been modified so that each node will respond extremely
well to one of the input data. When a new piece of input data is presented,

320 CHAPTER 11 Neural Networks

1 2 3

54
6

7 8 9

w2

w1

Figure 11.8
Weight vectors after train-
ing the Kohonen map

it will be classified by the node whose weight vector is closest to it. Addi-
tionally, that node’s weight vector will be moved slightly toward the new
piece of input data. In this way, the network continues to learn as new data
are presented to it. By decreasing the learning rate over time, the network
can be forced to reach a stable state where the weights no longer change, or
change only very slightly, when presented with new input data.

This example illustrates the self-organizing nature of Kohonen maps.
The space-filling shape shown in Figure 11.8 is typical of the behavior of
these networks.

11.6.3 Hebbian Learning

Hebbian learning is based on Hebb’s law, which was stated by D. O. Hebb
in 1949. Hebb’s law is stated as follows:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

In terms of artificial neural networks, this rule can be restated as follows:

If two neurons that are connected to each other fire at the same time, the
weight of the connection between those neurons is increased.

Conversely, if the neurons fire at different times, the weight of the connec-
tion between them is decreased.

Neural networks use Hebbian learning to learn without needing to be given
preclassified training data.

11.7 Evolving Neural Networks 321

Using Hebbian learning, the weight of a connection between neurons i and
j is increased according to the following rule:

where � is the learning rate; xi is the input to node i, and yi is the output of
node i (and thus the input contributed to node j by node i). This rule is
known as the activity product rule.

By treating the weights of neuron i as a vector, Wi, this rule can also be
written as

where Xi is the input vector to node i, and yi is the output of node i.

The activity product rule does not allow for decreasing weights, which is
required by Hebb’s law. The rule can be modified to allow weights to be
decreased by using a forgetting factor, �, as follows:

When � is zero, the network cannot “forget,” and the weights are always
increased during learning. If � were set to 1, the network would not be able
to learn at all because it would forget everything. Usually a small value,
such as between 0.01 and 0.1, is used as the forgetting factor.

Using Hebb’s law, a neural network is able to learn to associate one input
with another input. This can be thought of as analogous to the experiment
conducted by Pavlov in which he rang a bell whenever he fed his dogs,
which led the dogs to salivate whenever they heard a bell ring.

11.7 Evolving Neural Networks

The ideas that we cover in Chapter 14 on genetic algorithms can be applied
to neural networks. Genetic algorithms can be used to evolve suitable start-
ing weight vectors for a network. This is useful because the initial weight
vector that is chosen for a network can significantly affect the ability of the
network to solve a particular problem. Neural networks suffer from many
of the problems faced by search methods presented in Part 2 of this book,

w w y x y wij ij i i i ij← + ⋅ ⋅ − ⋅ ⋅α φ

W W Xi i i iy← + ⋅ ⋅α

w w y xij ij i i← + ⋅ ⋅α

322 CHAPTER 11 Neural Networks

such as falling into local minima. By repeatedly running a full training ses-
sion on a neural network with different random starting weights, this prob-
lem can be avoided. Clearly, this problem can also be avoided by using
evolutionary methods to select starting weight vectors.

Similarly, a genetic algorithm can be used to determine the connectivity of
the network. In this way, the number of neurons and the connections
between those neurons can be evolved to produce an optimal architecture.

11.8 Chapter Summary

■ Biological neurons are the building blocks of the human brain.
Each neuron has a number of inputs, and one output, which fires
depending on the inputs.

■ Artificial neurons are modeled on biological neurons and are used
to build artificial neural networks. Artificial neurons often use a
function such as a Step function to calculate their output based on
the weighted sum of their inputs.

■ A perceptron is a very simple neuron that can model problems that
are linearly separable.

■ Multilayer neural networks, using backpropagation, can solve
problems that are not linearly separable.

■ Recurrent networks, such as Hopfield networks, allow arbitrary con-
nections between neurons within the network, which is particularly
useful for modeling functions such as the value of the stock market,
where the value at one point in time is dependent on previous values.

■ Unsupervised neural networks, such as Kohonen maps, learn to
classify without being presented any preclassified training data.

■ Hebbian learning is an unsupervised learning technique based on
the idea that if two neurons fire at the same time, then the connec-
tion between them should be strengthened.

11.9 Review Questions

11.1 Explain how the human brain uses neurons to learn. What are the
similarities and differences between artificial neurons and biologi-
cal neurons?

11.10 Exercises 323

11.2 How likely do you think it is that a neural network of the complex-
ity of the human brain will ever be built in software? In hardware?

11.3 Explain how the backpropagation algorithm is used. Why is
momentum used with backpropagation?

11.4 Explain the limitations of a perceptron. What kind of problems
can they solve? Give a real-world example.

11.5 Explain how Hopfield networks operate.

11.6 Explain the difference between supervised and unsupervised learn-
ing. When might each be most useful?

11.7 Explain what is meant by Hebbian learning. Why is forgetting
important to Hebbian learning?

11.8 Explain in detail how a Kohonen map might be used to cluster a set
of web documents in response to a user’s keyword query.

11.9 What are the advantages and disadvantages of applying evolution-
ary techniques to neural networks? What could be the ultimate
goal of such a combination?

11.10 Exercises

11.10 Run through the training process for a perceptron to calculate the
binary AND function on three inputs.

11.11 Design a multilayer neural network with two inputs and one hid-
den layer that uses the backpropagation algorithm to learn to rep-
resent the logical exclusive-OR function for two inputs. Your
network should have two nodes in the input layer, two in the hid-
den layer, and one in the output layer. Initialize the weights to ran-
dom values, and run the algorithm (on paper) for three epochs.
Comment on your results. Implement this network in the pro-
gramming language of your choice. Run it until the sum of the
squares of the errors is less than 0.001. How many epochs does the
network take to learn the exclusive-OR function? Try to modify
your program so that it learns the function in fewer epochs.

324 CHAPTER 11 Neural Networks

Figure 11.9
The 10 digits possible with
a seven-segment display

11.12 On paper, calculate the weight matrix for a Hopfield network that
is to learn the following two input vectors:

Now calculate the behavior of the network when it is presented
with X1 as an input. How does it behave when it is presented with
the following input?

11.14 Design and implement a neural network system for recognizing
numbers. You could start by building a network to recognize the 10
possible digits represented in a seven-segment LED, as shown in
Figure 11.9. If you are feeling ambitious, extend your algorithm to
work with numbers displayed in a dot-matrix display of 8-by-8
dots. What problems do you encounter?

11.11 Further Reading

There are a number of excellent introductory texts on neural networks, as
well as many more advanced ones. Introductions by Gurney (1997) and

X3

1

1

1

1

=

−
−

−

X X1 2

1

1

1

1

1

1

1

1

=

=

−
−
−
−

11.11 Further Reading 325

Callan (1999) cover most of the material introduced in this chapter. For
more advanced readings, consult the papers and books referenced below.

To learn more about evolutionary neural networks, consult Negnevitsky
(2002) or Bäck et al. (1997).

The Handbook of Brain Theory and Neural Networks: Second Edition edited
by Michael A. Arbib (2002 – MIT Press)

Handbook of Evolutionary Computation edited by T. Bäck, D. B. Fogel, and
Z. Michalewicz (1997 – Institute of Physics Publishing)

Neural Networks for Pattern Recognition by Christopher M. Bishop (1996 –
Oxford University Press)

Understanding 99% of Artificial Neural Networks: Introduction & Tricks by
Marcelo Bosque (2002 – Writers Club Press)

The Essence of Neural Networks by Robert Callan (1999 – Prentice Hall)

Fundamentals of Neural Networks by Laurene V. Fausett (1994 – Prentice Hall)

An Introduction to Neural Networks by Kevin Gurney (1997 – UCL Press)

Neural Networks: A Comprehensive Foundation by Simon S. Haykin (1998 –
Prentice Hall)

The Organisation of Behavior: A Neuropsychological Theory by D. O. Hebb
(1949 – republished in 2002 by Lawrence Erlbaum Assoc.)

Increased Rates of Convergence Through Learning Rate Adaptation by R. A.
Jacobs (1987 – in Neural Networks, Vol. 1, pp. 295–307).

Self-Organizing Maps by Teuvo Kohonen (2000 – Springer Verlag)

Bidirectional Associative Memories by Bart Kosko (1988 – in IEEE Transac-
tions Systems, Man & Cybernetics, Vol. 18, pp. 49–60).

A Logical Calculus of the Ideas Immanent in Nervous Activity by W. S.
McCulloch and W. Pitts (1943 – in Bulletin of Mathematical Biophysics, Vol.
5, pp. 115–137).

Perceptrons by Marvin Minsky and Seymour A. Papert (1969 – now avail-
able in an extended edition: Perceptrons - Expanded Edition: An Introduc-
tion to Computational Geometry. 1987 – MIT Press)

Machine Learning by Tom M. Mitchell (1997 – McGraw Hill)

Artificial Intelligence: A Guide to Intelligent Systems by Michael Negnevitsky
(2002 – Addison Wesley)

326 CHAPTER 11 Neural Networks

Computational Explorations in Cognitive Neuroscience: Understanding the
Mind by Simulating the Brain by Randall C. O’Reilly (Author) and Yuko
Munakata (2000 – MIT Press)

Understanding Intelligence by Rolf Pfeifer and Christian Scheier (2000 –
MIT Press)

The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain by F. Rosenblatt (1958 – in Psychological Review, Vol. 65,
pp. 386–408)

12CHAPTER
Probabilistic Reasoning and
Bayesian Belief Networks

But to us, probability is the very guide of life.

—Joseph Butler, The Analogy of Religion

Probable Impossibilities are to be preferred to improbable possibilities.

—Aristotle, Poetics

Do not expect to arrive at certainty in every subject which you pursue. There
are a hundred things wherein we mortals must be content with probability,
where our best light and reasoning will reach no farther.

—Isaac Watts

12.1 Introduction

This chapter introduces the ideas behind probabilistic reasoning, and in
particular Bayes’ Theorem. Thomas Bayes was an English mathematician
and theologian who lived from 1702 to 1761. His theorem is used exten-
sively today in dealing with situations that lack certainty.

This chapter explains the relationship between probability theory and the
logic that we saw in Part 3. It explains joint probability distributions and
goes on to explain Bayes’ theorem, using two examples.

This chapter explains how Bayesian belief networks can be built and used
to learn from data about which certainty is lacking. Bayesian classifiers are
also explained. The chapter also includes an introduction to the ideas

328 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

behind collaborative filtering and explains how this increasingly popular
technique relates to Bayesian reasoning.

12.2 Probabilistic Reasoning

In this section, we will present a brief introduction to probability theory and
the notation that is used to express it. Probability theory is used to discuss
events, categories, and hypotheses about which there is not 100% certainty.

The notation that we saw in Chapter 7 for making and analyzing logical
statements does not function in situations that are lacking certainty.

For example, we might write

A → B

which means that if A is true, then B is true. If we are unsure whether A is
true, then we cannot make use of this expression. In many real-world situ-
ations, it is very useful to be able to talk about things that lack certainty. For
example, what will the weather be like tomorrow? We might formulate a
very simple hypothesis based on general observation, such as “it is sunny
only 10% of the time, and rainy 70% of the time.” We can use a notation
similar to that used for predicate calculus to express such statements:

P(S) = 0.1

P(R) = 0.7

The first of these statements says that the probability of S (“it is sunny”) is
0.1. The second says that the probability of R is 0.7. Probabilities are always
expressed as real numbers between 0 and 1. A probability of 0 means “defi-
nitely not” and a probability of 1 means “definitely so.” Hence, P(S) = 1
means that it is always sunny.

Many of the operators and notations that are used in prepositional logic
can also be used in probabilistic notation. For example, P(¬S) means “the
probability that it is not sunny”; P(S ∧ R) means “the probability that it is
both sunny and rainy.”

P(A ∨ B), which means “the probability that either A is true or B is true,” is
defined by the following rule:

P(A ∨ B) = P(A) + P(B) � P(A ∧ B)

12.2 Probabilistic Reasoning 329

A B

A ∧ B

Figure 12.1
Illustrating the relation-
ship between A∧ B and
A∨ B

This rule can be seen to be true by examining the Venn diagram shown in
Figure 12.1.

The notation P(B|A) can be read as “the probability of B, given A.” This is
known as conditional probability—it is conditional on A. In other words, it
states the probability that B is true, given that we already know that A is true.

P(B|A) is defined by the following rule:

Of course, this rule cannot be used in cases where P(A) = 0.

For example, let us suppose that the likelihood that it is both sunny and
rainy at the same time is 0.01. Then we can calculate the probability that it
is rainy, given that it is sunny as follows:

P RS
P R S

P S
() =

∧()
()

=

=

0 01
0 1

0 1

.
.

.

P B A
P B A

P A
() =

∧()
()

330 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

Note that the probability that it is sunny given that it is overcast—P(S|R)—
is different from this: 0.01/0.7 = 0.14; hence, P(A|B) ≠ P(B|A).

12.3 Joint Probability Distributions

A joint probability distribution (also known as a joint) can be used to
represent the probabilities of combined statements, such as A ∧ B. For
example, the following table shows a joint probability distribution of two
variables, A and B:

A ¬A

B 0.11 0.09

¬B 0.63 0.17

This shows, for example, that P(A ∧ B) = 0.11, and that P(A ∧ ¬B) = 0.63.
By summing these two values, we can find P(A) = 0.11 + 0.63 = 0.74. Simi-
larly, P(B) = 0.11 + 0.09 = 0.2.

We can use this table to determine the probability of any logical combina-
tion of A and B. For example, P(A ∨ B) = 0.11 + 0.09 + 0.63 = 0.83. We
could have obtained this result by noting that P(¬A ∧ ¬B) = 0.17 and that
P(¬A ∧ ¬B) = 1 � P(A ∨ B) = 1 � 0.17 = 0.83.

Similarly, we can determine conditional probabilities, such as P(B|A) using
the following rule:

In this case, P(B ∧ A) = 0.11 and P(A) = 0.11 + 0.63 = 0.74, so P(B|A) =
0.11 / 0.74 = 0.15.

Calculations like this are easy when we use a joint probability of just two
variables. Real-world problems will often involve much greater numbers of
variables, and in these cases, drawing up probability distribution tables is
clearly much less straightforward.

12.4 Bayes’ Theorem

Bayes’ theorem can be used to calculate the probability that a certain event
will occur or that a certain proposition is true, given that we already know
a related piece of information.

P B A
P B A

P A
() =

∧()
()

12.4 Bayes’ Theorem 331

The theorem is stated as follows:

P(B) is called the prior probability of B. P(B|A), as well as being called the
conditional probability, is also known as the posterior probability of B.

Let us briefly examine how Bayes’ theorem is derived:

We can deduce a further equation from the rule given in Section 12.2
above. This rule is known as the product rule:

P(A ∧ B) = P(A|B)P(B)

Note that due to the commutativity of ∧, we can also write

P(A ∧ B) = P(B|A)P(A)

Hence, we can deduce:

P(B|A)P(A) = P(A|B)P(B)

This can then be rearranged to give Bayes’ theorem:

12.4.1 Example: Medical Diagnosis

Let us examine a simple example to illustrate the use of Bayes’ theorem for
the purposes of medical diagnosis.

When one has a cold, one usually has a high temperature (let us say, 80% of
the time). We can use A to denote “I have a high temperature” and B to
denote “I have a cold.” Therefore, we can write this statement of posterior
probability as

P(A|B) = 0.8

Note that in this case, we are using A and B to represent pieces of data that
could each either be a hypothesis or a piece of evidence. It is more likely
that we would use A as a piece of evidence to help us prove or disprove the
hypothesis, B, but it could work equally well the other way around (at least,
mathematically speaking).

Now, let us suppose that we also know that at any one time around 1 in
every 10,000 people has a cold, and that 1 in every 1000 people has a high
temperature. We can write these prior probabilities as

P B A
P A B P B

P A
() =

() ⋅ ()
()

P B A
P A B P B

P A
() =

() ⋅ ()
()

332 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

P(A) = 0.001

P(B) = 0.0001

Now suppose that you have a high temperature. What is the likelihood that
you have a cold? This can be calculated very simply by using Bayes’ theorem:

Hence, we have shown that just because you have a high temperature does
not necessarily make it very likely that you have a cold—in fact, the chances
that you have a cold are just 8 in 1000.

Bayes’ theorem can be extended to express a conditional probability involv-
ing more than two variables as follows:

Provided the n pieces of evidence E1 . . . En are independent of each other,
given the hypothesis H,1 then this can be rewritten as follows:

12.4.2 Example: Witness Reliability

Let us examine a further example. In the city of Cambridge, there are two
taxi companies. One taxi company uses yellow taxis, and the other uses
white taxis. The yellow taxi company has 90 cars, and the white taxi com-
pany has just 10 cars.

A hit-and-run incident has been reported, and an eye witness has stated
that she is certain that the car was a white taxi.

P H E E
P E H P E H P H

P E En
n

n
1

1

1
∧ ∧() =

() ⋅ ⋅ () ⋅ ()
∧ ∧()K

K

K

P H E E
P E E H P H

P E En
n

n
1

1

1
∧ ∧() =

∧ ∧() ⋅ ()
∧ ∧()K

K

K

P B A
P A B P B

P A
() =

() ⋅ ()
()

= ⋅

=

0 8 0 0001
0 001

0 008

. .
.

.

1In other words, if H is true, then the truth or otherwise of Ei should have no effect on the
truth of Ej for any i and j.

∧ ∧

∧ ∧

∧ ∧
∧ ∧

∧ ∧

12.4 Bayes’ Theorem 333

So far, we have the following information:

P(Y) = 0.9 (the probability of any particular taxi being yellow)

P(W) = 0.1 (the probability of any particular taxi being white)

Let us further suppose that experts have asserted that given the foggy
weather at the time of the incident, the witness had a 75% chance of cor-
rectly identifying the taxi.

Given that the lady has said that the taxi was white, what is the likelihood
that she is right?

Let us denote by P(CW) the probability that the culprit was driving a white
taxi and by P(CY) the probability that it was a yellow car.

We will use P(WW) to denote the probability that the witness says she saw a
white car and P(WY) to denote that she says she saw a yellow car. (We
assume the witness tells the truth!)

Now, if the witness really saw a yellow car, she would say that it was yellow
75% of the time, and if she says she saw a white car, she would say it was
white 75% of the time. Hence, we now know the following:

P(CY) = 0.9

P(CW) = 0.1

P(WW | CW) =0.75

P(WY | CY) = 0.75

Hence, we can apply Bayes’ theorem to find the probability, given that she is
saying that the car was white, that she is correct:

We now need to calculate P(WW)—the prior probability that the lady
would say she saw a white car.

Let us imagine that the lady is later shown a random sequence of 1000 cars.
We expect 900 of these cars to be yellow and 100 of them to be white. The
witness will misidentify 250 of the cars: Of the 900 yellow cars, she will
incorrectly say that 225 are white. Of the 100 white cars, she will incorrectly
say that 25 are yellow. Hence, in total, she will believe she sees 300 white

P C W
P WW W

W
() = ⋅

()
0 75 0 1. .

334 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

cars—even though only 100 of them are really white. So, P(WW) is
300/1000 = 0.3.

We can now complete our equation to find P(CW|WW):

In other words, if the lady says that the car was white, the probability that it
was in fact white is only 0.25—it is three times more likely that it was actu-
ally yellow!

In this example, Bayes’ theorem takes into account the actual number of
each color of taxi in the city. If the witness had said she saw a yellow taxi, it
would be very likely that she was right—but this is likely anyway because
there are so many more yellow taxis than white taxis. If the witness were a
perfect observer who made no errors, then the probability P(CW|WW)
would, of course, be 1.

This example also helps to illustrate the fact that in many real-world situa-
tions we do have enough information to be able to use Bayes’ theorem. It
can look as though Bayes’ theorem will apply only in contrived situations,
but in fact it is usually the case that obtaining the data needed to use Bayes’
theorem is easier than obtaining the posterior probability by other means.
This is particularly true in cases where there are a large number of individ-
uals being discussed.

12.4.3 Comparing Conditional Probabilities

In many situations, it can be useful to compare two probabilities. In partic-
ular, in making a diagnosis from a set of evidence, one will often have to
choose from a number of possible hypotheses.

For example, let us extend the medical example given in Section 12.4.1.
There we used A to represent the piece of evidence “I have a high tempera-
ture” and B to represent the hypothesis “I have a cold,” where

P(A) = 0.001

P(B) = 0.0001

P C WW W() = ⋅

=

0 75 0 1
0 3

0 25

. .
.

.

12.4 Bayes’ Theorem 335

P(A|B) = 0.8

Let us further use C to represent the hypothesis “I have plague,” where

P(C) = 0.000000001

P(A|C) = 0.99

In other words, it is highly unlikely for anyone to have plague, but if they
do, they will almost certainly have a high temperature.

In this case, when carrying out a diagnosis of a patient that has a high tem-
perature, it will be useful to determine which is the more likely hypothe-
sis—B or C.

Bayes’ theorem gives us the following:

Clearly, to find the more likely of B and C, given A, we can eliminate P(A)
from these equations and can determine the relative likelihood of B and C
as follows:

Hence, it is hundreds of thousands of times more likely given that a patient
has a high temperature that he has a cold than that he has plague.

12.4.4 Normalization

Normalization is the process whereby the posterior probabilities of a pair
of variables are divided by a fixed value to ensure that they sum to 1.

P B A

P C A

P A B P B

P AC P C
()
() =

() ⋅ ()
() ⋅ ()

= ⋅
⋅

=

0 8 0 001
0 95 0 000000001

842 105

. .
. .

,

P B A
P A B P B

P A

P C A
P AC P C

P A

() =
() ⋅ ()

()

() =
() ⋅ ()

()

336 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

This can be done by considering the following two equations:

Given that A is true, B must either be true or false, which means that P(B|A)
+ P(¬B|A) = 1.

Hence, we can add the two equations above to give

Now we can replace P(A) in the equation for Bayes’ theorem, to give

Hence, it is possible to use Bayes’ theorem to obtain the conditional proba-
bility P(B|A) without needing to know or calculate P(A), providing we can
obtain P(A|¬B). [P(¬B) is simply 1–P(B)].

This equation is often written as follows:

P(B|A) = � � P(A|B) � P(B)

where � represents the normalizing constant:

Let us examine our diagnosis example again. The facts we have are as follows:

P(A) = 0.001

P(B) = 0.0001

P(A|B) = 0.8

α = () ⋅ () + ¬() ⋅ ¬()
1

P A B P B P A B P B

P B A
P A B P B

P A B P B P A B P B
() =

() ⋅ ()
() ⋅ () + ¬() ⋅ ¬()

1 =
() ⋅ ()

() +
¬() ⋅ ()

()
∴ () = () ⋅ () + ¬() ⋅ ¬()

P A B P B

P A

P A B P B

P A

P A P A B P B P A B P B

P B A
P A B P B

P A

P B A
P A B P B

P A

() =
() ⋅ ()

()

¬() =
¬() ⋅ ¬()

()

12.5 Simple Bayesian Concept Learning 337

Let us now suppose that P(A|¬B) = 0.00099. This conditional probability
states the likelihood that a person will have a high temperature if she does
not have a cold (¬B). We can now thus use the following equation to calcu-
late P(B|A):

Similarly, we can calculate P(¬B|A):

The net result of this normalization process has been to ensure that P(B|A)
+ P(¬B|A) = 1. We could now carry out a similar process to calculate P(C|A)
and P(¬C|A), which would enable us to ensure that they also sum to 1.

12.5 Simple Bayesian Concept Learning

A very simple model for learning can be developed using Bayes’ rule.

Throughout the above discussion we have been talking about probabilities
of hypotheses or of specific pieces of evidence. To use probability theory in
learning, it is useful to talk about the probability that some hypothesis is
true, given a particular set of evidence. We can use the same notation for
this, and write

P(H|E)

P B A
P A B P B

P A B P B P A B P B
¬() =

¬() ⋅ ¬()
¬() ⋅ ¬() + () ⋅ ()

= ⋅
⋅ + ⋅

=

=

0 00099 0 9999
0 00099 0 9999 0 8 0 0001

0 000989901
0 001069901

0 925

. .
. . . .

.

.

.

P B A
P A B P B

P A B P B P A B P B
() =

() ⋅ ()
() ⋅ () + ¬() ⋅ ¬()

= ⋅
⋅ + ⋅

=

=

0 8 0 0001
0 8 0 001 0 00099 0 9999

0 00008
0 001069901

0 075

. .
. . . .

.
.

.

338 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

Hence, given a set of evidence, the learner can determine which hypothesis
to believe in by identifying the posterior probability of each. Let us suppose
that there are n possible hypotheses, H1 . . . Hn. Hence, for each Hi

So the algorithm could calculate P(Hi|E) for each possible hypothesis and
select the one that has the highest probability. Similarly, the system could
use this method to determine an action to take, where Hi is the hypothesis
that the best action to take in the current situation is action Ai.

In fact, the formula above can be simplified in this situation: because P(E)
is independent of Hi, it will have the same value for each hypothesis. So
because we are simply looking for the hypothesis with the maximum poste-
rior probability, we can eliminate P(E) from the calculation and simply aim
to maximize the following value:

P(E|Hi) � P(Hi)

In fact, if we assume that all hypotheses are equally likely, given no addi-
tional information (i.e., P(Hi) = P(Hj) for any i and j), we can in fact reduce
this further and simply choose the hypothesis for whom the value P(E|Hi)
is the highest. This value is known as the likelihood of the evidence E, given
hypothesis Hi. Of course, by learning from observations what the prior
probabilities are of each of the hypotheses, more accurate results can be
obtained, but the simpler formula is more efficient in calculation time.

Recall the discussion from Chapter 7 of abduction and inductive reason-
ing. These are really a form of learning: by observing the events that occur,
we are able to make reasonable guesses about future events, and these
guesses can often guide our actions. For example, if a robot observed that
every time it heard a particular noise, an enemy robot appeared, it might
learn to hide when it heard that noise. In doing so, it is learning from expe-
rience and using Bayesian reasoning to decide upon the correct course of
action. The robot is not using rules of logical deduction, such as modus
ponens, which was explained in Chapter 7, but a rather more probabilistic
form of reasoning, along the lines of “I have noticed in the past that when
this noise occurs, an enemy appears. I have also noticed in the past that if I

P H E
P E H P H

P Ei
i i() =

() ⋅ ()
()

12.6 Bayesian Belief Networks 339

A

C D

B

E
Figure 12.2
A simple belief network

do not hide when an enemy appears, I get hurt by the enemy. Hence, I
should probably hide when I hear the noise.”

Humans use learning of this kind all the time, and it is essential for learning
in situations in which there is very little certainty, such as the real world.

12.6 Bayesian Belief Networks

The concept of dependence is very important in probability theory. Two
events, A and B, are independent if the likelihood of occurrence of A is
entirely unrelated to whether or not B occurs.

For example, in tossing two coins, the likelihood that the first coin will come
up heads and the likelihood that the second coin will come up heads are two
independent probabilities because neither one depends on the other.

If A and B are independent, then the probability that A and B will both
occur can be calculated very simply:

P(A ∧ B) = P(A).P(B)

We know that this equation does not hold if A depends on B because we
have already seen the following equation:

By comparing these two equations, we can see that A and B are independ-
ent if P(B|A) = P(B). In other words, the likelihood of B is unaffected by
whether or not A occurs. B is independent of A. If B is dependent on A,
then P(B|A) will be different from P(B).

These relationships can be expressed extremely succinctly in a belief net-
work, such as the one shown in Figure 12.2.

P B A
P B A

P A
() =

∧()
()

340 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

A Bayesian belief network is an acyclic directed graph, where the nodes in
the graph represent evidence or hypotheses, and where an arc that connects
two nodes represents a dependence between those two nodes.

The belief network in Figure 12.2 contains five nodes that represent pieces
of evidence (A and B) and three hypotheses (C, D, and E). The arcs between
these nodes represent the interdependence of the hypotheses. According to
this diagram, C and D are both dependent on A, and D and E are both
dependent on B. Two nodes that do not have an arc between them are inde-
pendent of each other. For example, B is independent of A.

Each node in the network has a set of probabilities associated with it, based on
the values of the nodes on which it is dependent. Hence, A and B both have
just prior probabilities, P(A) and P(B), because they are not dependent on any
other nodes. C and E are each dependent on just one other node. Hence, for
example, P(C) must be represented in the two cases—A is true and A is false.
P(D) must be represented in four cases, depending on the values of A and B.

For example, the following conditional probabilities might be used in the
network shown in Figure 12.2:

P(A) = 0.1

P(B) = 0.7

P(C|A) = 0.2

P(C|¬A) = 0.4

P(D|A ∧ B) = 0.5

P(D|A ∧ ¬B) = 0.4

P(D|¬A ∧ B) = 0.2

P(D|¬A ∧ ¬B) = 0.0001

P(E|B) = 0.2

P(E|¬B) = 0.1

The above list of probabilities, combined with the diagram shown in Figure
12.2, represent a complete (rather simple) Bayesian belief network. The
network states beliefs about a set of hypotheses or pieces of evidence and
the ways that they interact.

These probabilities can also be expressed in the form of conditional prob-
ability tables, as follows:

12.6 Bayesian Belief Networks 341

Compare these tables with the logical truth tables described in Chapter 7.
In those tables, a logical value (true or false) was given for a variable that
depended on the values of one or more other variables. Hence, a condi-
tional probability table is very similar to a truth table, except that it
expresses the probability of one variable, given the truth values of one or
more other variables.

A joint probability can be calculated from the Bayesian belief network
using the definition of conditional probability:

Hence,

P(A,B,C,D,E) = P(E|A,B,C,D) � P(A,B,C,D)

We can apply this rule recursively to obtain

P(A,B,C,D,E) = P(E|A,B,C,D,) � P(D|A,B,C,) � P(C|A,B) � P(B|A) � P(A)

In fact, the nature of our belief network allows us to simplify this expres-
sion, and because we know that, for example, E is not dependent on A, C, or
D, we can reduce P(E|A,B,C,D) to P(E|B).

P(A,B,C,D,E) = P(E|B) � P(D|A,B) � P(C|A) � P(B) � P(A)

P B A
P B A

P A
() =

∧()
()

P(A) P(B)

0.1 0.7

A P(C) B P(E)

true 0.2 true 0.2

false 0.4 false 0.1

A B P(D)

true true 0.5

true false 0.4

false true 0.2

false false 0.0001

342 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

We have now greatly reduced the complexity of the calculation needed to
compute the joint probability. This has only been possible due to the way in
which the nodes were ordered in the original expression. For example, if we
used the same method blindly on the expression

P(E,D,C,B,A)

we would be left with the following expression:

P(E,D,C,B,A) = P(A|E,D,C,B) � P(B|E,D,C) � P(C|E,D) � P(D|E) � P(E)

This is not correct because E is dependent on B, and so we need to include
P(E|B). Similarly, D is dependent on A and B, which is not reflected in this
expression.

In other words, to calculate the joint probability, the nodes must be ordered
in the expression in such a way that if a node X is dependent on another
node Y, then X appears before Y in the joint. Hence, we could have used any
ordering in which A and B appear before C, D, and E; B,A,E,D,C would
have worked equally well, for example.

As a result of this, when constructing a Bayesian belief network, it is essential
that the graph be constructed in the correct order—in other words, in an
order such that the connections between nodes makes logical sense. This usu-
ally means starting with causes and then adding the events they cause, and
then treating those events as causes, and adding any further events they cause.

The nature of Bayesian belief networks means that in general they are an
efficient way of storing a joint probability distribution. The network does
not store the conditional probability P(X|Y) if X and Y are independent of
each other, given the parents of X. In the network shown in Figure 12.2, for
example, this means that P(E|A) does not need to be stored.

12.6.1 Example: Life at College

Let us examine the simple Bayesian belief network shown in Figure 12.3.

In Figure 12.3, the five nodes represent the following statements:

C = that you will go to college

S = that you will study

P = that you will party

E = that you will be successful in your exams

F = that you will have fun

12.6 Bayesian Belief Networks 343

C

S

E F

P

Figure 12.3
A Bayesian network to rep-
resent activities at college

This network shows us at a glance that if you go to college, this will affect
the likelihood that you will study and the likelihood that you will party.
Studying and partying affect your chances of exam success, and partying
affects your chances of having fun.

To complete the Bayesian belief network, we need to include the condi-
tional probability tables. Let us define these as follows:

P(C)

0.2

C P(S)

true 0.8

false 0.2

C P(P)

true 0.6

false 0.5

S P P(E)

true true 0.6

true false 0.9

false true 0.1

false false 0.2

344 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

Note that according to this belief network there is a dependence between F
and C, but because it is not a direct dependence, no information needs to
be stored about it.

These conditional probability tables give us all the information we need
to carry out any reasoning about this particular domain. For example, we
can clearly obtain values such as P(¬C) by using the fact that

P(¬C) = 1 � P(C) = 1 � 0.2 = 0.8.

We can use the network to determine conditional probabilities, such as
P(F|P) by observing that in the final table, if P is true, then P(F) = 0.9.
Hence, P(F|P) = 0.9.

The joint probability distribution for this domain represents the entire
state of the domain. We can represent such a state using the notation as
used in the following example:

P(C = true, S = true, P = false, E = true, F = false)

We can simplify this notation as follows:

P(C, S, ¬P, E, ¬F)

This represents the probability that you will go to college and that you will
study and be successful in your exams, but will not party or have fun. This
probability can be calculated using the following rule:

where E is the evidence on which each xi is dependent—in other words, in
the Bayesian belief network, E consists of the nodes that are parents of xi.
For example, using the network shown in Figure 12.3, we can calculate the
following probability:

P x x P x En i
i

n

1
1

, ,K() = ()
=

∏

P P(F)

true 0.9

false 0.7

12.6 Bayesian Belief Networks 345

P(C,S,¬P,E,¬F) = P(C) � P(S|C) � P(¬P|C) � P(E|S ∧ ¬P) � P(¬F|¬P)

= 0.2 � 0.8 � 0.4 � 0.9 � 0.3

= 0.01728

Hence, for S we need to include in the product P(S|C) because S is only
dependent on C, and C is true in the situation we are examining. Similarly,
for E we need to include P(E|S ∧ ¬P) because E is dependent on S and on P,
and S is true and P is not true in the scenario.

We can also calculate more complex conditional probabilities. In fact, this
is an extremely simple process, due to the way in which the belief network
has been created. For example, let us look at the following conditional
probability:

P(E|F ∧ ¬P ∧ S ∧ C)

This is the probability that you will have success in your exams if you have
fun and study at college, but don’t party.

The assumption behind the Bayesian belief network is that because there is
no direct connection between E and C, E is independent of C, given S and
P. In other words, if we wish to calculate the following:

P(E|C ∧ S ∧ P)

we can in fact drop C from this altogether, and simply obtain

P(E|S ∧ P) = 0.6

Similarly, the more complex conditional probability above can be simpli-
fied by dropping F and C to give

P(E|S ∧ ¬P) = 0.9

Hence, any calculation that we might need to make about this domain
can be made simply using the conditional probability tables of the
belief network.

Similarly, we can make diagnoses about your college life by determining
posterior probabilities. For example, let us say that we know that you had
fun and studied hard while at college and we know that you succeeded in
your exams, but we want to know whether you partied or not.

346 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

Clearly, we know C, S, E, and F, but we do not know P. We need to deter-
mine the most likely value for P. Hence, we can compare the values of the
following two expressions:

P(C ∧ S ∧ P ∧ E ∧ F) = P(C) � P(S|C) � P(P|C) � P(E|S ∧ P) � P(F |P)

= 0.2 � 0.8 � 0.6 � 0.6 � 0.9

= 0.05184

P(C ∧ S ∧ ¬P ∧ E ∧ F)= P(C) � P(S|C) � P(¬P|C) � P(E|S ∧ ¬P) � P(F |¬P)

= 0.2 � 0.8 � 0.4 � 0.9 � 0.7

= 0.04032

Hence, it is slightly more likely that you did party while at college than that
you did not.

12.6.2 Example: Chapter Dependencies

We will now examine a simple example of a slightly unusual Bayesian net-
work. Rather than each node representing a hypothesis or a piece of diag-
nostic information, each node in the Bayesian network shown in Figure
12.4 represents a chapter of this book. The arcs between nodes represent
the dependencies between chapters. For example, the network shows that if
you plan to read Chapter 8, which covers logical proof by resolution, it is a
good idea to have read Chapter 7 on propositional and predicate logic first.

To see this as a more standard belief network, we can consider each node to
represent the likelihood that you have read a given chapter and that a
dependency from Chapter 8 to Chapter 7, for example, represents the fact
that, if you have read Chapter 8, it is likely that you have also read Chapter
7. For this network to be useful to you in deciding which order to read the
chapters, you can think of the dependencies as being advice about whether
you should read a particular chapter before reading another.

12.7 The Noisy-V Function

Thus far, we have assumed that the probabilities contained with a joint
probability distribution are unrelated to each other, in the sense that they
have been determined by observing the way in which events occur. In
some situations, it can be possible to use the fact that events in a Bayesian

12.7 The Noisy-V Function 347

7
Propositional and
Predicate Logic

8
Inference and Resolution

for Problem Solving

9
Rules and

Expert Systems

3
Knowledge

Representation

4
Search

Methodologies

5
Advanced

Search

6
Game Playing

13
Artificial Life

14
Genetic

Algorithms

19
Intelligent

Agents

10
Introduction to

Machine Learning

11
Neural

Networks

12
Probablilistic Reasoning and

Bayesian Belief Networks

16
Planning Methods

15
Introduction to

Planning

17
Advanced Knowledge

Representation

18
Fuzzy

Reasoning

20
Understanding

Language

21
Machine
Vision

Figure 12.4
A Bayesian belief network that shows dependencies between chapters in this book

belief network are related to each other by some kind of mathematical or
logical relation.

Clearly, logical relations such as ∧ and ∨, as defined in propositional logic,
will not do because they do not provide a way to handle probabilities.
Fuzzy logic (which is described in Chapter 18) could provide suitable rela-
tions. Another useful class of relations is noisy logical relationships.

348 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

Let us return to our diagnosis example. We use P(A|B) to represent the
probability that if one has a cold, then one will also have a high tempera-
ture. Similarly, we used P(A|C) to represent the probability that if one has
the plague, then one will also have a high temperature.

We have the following:

P(A|B) = 0.8

P(A|C) = 0.99

The noisy-∨ function is based on the assumption that the only possible
causes of a high temperature are a cold and the plague (i.e., that P(A|B ∨ C)
= 1. Clearly this is not true for our example, but we can fix this by including
a leak node in the network, which represents all other possible causes.
Hence, we will further include P(A|D) = 0.9, where D is the leak node,
which represents other causes of a high temperature.

Let us now define the noise parameters for these relationships. The noise
parameters are simply defined as the conditional probabilities for ¬A,
rather than for A, and can be obtained as follows:

P(¬A|B) = 1 � P(A|B) = 0.2

P(¬A|C) = 1 � P(A|C) = 0.01

P(¬A|D) = 1 � P(A|D) = 0.1

A further assumption in using the noisy-∨ function is that the causes of a
high temperature are independent of each other and, similarly, that the
noise parameters (whatever it is that stops each illness from causing a high
temperature) are independent of each other.

The noisy-∨ function for B, C, and D is defined as follows:

If B, C, and D are all false, then P(A) = 0. Otherwise, P(¬A) is equal to the
product of the noise parameters for all the variables that are true. For
example, if B is true and C and D are false, then P(¬A) is equal to the noise
parameter for B, and so

P(A) = 1 � 0.2

= 0.8

If C and D are both true, and B is false, then P(¬A) is equal to the product
of the noise parameters for C and D, and so

P(A) = 1 � (0.01 � 0.1)

= 0.999

12.8 Bayes’ Optimal Classifier 349

Now we can define the noisy-∨ function for our diagnosis example:

B C D P(A) P(¬A)

false false false 0 1

false false true 0.9 0.1

false true false 0.99 0.01

false true true 0.999 0.01 � 0.1 = 0.001

true false false 0.8 0.2

true false true 0.98 0.2 � 0.1 = 0.02

true true false 0.998 0.2 � 0.01 = 0.002

true true true 0.9998 0.2 � 0.01 � 0.1 = 0.0002

Note that this noisy logical function is defined by just three conditional
probabilities, as opposed to needing to store eight values. For Bayesian
belief networks used in the real world with hundreds or even thousands of
nodes, this can make a significant difference.

12.8 Bayes’ Optimal Classifier

It is possible to use Bayesian reasoning to build a system that learns to clas-
sify data.

For example, let us suppose that for a given piece of data, y, there are five
possible hypotheses, H1 . . . H5, each of which assigns a classification to y.
The classification, c, can be any value from a set C. For this example, let us
assume that C consists of the values true and false.

Our classifier knows the posterior probabilities of each of the five hypothe-
ses to be the following:

P(H1|x1, . . ., xn) = 0.2

P(H2|x1, . . ., xn) = 0.3

P(H3|x1, . . ., xn) = 0.1

P(H4|x1, . . ., xn) = 0.25

P(H5|x1, . . ., xn) = 0.15

where x1 to xn are the training data.

350 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

The probability that the new item of data, y, should be classified with clas-
sification cj is defined by the following:

where m is the number of available hypotheses, which in this case is 5. The
optimal classification for y is the classification cj for which P(cj|x1 . . . xn) is
the highest.

In our case, there are two classifications:

c1 = true

c2 = false

Let us suppose that hypotheses H3 and H5 each define y as true, while H1,
H2, and H4 define y as false.

Hence, we have the following posterior probabilities:

P(false|H1) = 0 P(true|H1) = 1

P(false|H2) = 0 P(true|H2) = 1

P(false|H3) = 1 P(true|H3) = 0

P(false|H4) = 0 P(true|H4) = 1

P(false|H5) = 1 P(true|H5) = 0

Thus we can calculate the posterior probabilities for each of the two possi-
ble classifications for y as follows:

Hence, the optimal classification for y is true.

P false x x P false H P H x xn i i n
i

1 1
1

5

0 1 0 15

0 25

K K() = () ⋅ ()
= +

=

=
∑

. .

.

P true x x P true H P H x xn i i n
i

1 1
1

5

0 2 0 3 0 25

0 75

K K() = () ⋅ ()
= + +

=

=
∑

. . .

.

P c x x P c h P h x xj n j i i n
i

m

1 1
1

K K() = () ⋅ ()
=
∑

12.9 The Naïve Bayes Classifier 351

This method is known as an optimal classifier because it provides the best
possible classification system. Another classification system, given the same
data, can only hope to classify unseen data as well as this method—it can-
not do better than the optimal classifier, on average.

12.9 The Naïve Bayes Classifier

The naïve Bayes classifier is a simple but effective learning system. Each
piece of data that is to be classified consists of a set of attributes, each of
which can take on a number of possible values. The data are then classified
into a single classification.

To identify the best classification for a particular instance of data (d1, . . .,
dn), the posterior probability of each possible classification is calculated:

P(ci| d1, . . ., dn)

where ci is the ith classification, from a set of |c| classifications.

The classification whose posterior probability is highest is chosen as the
correct classification for this set of data. The hypothesis that has the highest
posterior probability is often known as the maximum a posteriori, or
MAP hypothesis. In this case, we are looking for the MAP classification.

To calculate the posterior probability, we can use Bayes’ theorem and
rewrite it as

Because we are simply trying to find the highest probability, and because
P(d1, . . ., dn) is a constant independent of ci, we can eliminate it and simply
aim to find the classification ci, for which the following is maximized:

P(d1, . . ., dn|ci) � P(ci)

The naïve Bayes classifier now assumes that each of the attributes in the
data item is independent of the others, in which case P(d1, . . ., dn|ci) can be
rewritten and the following value obtained:

P c P d ci j i
j

n
() ⋅ ()

=
∏

1

P d d c P c

P d d
n i i

n

1

1

, ,

, ,

K

K

() ⋅ ()
()

352 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

The naïve Bayes classifier selects a classification for a data set by finding the
classification ci for which the above calculation is a maximum.

For example, let us suppose that each data item consists of the attributes x,
y, and z, where x, y, and z are each integers in the range 1 to 4.

The available classifications are A, B, and C.

The example training data are as follows:

x y z Classification

2 3 2 A

4 1 4 B

1 3 2 A

2 4 3 A

4 2 4 B

2 1 3 C

1 2 4 A

2 3 3 B

2 2 4 A

3 3 3 C

3 2 1 A

1 2 1 B

2 1 4 A

4 3 4 C

2 2 4 A

Hence, we have 15 pieces of training data, each of which has been classified.
Eight of the training data are classified as A, four as B, and three as C.

Now let us suppose that we are presented with a new piece of data, which is

(x = 2, y = 3, z = 4)

We need to obtain the posterior probability of each of the three classifica-
tions, given this piece of training data. Note that if we were to attempt to cal-
culate P(ci|x = 2, y = 3, z = 4) without having made the simplifying step that

12.9 The Naïve Bayes Classifier 353

we took above, in assuming that the attribute values are independent of each
other, then we would need to have had many more items of training data to
proceed. The naïve Bayes classifier requires far fewer items of training data.

We must now calculate each of the following:

P(A) � P(x = 2|A) � P(y = 3|A) � P(z = 4|A)

P(B) � P(x = 2|B) � P(y = 3|B) � P(z = 4|B)

P(C) � P(x = 2|C) � P(y = 3|C) � P(z = 4|C)

Hence, for classification A, we obtain the following:

This was calculated by observing that of the 15 items of training data, 8 were
classified as A, and so P(A) = 8/15. Similarly, of the eight items of training
data that were classified as A, five had x = 2, two had y = 3, and four had z =
4, and so P(x = 2|A) = 5/8, P(y = 3 |A) = 2/8, and P(z = 4|A) = 4/8.

Similarly, we obtain the posterior probability for category B:

and for category C:

Hence, category A is chosen as the best category for this new piece of data,
with category C as the second best choice.

Let us now suppose that we are to classify the following piece of unseen data:

(x = 1, y = 2, z = 2)

As before, we would calculate the posterior probability for A. However, in
calculating the probabilities for B and C, we would have problems. In the
case of category B, we would have

P(x = 1|B) = 1/5

P(y = 2|B) = 1/5

P(z = 2|B) = 0

Because there are no training examples with z = 2 that were classified as B, we
have a posterior probability of 0. Similarly, for category C, we end up with

3
15

1
3

2
3

1
3

0 015⋅ ⋅ ⋅ = .

4
15

1
4

1
4

2
4

0 0083⋅ ⋅ ⋅ = .

8
15

5
8

2
8

4
8

0 0417⋅ ⋅ ⋅ = .

354 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

P(x = 1|C) = 0

P(y = 2|C) = 0

P(z = 2|C) = 0

In this case, we clearly must select category A as the best choice for the data,
but it appears to be based on a fairly inadequate comparison because insuf-
ficient training data were available to properly compute posterior probabil-
ities for the other categories.

This problem can be avoided by using the m-estimate, as follows:

We wish to determine the probability of a particular attribute value, given a
particular classification, such as P(x = 1|C). We will estimate this probabil-
ity according to the following formula:

where a = the number of training examples that exactly match our require-
ments (e.g., for P(x = 1|C), a is the number of training examples where x =
1 and that have been categorized as C. In this example, a is 0); b = the num-
ber of training examples that were classified in the current classification
(i.e., for P(x = 1|C), b is the number of items of training data that were
given classification C); p = an estimate of the probability that we are trying
to obtain (usually this is obtained by simply assuming that each possible
value is equally likely—hence, in our example, for P(x = 1|C), p = 1/4 =
0.25, as it would be for each of the other three possible values for x); m is a
constant value, known as the equivalent sample size.

For example, let us use an equivalent sample size of 5 and determine the
best classification for (x = 1, y = 2, z = 2):

For category A, we first need to calculate the probability for each of the
three attributes.

Hence, for x = 1:

For y = 2:

2 5
4

8 5
0 25

+
+

= .

a mp
b m

+
+

12.9 The Naïve Bayes Classifier 355

For z = 2:

Hence, the posterior probability estimate for A is

Similarly, we can now obtain posterior probability estimates for cate-
gories B and C:

For category B, we obtain the following three probabilities:

This gives us a posterior probability for category B as follows:

Finally, the posterior probability for category C can be obtained. We note
first that each of the three probabilities is the same because none of the
attribute values occur in the training data with category C. Hence, the
probability we use will be

Hence, the posterior probability for category C is as follows:

Hence, using this estimate for probability, we find that category B is the
best match for the new data, and not category A as would have been
obtained using the simpler probability estimates.

3
15

0 156 0 156 0 156 0 0008⋅ ⋅ ⋅ =. . . .

0 5
4

3 5
0 156

+
+

= .

5
15

0 225 0 325 0 125 0 0091⋅ ⋅ ⋅ =. . . .

1 5
4

5 5
0 225

2 5
4

5 5
0 325

0 5
4

5 5
0 125

+
+

=
+
+

=
+
+

=. , . , .

8
15

0 25 0 33 0 17 0 0076⋅ ⋅ ⋅ =. . . .

1 5
4

8 5
0 17

+
+

= .

3 5
4

8 5
0 33

+
+

= .

356 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

It is possible to further simplify the naïve Bayes classifier by considering the val-
ues to be positionless within each item of data. In other words, when consider-
ing a new item of data, rather than assigning values to three attributes, we can
simply think of the data as consisting of three values, whose order is arbitrary.

For example, consider the piece of new data (2, 3, 4).

In this case, we use the same method as before, but rather than considering
the probability that, for example, x = 2 when an item is classified as A, we
simply consider the probability that any attribute has value 2.

This simplified version of the naïve Bayes classifier is often used in text clas-
sification applications. Here, the categories are often simply “relevant” and
“irrelevant,” and the data to be classified consist of the words contained
within textual documents. For example, an item of data might be (“the,”
“cat,” “sat,” “on,” “the,” “mat”). Training data would be presented in the
form of a set of documents that has been preclassified as relevant and a set
that has been preclassified as irrelevant. This form of textual analysis is dis-
cussed in more detail in Chapter 20, which is concerned with information
retrieval and natural language processing.

12.10 Collaborative Filtering

A further practical use for Bayesian reasoning is in collaborative filtering.
Collaborative filtering is a technique that is increasingly used by online
stores (such as Amazon.com) to provide plausible suggestions to customers
based on their previous purchases. The idea behind collaborative filtering
can be stated very simply: if we know that Anne and Bob both like items A,
B, and C, and that Anne likes D, then it is reasonable to suppose that Bob
would also like D.

Collaborative filtering can be implemented in a number of ways, and the
Bayesian inference has proved to be a successful method. This involves
working with posterior probabilities such as the following:

P(Bob Likes Z | Bob likes A, Bob likes B, . . ., Bob Likes Y)

Clearly, for this mechanism to work accurately, large amounts of data must
be collected. Information about thousands of individuals is needed, and
information is required about dozens or hundreds of items for each indi-
vidual. In the case of commerce sites, this information can be collected on

12.11 Chapter Summary 357

P(Will Enjoy C) = 0.5

P(Will Enjoy C) = 0.7P(Will Enjoy C) = 0.9

Yes

Enjoys
Book A?

No

Yes No

Enjoys
Book B?

Figure 12.5
A decision tree for collabo-
rative filtering

the basis of assuming that if a user buys a book or a CD, then he probably
likes it. More accurate data can be collected by asking users to rate products.

To see how collaborative filtering works, consider the simple decision tree
shown in Figure 12.5.

The decision tree in Figure 12.5 relates enjoyment of book C to informa-
tion about enjoyment of books A and B. It states that if you did not enjoy
book A, then you will only have a 0.5 probability of enjoying book C. On
the other hand, if you did enjoy book A and also enjoyed book B, then you
will have a 0.9 chance of enjoying book C.

A full collaborative filtering system would have one decision tree for each
item. A full Bayesian belief network would then be built from these deci-
sion trees, which can be used to make inferences about a new person on the
basis of their likes or dislikes.

12.11 Chapter Summary

■ Probabilistic reasoning uses a notation similar to first-order predi-
cate calculus, but with the addition of terms such as P(A) = 0.5,
which states that the probability that A is true (or that A will
occur) is 0.5.

■ Conditional probability is defined as

P B A
P B A

P A
() =

∧()
()

358 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

■ This means the probability that B will occur, given that we
already know A.

■ The joint probability distribution (or joint) is used to represent
probabilities concerning more than one variable.

■ Bayes’ theorem can be used to determine the posterior (condi-
tional) probability:

■ Bayesian concept learning involves selecting the most likely
hypothesis to explain a piece of data, using Bayes’ theorem to cal-
culate posterior probabilities.

■ A Bayesian belief network is an acyclic directed graph, where the
nodes in the graph represent evidence or hypotheses, and where an
arc that connects two nodes represents a dependence between
those two nodes.

■ Bayes’ optimal classifier uses Bayes’ theorem to learn to classify
items of data. No other classifier can perform better than the opti-
mal classifier, on average.

■ The naïve Bayes classifier uses the simplifying assumption that all
the variables used to represent data for classification are independ-
ent of each other.

■ Collaborative filtering is used to guess an individual’s likes or dis-
likes based on prior information about other interests. One very
successful method for collaborative filtering is to build a Bayesian
belief network, based on a set of decision trees.

12.12 Review Questions

12.1 Explain what is meant by the conditional probability of an event.

12.2 “Bayes’ theorem uses a conditional probability and two prior prob-
abilities to calculate just one conditional probability. That doesn’t
sound like it’s very helpful.” Discuss this comment.

12.3 Explain the purpose of the noisy-∨ function.

12.4 Explain how Bayes’ theorem can be used to develop learning systems.

P B A
P A B P B

P A
() =

() ⋅ ()
()

12.14 Further Reading 359

12.5 Explain how Bayes’ optimal classifier and the naïve Bayes classifier
work.

12.6 Explain why collaborative filtering is such a useful technique. How
successful do you believe it can be? What might limit its efficacy?

12.13 Exercises

12.1 Implement a Bayesian belief network in the programming lan-
guage of your choice to represent a subject in which you are inter-
ested (for example, you might use it to diagnose medical
conditions from symptoms, or to deduce a band from a descrip-
tion of the band’s music).

12.2 Implement the naïve Bayes classifier in the programming language
of your choice, and use it to classify pages of text, based on which
words appear on the page. To do this, you will first need to train the
classifier with preclassified examples of pages. You should choose
two classifications: interesting and not interesting, and try to make
the interesting category fairly narrow: for example, it might be
“pages about Bayesian reasoning.” What happens if you make the
category very broad (such as “pages I find interesting”)?

12.3 Use the following facts to calculate normalized values for P(B|A)
and P(¬B|A):

P(A) = 0.0025

P(B) = 0.015

P(A|B) = 0.6

P(A|¬B) = 0.25

12.4 Examine the collaborative filtering mechanism used by an online
shopping system. How effective do you think it is? Might there be
more effective methods to achieve the same goal? What kinds of
mistakes does the mechanism make? In what situations does it per-
form well?

12.14 Further Reading

If you are interested in seeing the original proposal of Bayes’ theorem by
Thomas Bayes from 1763, you can find it in Swinburne (2002). You can read

360 CHAPTER 12 Probabilistic Reasoning and Bayesian Belief Networks

more about collaborative filtering by exploring the writings of Patti Maes. A
less technical explanation can be found in Riedl and Konstan (2002).

Modeling the Internet and the Web: Probabilistic Methods and Algorithms by
Pierre Baldi, Paolo Frasconi, and Padhraic Smyth (2003 – John Wiley & Sons)

Bayesian Theory by José M. Bernardo and Adrian F. M. Smith (2001 – John
Wiley & Sons)

Empirical Analysis of Predictive Algorithms for Collaborative Filtering by
John S. Breese, David Heckerman, and Carl Kadie (1998 – in Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence)

Expert Systems and Probabilistic Network Models by Enrique Castillo, Jose
Manuel Gutierrez, and Ali S. Hadi (1997 – Springer Verlag)

Probabilistic Networks and Expert Systems edited by Robert G. Cowell (1999
– Springer Verlag)

Bayesian Methods for Nonlinear Classification and Regression by David G. T.
Denison, Christopher C. Holmes, Bani K. Mallick, and Adrian F. M. Smith
(2002 – John Wiley & Sons)

Bayesian Data Analysis by Andrew Gelman, Donald B. Rubin, and Hal S.
Stern (2003 – CRC Press)

Probabilistic Theory of Pattern Recognition by Luc Devroye, Laszlo Gyorfi,
and Gabor Lugosi (1998 – Springer Verlag)

Making Decisions by D. V. Lindley (1991 – John Wiley & Sons)

Learning Bayesian Networks by Richard E. Neapolitan (2003 – Prentice Hall)

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
by Judea Pearl (1997 – Morgan Kaufmann)

Word of Mouse: The Marketing Power of Collaborative Filtering by John
Riedl and Joseph Konstan (2002–Warner Books)

The Bayesian Choice: From Decision-Theoretic Foundations to Computa-
tional Implementation by Christian P. Robert (2001 – Springer Verlag)

Monte Carlo Statistical Methods by Christian P. Robert and George Casella
(1999 – Springer Verlag)

The Evidential Foundations of Probabilistic Reasoning by David A. Schum
(2001 – Northwestern University Press)

12.14 Further Reading 361

Social Information Filtering: Algorithms for Automating “Word of Mouth by
U. Shardanand and P. Maes (1995 – in Proceedings of CHI’95—Human Fac-
tors in Computing Systems, pp. 210–217)

Data Analysis: A Bayesian Tutorial by D. S. Sivia (1996 – Oxford Univer-
sity Press)

Bayes’s Theorem (Proceedings of the British Academy, Vol. 113) edited by
Richard Swinburne (2002 – British Academy)

This page intentionally left blank

13CHAPTER
Artificial Life: Learning
through Emergent Behavior

Natural Selection is the blind watchmaker, blind because it does not see
ahead, does not plan consequences, has no purpose in view. Yet the living
results of natural selection overwhelmingly impress us with the appearance of
design as if by a master watchmaker, impress us with the illusion of design
and planning.

—Richard Dawkins, The Blind Watchmaker

Agents can become more complex in two ways. First, a designer can identify a
functionality that the agent needs to achieve, then investigate possible behav-
iors that could realize the functionality, and then introduce various mecha-
nisms that give rise to the behavior. Second, existing behavior systems in
interaction with each other and the environment can show side effects, in other
words, emergent behavior.

—Luc Steels, The Artificial Life Roots of Artificial Intelligence

All things are artificial, for nature is the art of God.

—Sir Thomas Browne, Religio Medici

13.1 Introduction

This chapter provides a broad introduction to the subject of Artificial Life.
Artificial Life techniques use methods modeled on the behavior of living
systems in much the same way that Artificial Intelligence techniques use
methods modeled on the way the human brain works. Many Artificial Life

364 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

techniques (in particular, genetic algorithms) are an established part of the
field of Artificial Intelligence.

This chapter starts by attempting to define “life”—a difficult problem, but
one that needs to be discussed in order to consider Artificial Life. Emergent
behavior is one of the most important concepts of Artificial Life—the idea
that systems that are defined in a simple way can produce their own behav-
ior, which can be remarkably complex.

The chapter introduces a number of Artificial Life techniques, many of which
illustrate emergent behavior. Techniques such as cellular automata, genetic
programming, evolutionary programming, and classifier systems are dis-
cussed. Discussion of classifier systems provides an introduction to the subject
of genetic algorithms, which is covered in much more detail in Chapter 14.

The chapter also looks at the ways in which systems might be built that are
self-reproducing, and a number of systems are explored that model evolution.

As you will see in this chapter and the next, Artificial Life (or A-Life) tech-
niques build on a number of Artificial Intelligence techniques and provide
ways in which systems can adapt (or evolve) to changing conditions. Classi-
fier systems, which are explored in Section 13.12, show how the addition of
evolutionary techniques to production systems (which are discussed in
Chapter 9) can enable them to respond to changes in their environment
and to learn to deal with unexpected situations.

13.2 What Is Life?

What does it mean to be alive? What differentiates living creatures from
nonliving things? This is a question to which there is still no satisfactory
answer. Aristotle, the Greek philosopher, said that a thing was alive if it
could “nourish itself and decay.” The following is a list of properties that are
also often considered to be indicative of life:

■ self-reproduction

■ ability to evolve by Darwinian natural selection

■ response to stimuli

■ ability to die

■ growth or expansion

13.3 Emergent Behavior 365

Even this short list has problems. Mules are certainly alive, but they cannot
reproduce. The question of whether viruses are alive is not universally
agreed. Most lists of properties of life exclude some living creatures or
include some things that may not be alive.

In other words, it is very difficult to define what life is. Hence, it is not nec-
essarily easy to exclude artificial entities—even patterns of data or com-
puter programs such as computer viruses. In this chapter, we examine
systems that exhibit many properties of life, but we are not necessarily
claiming that these systems are actually alive. The important thing is that
we are building processes and systems modeled on the ways in which living
organisms behave and evolve. In much the same way that Artificial Intelli-
gence uses techniques modeled on the way in which the human brain
works, so Artificial Life, a somewhat wider subject in some ways, uses tech-
niques modeled on the way in which life works.

13.3 Emergent Behavior

The idea of emergent behavior is fundamental to the field of Artificial Life.
By observing the ways in which patterns of sensible behavior emerge in real
life, researchers have been able to develop systems that can produce their
own behavior. We have seen this idea already: CYC, the system that has
thousands of pieces of information, has been able to form its own analogies
about the world by observing the patterns in the data that it sees.

Much of Artificial Life is based around a simple idea: Evolution works. The
process or mechanism of evolution may not be fully understood, but the
fact remains that complex creatures have evolved in such a way that they
are able to survive, despite changing environments, lack of food or warmth,
and other complications that are presented by nature.

The reason that evolution works is that creatures that are “successful” in
some way survive and reproduce. If a creature survives and reproduces,
then it will pass on its genetic structure to its offspring. Although this
process takes place over hundreds of thousands of years, it is possible to use
methods that are based on the same principle that can take place on a com-
puter within hours, minutes, or even seconds.

One of the early principles of Artificial Life is that complex behavior can be
generated (i.e., it emerges) from simple rules. An excellent example of this

366 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

principle is the Boids system, developed by Craig Reynolds in 1987. The
idea of this system was that it would model the flocking behavior of birds.
Rather than having an overall mechanism for controlling the flock, his sys-
tem had just a few simple rules that each individual bird obeyed.

One rule ensured that each boid would stay near to other boids by having
each boid tend to move toward the center of gravity of the whole flock.
Another rule ensured that boids did not collide with each other.

In running his simulation, Reynolds found that the boids moved in a way
extremely similar to the way in which flocks of birds and shoals of fish
move. This technique is now widely used in animation software and in pro-
ducing computer graphics for movies.

One of the most interesting aspects of the boids was the way in which their
behavior emerged from the rules. For example, no one told the system how
to behave when the flock encountered obstacles. Reynolds found that when
presented with a series of pillar-shaped obstacles, his computer-simulated
boids split into two separate flocks to go around the pillars and then
rejoined on the other side of the pillars.

Clearly, the boids knew that they could not fly through obstacles and that
they should not collide with the obstacles, but the behavior that enabled
the flock to navigate the obstacles was entirely emergent.

This shows how complex behavior can emerge from simple rules. As we
will see later in this chapter, the introduction of evolutionary methods can
produce even more startling results.

13.4 Finite State Automata

A finite state automaton (FSA) is a simple device that has a finite set of
states and an input string (often thought of as being on a tape, running
through a device that can read one symbol at a time). Each symbol that the
FSA reads in is compared with a rule that dictates which state to move to
from that state, with that input. After reading the entire input, the finite
state machine is either in an accepting state, which means its answer is
“yes” to some question, or it is in some other state, in which case the answer
is “no.” A finite state machine can be represented by a diagram such as the
one in Figure 13.1.

13.4 Finite State Automata 367

b b

a

a

1 2

Figure 13.1
A finite state automaton

The FSA in Figure 13.1 determines whether an input string has an even
number of a’s or not. The two circles represent the two states, 1 and 2,
which the FSA can be in. The possible input symbols are a and b. The arrow
at the top left of the diagram shows where the FSA starts: in state 1. When
the FSA is in state 1, it will stay there until it receives an a, which sends it to
state 2. Similarly, when it is in state 2, it will stay there until it receives an a,
which will send it back to state 1.

Hence, if the FSA receives an input with an even number of a’s, it will finish
in state 1, otherwise it will finish in state 2.

State 1 is an accepting state, which is shown by its having a thicker outline
than state 2.

FSAs provide an extremely useful tool for Artificial Intelligence, and com-
puter science in general. They also provide an interesting model for Artifi-
cial Life, as we see elsewhere in this chapter (Sections 13.5 and 13.10).

The FSA in Figure 13.1 has just two states, but in theory an FSA could
have an extremely large number of states and a much larger vocabulary of
input symbols.

A rather simplistic view of living entities might be to consider that each one
is simply an FSA. In other words, place an entity in a particular situation
and provide it with certain inputs from its environment, and its response
will be deterministically decided by a set of rules. Of course, this is not how
living creatures work at all, but it is possible to mimic certain behaviors of
living creatures using FSAs. For example, boids can be thought of as FSAs.
Each boid has a set of inputs (its own location and speeds, and information
about where the other birds and obstacles are) and a state (which direction

368 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

it is flying and how fast) and a set of rules that determine which state to
move to from each state, according to the input data.

In the next section, we see how much simpler automata can be built, which
when combined together can produce extremely interesting behavior.

13.5 Cellular Automata

13.5.1 Conway’s Life

Conway’s Life, also known as the Game of Life, is a system that uses a grid
of squares and a set of simple rules. Conway’s Life is an excellent illustra-
tion of the power of emergent behavior.

Conway’s Life consists of a two-dimensional grid of squares (or cells), each
of which can be either alive or dead. This could be considered to model a
real-world terrain, where each square represented a piece of land, and a
square would be considered alive if it had a living creature in it and dead
(or empty) if it did not.

Any given configuration is changed into a successive configuration, or gen-
eration, by the application of a set of four rules. These rules determine
what will happen to each cell on the basis of its eight neighbors (assuming
an infinite grid). The rules can be defined as follows:

1. If a dead cell has exactly three living neighbors in one generation,
then those neighbors will reproduce in the next generation, and
the empty cell will “come to life.”

2. If a living cell has two or three living neighbors, then that cell is
“happy,” and remains alive in the following generation.

3. If a living cell has less than two living neighbors, then it dies of
loneliness in the next generation.

4. If a living cell has more than three living neighbors, then it dies of
overcrowding in the next generation.

Figure 13.2 shows a set of configurations of Conway’s Life, where each cell
is either empty (dead) or contains an O (in which case it is alive). The first
configuration shown in Figure 13.2 is transformed by the rules to the sec-
ond configuration in the next generation. The second is transformed into
the third, and so on. Hence, the five illustrations in Figure 13.2 show five
successive generations of Conway’s Life.

13.5 Cellular Automata 369

Figure 13.2
Five successive genera-
tions of Conway’s Life

The most interesting aspect of this particular sequence is that the final con-
figuration is almost exactly the same as the first configuration, except that it
has been shifted across and down by one cell. Clearly, by applying the same
rules again, the shape will continue to move in this way. This particular
configuration is known as a glider.

Conway’s Life becomes more interesting when played over a larger grid (for
example, using a computer monitor with each pixel representing a cell) and
with the starting configuration selected randomly. In some cases, after a
number of generations, all the cells in the grid have died. In other cases, the
system reaches a stable state where each generation is the same as the previ-
ous generation, or where the system oscillates between a few patterns.

One very interesting pattern is known as a glider gun. This configuration
constantly spews out gliders, which then glide away from it. In this way, we
can see a system that in a very simple way can be said to reproduce. Rather
than just changing, or stagnating, the system is able to constantly produce
new “entities,” if we can consider a glider to be an entity. We will see how this
concept can be more reasonably applied in other areas of Artificial Life.

Conway’s Life is an example of a cellular automaton. A cellular automaton
consists of a set of cells, each of which contains data (in this case, “alive” or
“dead” or “empty” or “full” or 1 or 0). The system is an automaton, or com-
puter, in the sense that it acts on a set of input data to produce an output.

Cellular automata can use more complex sets of rules, and cells can be
allowed many more possible values than the two used in Conway’s Life.
John Von Neumann and Stanislaw Ulam invented the concept of Cellular
automata in the 1950s. Ulam and Von Neumann considered each cell in the
grid of the cellular automata to be a finite state automaton where each cell’s
state could be determined by applying a set of rules to its previous state. In
their system, each cell could be in one of 29 possible states.

By applying the rules of the system to an initial configuration, cells would
transform their neighbors into different kinds of cells.

370 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

Figure 13.3
Five generations of a one-
dimensional cellular
automaton

Von Neumann’s idea was that in this way, a machine could be created that
could reproduce itself. This is a profound idea and is something that is still
researched today, as we discuss in Section 13.6.

13.5.2 One-Dimensional Cellular Automata

The cellular automata that Von Neumann and Conway invented were two
dimensional, so that each cell has eight neighbors. Much interesting
research has been carried out on one-dimensional cellular automata, where
cells are arranged in a line, rather than a grid, and each cell has two direct
neighbors. It is usual in such systems for the rules to be based not just on
the immediate neighbors, but on the cells one square away from those as
well. So a cell is affected by a total of five values: its four neighbors (two on
each side), as well as its own value.

For example, we could create a rule that says that if a living cell has at least
two living neighbors on either side of it, then it will live, but if it has less
than two neighbors, then it will die. We will further say that if a dead cell
has at least three living neighbors, then it will come to life.

This kind of rule is known as a legal rule, in that if a cell is not alive, and has
no living neighbors, then it will stay dead. It is also known as a totalistic
rule, which means that the next state of a cell is determined solely by the
total number of living cells there are in its vicinity. A totalistic rule does not
take into account which side the living cells are on, for example.

Legal and totalistic rules for cellular automata can be expressed as a single
five-bit number. Our rule above would be expressed as follows:

1 2 3 4 5

0 0 1 1 1

Figure 13.3 shows a cellular automaton in which this rule has been applied to
produce five successive generations. The first line of the diagram shows the
first generation. The second line shows the second generation, and so on.

13.6 Self-Reproducing Systems 371

Clearly, this particular cellular automaton is not going to produce very inter-
esting behavior because it will eventually fill up the entire system with life
and will reach a stable (or stagnant) configuration that will never change.

Because the rules consist of five bits, there are 32 possible rules for such cel-
lular automata, some of which will produce much more interesting pat-
terns than the one shown in Figure 13.3. Some sets of rules have been used
to produce patterns that quite closely resemble the patterns that grow nat-
urally on some sea shells.

Again, we are seeing how complexity can emerge from a simple set of rules.

Cellular automata have been applied in a number of fields, including
pathology, where they are used to analyze blood smears. They have also
been applied in the field of image processing, and it has been suggested that
cellular automata rules resemble the manner in which the visual cortex is
structured.

13.6 Self-Reproducing Systems

As we have already seen, Von Neumann postulated the idea of a self-repro-
ducing system based on cellular automata in the 1950s. Another form of
self-reproducing system was invented by Christopher Langton at the end of
the 1970s. Langton’s aim was to develop the simplest system that could
reproduce itself.

His creations were called loops. Each loop consisted of just 94 cells,
arranged in a shape rather like a lower-case letter q. Each cell could take one
of eight possible values. Each loop contained all the information that was
needed to produce another identical loop, which in turn could produce a
further loop, and so on.

The loops’ reproduction was carried out through the tail of the q shape,
which contained cells that grew to produce a new loop, which then broke
off once it had fully formed.

Of course, the loops were not real “living” creatures in any way, but they did
exhibit one important property of life: reproduction. The loops only“existed”
as data in a computer, or as images on a screen, but they represented a step
forward—the first artificial system that was capable of self-reproducing.

372 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

Von Neumann’s work predicted that it would be feasible to have a self-
reproducing system in the real world: he imagined robots that could
visit other planets, mine minerals from the planet, refine those miner-
als, and create new versions of themselves from the materials they
found.

13.7 Evolution

Each change that occurs from one generation to the next in cellular
automata such as Conway’s Life is simple. By running a large number of
generations of such a system, reasonably complex patterns can be observed.
In his book, The Blind Watchmaker, Richard Dawkins (1991) describes such
changes as single-step selection. By contrast, the process of evolution
involves cumulative selection.

Cumulative selection means that at each step, existing entities or items of
data “reproduce” to form new entities. Rather than each step being based
on simple rules that define how one state will change to the next, the next
state is based on the best features of the previous state and, in general,
improves on that previous state.

In nature, natural selection is the process that chooses which entities will
reproduce. Darwin’s idea of “survival of the fittest” means that the creatures
that manage to reproduce are probably the strongest, in some way, and so sub-
sequent generations will tend to inherit stronger features from their parents.

In many Artificial Life systems, natural selection is replaced by artificial
selection—for example, in some cases, a person chooses which entity
should reproduce from a population of entities. In The Blind Watchmaker,
Dawkins described biomorphs, a system of artificial selection that he orig-
inally designed to evolve tree-like shapes. The shape of any biomorph was
determined by just nine variables, or genes. Each gene represented a feature
of the biomorphs, such as the branching angle between branches or the
length of branches.

The system produced a set of slightly different biomorphs, and the user
could select one to reproduce. The next generation would consist of a set of
biomorphs that were very similar to the one chosen by the user, but each
one would differ slightly in one gene. This process of modification is
known as mutation, and we see how it is applied in genetic algorithms in
Chapter 14.

13.8 Evolution Strategies 373

Although Dawkins had intended his biomorphs to resemble trees, after
running just a few generations of his system, he found that the biomorphs
were evolving into shapes that looked like insects. His system had produced
creatures that he had never imagined it would be capable of generating.
This is another example of emergent behavior: complex changes emerging
from simple rules.

Dawkins’ biomorphs exhibited artificial selection, where a human chose
which entities could reproduce in each generation. Systems that more closely
resemble natural selection are also possible. As we see in Chapter 14, genetic
algorithms are evolved to solve particular problems by using a measure of
fitness based on how close each algorithm comes to solving the problem.

13.8 Evolution Strategies

Evolution strategies were first developed in the 1960s by Ingo Rechenberg
and Hans-Paul Schwefel as a way of solving engineering problems. The idea
is similar to hill climbing, which we see in Chapter 4. A possible solution to
the problem is represented as a set of parameters. The initial generation is a
randomly selected set of parameters, and each subsequent generation is pro-
duced by adding a normally distributed value to each of the parameters.

(The normally distributed mutation values have a mean of zero, and smaller
values are more likely than larger values. This is based on the fact that in
nature, mutations tend to be small changes, rather than large changes).

If the new set of parameters (the offspring) gives a better solution than the
previous set (the parent), then the process continues with the offspring. Oth-
erwise, the offspring is rejected, and a new offspring is generated for the parent.

Note that in evolving evolution strategies, each offspring is produced from
just one parent. In other words, the system uses asexual reproduction. We
will see how sexual reproduction can be used to develop artificial evolu-
tion systems where offspring are produced from more than one parent,
often combining good features of each parent to produce offspring that are
“better,” by some metric.

The idea of metrics is an important one, when applying artificial natural
selection. To have a system that evolves entities without human interven-
tion, a metric is needed that can be used to determine fitness. A fitter entity
is one that is “better” by some criteria: better able to solve a particular prob-
lem, stronger, or more beautiful, for example.

374 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

log

+

*

2 x y

Figure 13.4
Tree representation of
2x + log y

Selecting a suitable metric is usually the first hurdle when developing an evo-
lutionary solution to a problem. For example, to evolve a solution to the prob-
lem of sorting a set of numbers, a metric could count how many numbers
were in the correct locations. A more sophisticated metric might count how
many numbers were in the correct order, even if not in the right locations.

13.9 Genetic Programming

Genetic programming was developed by John Koza in the early 1990s.
Koza used genetic programming to evolve solutions to problems in the
form of LISP programs, or S-expressions (symbolic expressions). LISP
programs and the data manipulated by LISP programs are both S-expres-
sions, and so LISP programs can manipulate each other, or even themselves.

Genetic programming can be thought of as a way to search through the
space of possible S-expressions for the one that best solves a given problem.

Each S-expression can be represented as a tree, with the operators and val-
ues in the expression at nodes in the tree. For example, Figure 13.4 shows
the tree for the expression 2x + log y, which in LISP would be expressed as
+(*(2x) (log (y))).

To apply genetic programming, the following five steps must first be taken:

1. Select a set of terminals.

The terminals are the variables to be used in expressions. In the
example above, the terminals are x and y.

2. Select a set of primitive functions.

The primitive functions are the functions that are allowed in our
expressions. In the expression above, we have used the primitive
functions *, +, and log. We could allow other primitive functions,
depending on the nature of the problem that is to be solved.

13.10 Evolutionary Programming 375

3. Select a fitness function.

The fitness function is a way of determining how successful or fit
any given expression is. Typically, this will involve applying the S-
expression as a program to a set of sample data and seeing how
close to the correct solutions the results are.

4. Select parameters for the system.

The parameters to be chosen include the population size (that is,
how many entities will exist in each generation) and the number of
generations to run the system for.

5. Select a method for determining the result of a run.

Each run of the system will produce a new generation. A method
needs to be chosen that will determine which program that has
been generated so far is the best. Similarly, a termination condition
is often chosen that enables the system to stop when it has found a
perfect solution.

To produce a new generation, mutation and crossover are applied to the
current generation. Mutation simply involves making small changes to an
S-expression (such as replacing the “+” operator with the “–” operator, or
increasing the value of a constant from 2 to 2.1).

Crossover involves taking two entities from the population and combining
features of each to produce a new offspring. In Chapter 14, we see how
crossover is an important aspect of genetic algorithms.

13.10 Evolutionary Programming

Evolutionary programming (EP) was invented by Lawrence Fogel in 1966.
EP was used to evolve solutions to the problem of working out what the
next symbol would be in a finite sequence of symbols: a1, a2, a3, a4, a5, . . . ,
an. The method works by evolving FSAs. In the first generation, a set of ran-
dom FSAs is generated. The next generation is evolved by producing one
offspring from each FSA in the previous generation. Reproduction involves
applying one of five mutation operators:

1. changing an output symbol

2. changing a state transition

376 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

3. adding a state

4. deleting a state

5. changing the initial state

To determine the fitness of an FSA, it is run against each initial subset of the
list of symbols that exists so far and its prediction compared with the actual
next values.

Hence, if the existing sequence is 1,2,3,4,5,6,7,8,9, then the FSA would first
be run just with the number 1, and its output compared with 2. Next, it
would be run with the sequence 1,2 and the output compared with 3.
Finally, it would be run with 1,2,3,4,5,6,7,8 and its output compared with 9.
A successful FSA would probably generate 10 as the next number in the
complete sequence.

Each generation contains the parents from the previous generation and
each parent’s offspring. Half of these FSAs are allowed to survive—the ones
that make the most correct guesses on the subsequences. These FSAs are
then allowed to reproduce to generate the next generation, and so on.

13.11 L-Systems

In the late 1960s, a biologist, Aristid Lindenmayer, developed a set of rules
to describe the growth patterns of plants. His “plants” consisted of cells,
each of which could take on one of two values—a or b. These represented
the two types of cells seen in the early growth stages of a particular type of
algae. The rules Lindenmayer applied to the cells were as follows:

Rule 1: a -> ab

Rule 2: b -> a

Hence, if we start out with a in the first step, then on the next step this will
become ab. On the next step, this will become aba, followed by abaab and
then abaababa. This pattern of growth fairly closely matched the growth
patterns of the plants that Lindenmayer was studying.

These sets of rules were called L-systems, and it turned out that L-systems
could be used to produce images of remarkably lifelike artificial plants. By
applying the L-system rules, strings of thousands of cells could be gener-
ated, and by interpreting the symbols in those strings as branching pat-
terns, images of plant-like structures could be created. By using graphic

13.12 Classifier Systems 377

rendering techniques, images can be generated from L-systems that are
indistinguishable from real plants. These images are often used in com-
puter games and films.

Perhaps more usefully, L-systems can also be used to model biological sys-
tems, such as the development processes involved in the growth of plants,
thus making it possible to study the workings of life itself, by simulating it
in a virtual laboratory.

13.12 Classifier Systems

Classifier systems, based on the expert systems we saw in Chapter 9, were
invented by John Holland in 1986. As with expert systems, a classifier sys-
tem consists of a set of rules that tell the system how to behave in particular
circumstances—how to respond to features in its environment.

A classifier system, though, also has the ability to generate better responses
and to learn to respond to unfamiliar situations by treating its rules as a
population to be evolved.

The classifier system consists of the following components:

■ detectors that receive inputs from the environment

■ effectors that send outputs to the environment, and carry out actions

■ a rule system, which consists of a population of classifiers; a vari-
able measure of fitness is associated with each rule

■ detectors that receive feedback from the environment concerning
how well the system is performing

■ a bucket-brigade algorithm for assigning credit and blame to
classifiers

■ a procedure for reproducing classifiers by application of a set of
genetic operators

■ a set of message lists—for input, output, and internal messages

The operation of the classifier system is as follows:

First, the environment sends the system an input message, which is received
by the input detector.

This message tells the system about some feature of the environment, or about
some event that has occurred (such as a move that has been made in a game).

378 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

This message is placed on the input message list and translated into a set of
internal messages that the system can interpret, using its classifier rules.

These internal messages cause some of the classifiers to fire—the choice of
which classifier rules fire is based on the relative fitness of the rules, and
also on how well their antecedents match the internal messages. This is
known as a bidding system, where the classifiers that generate the highest
bid (based on fitness and closeness of match) get to fire.

The effect of the classifiers firing is either to generate further internal mes-
sages, which may cause further classifiers to fire, or to generate output mes-
sages, which are passed back to the environment.

The environment then evaluates the system’s actions and provides feedback
on how successful they were.

At this point, the system uses a bucket-brigade algorithm to assign credit
or blame to the various classifiers in the system. This involves increasing
the fitness of the classifiers that contributed most to a successful outcome
and decreasing the fitness of those that contributed most to an unsuccess-
ful outcome.

Finally, successful rules are allowed to reproduce using crossover and
mutation operators to produce new rules, whereas unsuccessful rules are
dropped from the system altogether.

Each classifier consists of three parts:

■ a condition (the antecedent of the rule)

■ a message (the action of the rule)

■ a fitness measure

We can represent classifier rules in the form (c1, c2, c3, c4, c5) -> M, f. Here c1

to c5 are the variables that make up the input to the system, and M is the
output message that results from firing this classifier rule, which represents
an action or a classification. f is the fitness of the classifier rule.

For example, we can assume that the inputs to the system are numeric vari-
ables that can take on values from 1 to 10 and that the classification or
action that results from each classification is one of five possible actions:
A1, A2, A3, A4, or A5. Classifier rules do not need to specify a value for each
variable and can specify * to indicate that any value can match that vari-
able. Hence, possible classifier rules might be:

13.12 Classifier Systems 379

(1, 2, 3, 4, 5) -> A1, 0.7

(1, *, *, *, *) -> A3, 2.4

(4, 2, *, 1, *) -> A2, 9.1

(*, 9, *, 6, 2) -> A3, 7.2

(3, 4, 5, *, *) -> A4, 4.5

(1, 2, *, *, *) -> A5, 6.2

Rule 1, for example, specifies that the string (1, 2, 3, 4, 5) is classified as clas-
sification A1, with a fitness of 0.7.

Now let us imagine that an input message arrives from the environment,
which is (1, 2, 3, 4, 5). This will match classifiers 1, 2, and 6. These three
classifiers now bid. The value of a classifier’s bid is a function of that classi-
fier’s fitness and how closely its antecedent matches the input message. This
measure of closeness is determined by adding 1 for each exact match and
0.5 for each * (which matches any input symbol). These values are summed
and divided by the length of the message. This number is then multiplied
by the classifier’s fitness to produce its total bid.

Hence, the bids for the three matching classifiers in our example are as follows:

For classifier 1:

bid = ((1 + 1 + 1 + 1 + 1) / 5) * 0.7 = 0.7

For classifier 2:

bid = ((1 + 0.5 + 0.5 + 0.5 + 0.5) / 5) * 2.4 = 0.96

For classifier 6:

bid = ((1 + 1 + 0.5 + 0.5 + 0.5) / 5) * 6.2 = 4.34

The classifier with the highest bid is successful, and fires, providing a classi-
fication of A5. This is fed back to the environment as an output message,
and the environment evaluates it to determine if this is correct or not.

If the classifier has made a correct assessment, its fitness is increased, which
is determined by subtracting the bid value from a positive reward score. If
it made an incorrect assessment, the reward will be negative (or lower than
the bid value) and so its fitness level will decrease.

In fact, in most classifier systems, the bidding process is far more complex,
and more than one classifier can be successful by forming joint bids. This is
where the bucket-brigade algorithm becomes important for determining

380 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

which classifiers to reward and to what extent, based on how much they
contributed to the success (or failure) of the system as a whole. Holland
based this bidding system on economic processes, with individual classi-
fiers acting like businesses bidding for contracts.

Finally, reproduction occurs. Let us examine how this happens, by assuming
that the system has decided to reproduce from the two fittest classifiers, 3 and 4.

These classifiers are defined as follows:

3. (4, 2, *, 1, *) -> A2, 9.1

4. (*, 9, *, 6, 2) -> A3, 7.2

First, a position is chosen randomly from within the antecedent. This point
is called the crossover position. For our example, we will assume that the
system has chosen the position between the third and fourth variables as its
crossover position, as follows:

3. (4, 2, *, | 1, *) -> A2, 9.1

4. (*, 9, *, | 6, 2) -> A3, 7.2

Now crossover is applied as follows: the first half of classifier 3, before the
crossover position, is joined to the second half of classifier 4, after the
crossover position. This produces an offspring classifier, which we will call
classifier 7:

7. (4, 2, *, 6, 2) -> A2, 8.4

Note that the output message for this new classifier is chosen to be A2,
because this is the output classifier of the parent classifier that contributed
the larger part to the offspring (3 variables).

The fitness of the offspring is determined by taking proportionally from
the parents—three-fifths of the fitness of classifier 3 (because it con-
tributed three of the five variables) and two-fifths of the fitness of classifier
4. Hence the fitness of classifier 7 is defined as

(3 / 5) * 9.1 + (2 / 5) * 7.2 = 8.4

Similarly, crossover is applied in the other proportions by attaching the first
part of classifier 4 to the second part of classifier 3, to produce

8. (*, 9, *, 1, *) -> A3, 7.96

The final part of the reproduction process involves the optional application
of a mutation operator. This simply involves changing one of the parts of

13.13 Artificial Immune Systems 381

the offspring after it has been produced. For example, a variable value
might change to another value, or to *. Typically, as we see in Chapter 14,
mutation is applied sparingly, so that not too much of the parents’ genetic
information is lost. Hence, we might apply mutation to one of the symbols
in offspring 7 to produce

7. (4, 2, *, 6, *) -> A2, 8.4

The description of classifier systems so far has been rather abstract. We can
imagine classifier systems being used, for example, to play a game such as
chess, where a static evaluation function is used to determine whether a
move was good or bad, and where the inputs are the positions of the pieces
on the board.

In the 1980s, Stewart Wilson, a researcher at Polaroid, used classifier sys-
tems to build an artificial creature he called “*”. * was placed in a world
consisting of rocks and food. Over a period of time, * learned to deal with
its world more and more efficiently. For example, it learned that food was
often near a rock, but that banging into a rock was painful. Hence, when it
encountered a rock, it would stop and then walk around the rock to see if
any food was present. This artificial creature had learned to survive in its
own environment without anyone needing to teach it how. Its survival
emerged from a combination of its environment and its reasonably simple
classifier system “brain.”

Of course, this did not take place in the real world but, like most Artificial
Life, took place inside a computer in the form of binary data.

13.13 Artificial Immune Systems

Artificial immune systems (AIS) are a relatively recent innovation. The idea
behind AIS is to build systems based on the immune system in human beings
and other animals. The biological immune system is a massively parallel sys-
tem that is able to deal with changes in individual bodies, changes in envi-
ronment, and even to adapt to rapidly evolving viruses and other attackers.

One of the first uses for AIS was to build a system that could defend com-
puters against viruses. Early antivirus systems based on this technique
relied on people reporting a new virus to the “immune system,” which
would then make attempts to analyze the virus to determine ways to iden-
tify and block it.

382 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

More advanced methods are now applied using artificial immune systems
to solve combinatorial search problems and are also applied in computer
security, machine learning, and fault diagnosis.

13.14 Chapter Summary

■ A definition of life is not easy to produce. Counterexamples can be
found for most definitions.

■ Artificial Life is modeled on life in the same way that Artificial
Intelligence is modeled on the human brain.

■ Complex behavior tends to emerge from simple systems when
using techniques modeled on life. Such behaviors are emergent.

■ Cellular automata such as Conway’s life show how life can be simu-
lated in an extremely simple system based on finite state automata.

■ Langton’s loops were an example of a simple self-reproducing sys-
tem. Von Neumann postulated an entity that could physically
reproduce itself.

■ Evolution strategies use asexual reproduction to search for solu-
tions to engineering problems.

■ Genetic programming methods evolve S-expressions or LISP pro-
grams to solve problems.

■ Evolutionary programming involves evolving finite state automata
to predict the next item in a sequence of symbols.

■ L-systems use simple rules to build complex plant-like structures.

■ Classifier systems combine evolutionary methods (genetic algo-
rithm) with a production system to build a system that is able to
adapt to changes in its environment.

13.15 Review Questions

13.1 What is life?

13.2 What is Artificial Life? How does it relate to Artificial Intelligence?
Is one an alternative to the other, or are they complementary?

13.3 Explain what is meant by emergent behavior.

13.16 Further Reading 383

13.4 Explain how Conway’s Life is modeled on life. What interesting
properties does it exhibit? Why do you think it has fascinated peo-
ple for so long?

13.5 Explain how a system might be built that could reproduce itself.
Would such a system be alive?

13.6 Explain how genetic programming could be used to solve problems.

13.7 What is evolutionary programming? How does it differ from
genetic programming?

13.8 Explain why L-systems are of interest to Artificial Life researchers.

13.9 Explain the relationship between classifier systems and production
systems. How are classifier systems built? What advantages do they
have over production systems?

13.10 Explain how systems modeled on the human immune system
might provide a solution to the problem of computer viruses or of
unsolicited bulk e-mails (“spam”).

13.16 Further Reading

There is a great deal of literature on the subject of Artificial Life. A good
introduction to the subject from a relatively nontechnical point of view can
be found in Levy (1993) and Kelly (1994). Adami (1997) is a more
advanced text on the subject.

Langton (1995) provides a number of interesting articles on Artificial Life,
including philosophic and sociologic perspectives.

Classifier systems and genetic algorithms are covered by many of the main
Artificial Intelligence texts, but few of them cover any other aspects of Arti-
ficial Life.

Information on artificial immune systems can be found in de Castro and
Timmis (2002) and Dasgupta (1999).

Dawkins (1991) gives an excellent view of the subject from the biologic
evolutionary perspective.

A fictional account of the potentials of Artificial Life can be found in Prey
by Michael Crichton.

Introduction to Artificial Life, by Christoph Adami (1997 – Telos)

384 CHAPTER 13 Artificial Life: Learning through Emergent Behavior

Genetic Programming: An Introduction: On the Automatic Evolution of Com-
puter Programs and Its Applications, by Wolfgang Banzhaf, Peter Nordin,
Robert E. Keller, and Frank D. Francone (1997 – Morgan Kaufmann)

Digital Biology, by Peter Bentley (2002 – Simon & Schuster)

The Philosophy of Artificial Life, by Margaret A. Boden (1996 – Oxford Uni-
versity Press)

Swarm Intelligence: From Natural to Artificial Systems, by Eric Bonabeau,
Marco Dorigo, and Guy Theraulaz (1999 – Oxford University Press)

Artificial Immune Systems and Their Applications, edited by Dipankar Das-
gupta (1999 – Springer Verlag)

The Blind Watchmaker, by Richard Dawkins (1996 – W. W. Norton & Com-
pany)

Artificial Immune Systems: A New Computational Intelligence Paradigm, by
Leandro N. de Castro and Jonathan Timmis (2002 – Springer Verlag)

Evolutionary Computation in Bioinformatics, edited by Gary B. Fogel and
David W. Corne (2002 – Morgan Kaufmann)

Creation: Life and How to Make It, by Steve Grand (2001 – Harvard Univer-
sity Press)

From Animals to Animats 7: Proceedings of the Seventh International Confer-
ence on Simulation of Adaptive Behavior, edited by Bridget Hallam, Dario
Floreano, John Hallam, Gillian Hayes, and Jean-Arcady Meyer (2002 – MIT
Press ; also available are the proceedings from the first to sixth conferences)

Silicon Second Nature: Culturing Artificial Life in a Digital World, by Stefan
Helmreich (2000 – University of California Press)

Emergence: The Connected Lives of Ants, Brains, Cities, and Software, by
Steven Johnson (2001 – Scribner)

Out of Control: The New Biology of Machines, by Kevin Kelly (1994 –
Fourth Estate)

Swarm Intelligence by James Kennedy, Russell C. Eberhart, and Yuhui Shi
(2001 – Morgan Kaufmann)

Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection, by John R. Koza (1992 – MIT Press)

13.16 Further Reading 385

Genetic Programming II: Automatic Discovery of Reusable Programs, by John
R. Koza (1994 – MIT Press)

Artificial Life: An Overview, edited by Christopher Langton (1995 – MIT Press)

Artificial Life: A Report from the Frontier Where Computers Meet Biology, by
Steven Levy (1993 – Vintage Books)

Evolutionary Algorithms for Single and Multicriteria Design Optimization,
by Andrzej Osyczka (2001 – Physica Verlag)

Artificial Life VIII: Proceedings of the Eighth International Conference on
Artificial Life, edited by Russell Standish, Mark A. Bedau, and Hussein A.
Abbass (2003 – MIT Press; also available are the proceedings from the first
through the seventh conferences)

Evolutionary Art and Computers, by Stephen Todd and William Latham
(1992 – Academic Press)

Virtual Organisms: The Startling World of Artificial Life, by Mark Ward
(2000 – St Martin’s Press)

This page intentionally left blank

14CHAPTER
Genetic Algorithms

Some call it evolution,
And others call it God.

—William Herbert Carruth, Each in His Own Tongue

The first technical descriptions and definitions of adaptation come from biol-
ogy. In that context adaptation designates any process whereby a structure is
progressively modified to give better performance in its environment. The
structures may range from a protein molecule to a horse’s foot or a human
brain or, even, to an interacting group of organisms such as the wildlife of the
African veldt.

—John H. Holland, Adaptation in Natural and Artificial Systems

14.1 Introduction

The idea of local search is introduced in Chapter 5. Local search methods
involve making small changes to potential solutions to a problem until an
optimal solution is identified. Genetic algorithms are a form of local search
that use methods based on evolution to make small changes to a popula-
tion of chromosomes in an attempt to identify an optimal solution.

In this chapter, the representations used for genetic algorithms are dis-
cussed, including the idea of schemata. The genetic operators, crossover
and mutation, are explained, as is the idea of fitness.

The procedures used to run genetic algorithms are also discussed, and an
attempt is made to explain why genetic algorithms work.

388 CHAPTER 14 Genetic Algorithms

An example is given of how genetic algorithms might be used to evolve a
strategy for playing a simple game (Prisoner’s Dilemma), and the idea of
allowing humans to input into the process in order to evolve images of
“creatures” is also explored.

14.2 Representations

We have seen a number of different representations that can be used in
evolutionary techniques like genetic algorithms. Genetic programming is
used to evolve S-expressions, which can be used as LISP programs to solve
problems. Classifier systems use a string of numbers that represent proper-
ties of the environment and symbols that represent responses to those
properties.

The simplest representation for genetic algorithms is the one that was used
by John Holland: a string of bits. A string of bits is known as a chromo-
some, and each bit is known as a gene. Both of these terms are directly bor-
rowed from genetics and illustrate the close manner in which genetic
algorithms mirror biological processes.

For most of this chapter, we discuss genetic algorithms using this represen-
tation, but it is worth remembering that many other representations are
possible, and different representations will be more appropriate for partic-
ular problems.

The population consists of a set of chromosomes, each of which, as we
have seen, is made up of genes. A chromosome is usually taken to represent
a complete “individual” within the population—in other words, a complete
representation of a solution, or a classification. It is also possible to com-
bine chromosomes together to form creatures, which more closely mirrors
real genetics because each individual in the real world has a number of
chromosomes. For now, we will continue with Holland’s approach, where a
chromosome represents an entire individual.

Each gene in the chromosome represents some facet of that individual’s
genetic makeup. For example, the genes could be entirely independent and
represent the presence or otherwise of certain body parts in an animal.
More usually, the genes are combined together in a less transparent way.
For example, we will see how genetic algorithms can be used to solve math-

14.3 The Algorithm 389

ematical problems, where the bits of a chromosome are usually treated as
the bits of a binary number that represents a solution to the problem.

14.3 The Algorithm

The process for running a genetic algorithm is as follows. Note that this
process is largely independent of the representation that is being used.

1. Generate a random population of chromosomes (this is the first
generation).

2. If the termination criteria are satisfied, stop. Otherwise, continue
with step 3.

3. Determine the fitness of each chromosome.

4. Apply crossover and mutation to selected chromosomes from the
current generation to generate a new population of chromo-
somes—the next generation.

5. Return to step 2.

Note that the evolutionary part of the classifier system process that we saw
in Chapter 13 is in fact a genetic algorithm.

The size of the population should be determined in advance. Usually, the
population size remains constant from one generation to the next. In some
situations, it can be useful to have a population that changes size.

The size of each chromosome must remain the same for crossover to be
applied. It is possible to run genetic algorithms with variable chromosome
sizes, but this is unusual.

Typically, the fittest chromosomes are selected in each generation to mate
with each other, and each pair of chromosomes is allowed to produce two
offspring. The resultant set of offspring chromosomes then replaces the
previous generation.

It is also possible to allow particularly fit parents to produce relatively more
offspring and to allow certain members of a generation to survive to the
next generation. For most of this chapter, we will assume that each pair of
parents produces two offspring and that those offspring replace the parents.

390 CHAPTER 14 Genetic Algorithms

14.4 Fitness

Richard Dawkins’ biomorph world, which is discussed in Chapter 13, is a
form of genetic algorithm. Rather than applying an objective fitness level,
fitness was determined subjectively by a human operator. Additionally,
each generation was the offspring of just one parent, to which mutation
was applied.

With more traditional genetic algorithms, a metric is needed whereby the
fitness of a chromosome can be objectively determined. For example, in
using genetic algorithms to sort numbers into numeric order, a suitable fit-
ness measure might be determined by running the algorithm and counting
how many numbers it places in the correct position. A more sophisticated
measure of fitness could be obtained by measuring how far from its correct
place each incorrectly placed number is.

Karl Sims evolved “creatures” that were bred according to their abilities to
perform simple tasks, such as walking, jumping, and swimming (Sims
1994). Sims used a representation and a set of rules that determined how
the various body parts of his creatures interacted with each other and with
their environment. In this case, then, the fitness measure was based on the
extent to which the physical form (phenotype) represented by the genetic
information (genotype) met certain criteria.

14.5 Crossover

In Chapter 13, we see how crossover is used in classifier systems. The crossover
operator is applied to two chromosomes of the same length as follows:

1. Select a random crossover point.

2. Break each chromosome into two parts, splitting at the crossover
point.

3. Recombine the broken chromosomes by combining the front of
one with the back of the other, and vice versa, to produce two new
chromosomes.

For example, consider the following two chromosomes:

110100110001001
010101000111101

14.5 Crossover 391

100110001

011100110

101100001

010110110

Figure 14.1
Illustrating two-point
crossover

A crossover point might be chosen between the sixth and seventh genes:

110100 | 110001001
010101 | 000111101

Now the chromosome parts are recombined as follows:

110100 | 000111101 => 110100000111101
010101 | 110001001 => 010101110001001

This process is based on the way in which DNA strands recombine with each
other in human reproduction to combine features of each parent in a child.

Single-point crossover is the most commonly used form, but it is also pos-
sible to apply crossover with two or more crossover positions.

In two-point crossover, two points are chosen that divide the chromosomes
into two sections, with the outer sections considered to be joined together
to turn the chromosome into a ring. The two sections are swapped with
each other, as shown in Figure 14.1.

In Figure 14.1, the genes from parent 1 are shaded in grey, while the genes
from parent 2 are not shaded.

Another form of crossover is uniform crossover. Here, a probability, p, is
used to determine whether a given bit from parent 1 will be used, or from
parent 2. In other words, a child can receive any random bits from each of
its parents. For example, let us assume we have the following two parents:

Parent 1: 10001101
Parent 2: 00110110

The offspring of these two chromosomes might be determined as shown in
Figure 14.2.

100110001

011100110

110100101

001110010

Figure 14.2
Illustrating uniform
crossover of two-parent
chromosomes to produce
two offspring

392 CHAPTER 14 Genetic Algorithms

The first bit of the first child is chosen to be from parent 1 with probability
p and from parent 2 with probability 1 – p. If a bit from parent 1 is chosen
for child 1, then the corresponding bit from parent 2 is chosen for child 2,
and vice versa. Uniform crossover is also often used to produce just one off-
spring from each pair of parents, unlike traditional one- or two-point
crossover, which usually produces two offspring from each pair of parents.

Uniform crossover does mix up the genes of the gene pool substantially,
and in some cases it can be sensible to use a very high (or very low) value of
p to ensure that most of the genes come from one parent or the other.

In some cases, cloning can be applied, whereby crossover is not applied at
all, and a new offspring is produced that is identical to its single parent.
Dawkins’ biomorph system can be thought of as a genetic algorithm with
cloning and mutation, where fitness is determined subjectively.

14.6 Mutation

You may recognize genetic algorithms as being rather similar to the hill-
climbing methods we see in Chapter 4. Hill-climbing involves generating a
possible solution to the problem and moving toward a better solution than
the current one until a solution is found from which no better solution can
be found. Hill climbing does not perform well with problems where there
are local maxima. To enable genetic algorithms to avoid this problem, the
mutation operator was introduced.

Mutation is a unary operator (i.e., it is applied to just one argument—a
single gene) that is usually applied with a low probability, such as 0.01 or
0.001. Mutation simply involves reversing the value of a bit in a chromo-
some. For example, with a mutation rate of 0.01, it might be expected that
one gene in a chromosome of 100 genes might be reversed. Here we see
mutation applied to one of the offspring from our example above:

010101110001001
⇓

010101110101001

14.7 Termination Criteria

There are typically two ways in which a run of a genetic algorithm is termi-
nated. Usually, a limit is put on the number of generations, after which the
run is considered to have finished.

14.8 Optimization of a Mathematic Function 393

With some problems, the run can stop when a particular solution has been
reached, or when the highest fitness level in the population has reached a
particular value. For example, we see in the following section how a genetic
algorithm can be used to solve a mathematical function. In this case, it is
clear that the run can stop when the correct solution has been reached,
which can be easily tested for.

In the case of Dawkins’ biomorph world, no such termination conditions
exist. It does not make sense to impose an artificial limit on the number of
generations in the run, and because no objective measure of fitness is
involved, the system cannot determine when to stop on that basis.

This is an important distinction. In many cases, genetic algorithms are used
to solve problems that have an objective solution, in which case the algo-
rithm can stop when it reaches that solution. In other cases, they are used
for more abstract purposes, such as to generate interesting pictures. In these
cases, human judgment must be used to determine when to terminate.

14.8 Optimization of a Mathematic Function

We will see how a genetic algorithm can be used to find a maximum value
of a mathematic function.

We will attempt to maximize the following function:

f(x) = sin(x)

over the range of x from 1 to 15, where x is in radians.

Each chromosome represents a possible value of x using four bits.

Figure 14.3 shows the discrete graph for this function.

1.50

1.00

0.50

0.00

–0.50

–1.00

–1.50

x

f(
x)

Figure 14.3
Discrete graph for the
function f(x) = sin(x),
where x ranges from
0 to 15.

394 CHAPTER 14 Genetic Algorithms

Table 14.1 Generation 1

Chromosome Genes Integer value f(x) Fitness f�(x) Fitness ratio

c1 1001 9 0.41 70.61 46.3%

c2 0011 3 0.14 57.06 37.4%

c3 1010 10 �0.54 22.80 14.9%

c4 0101 5 �0.96 2.05 1.34%

We will use a population size of four chromosomes. The first step is to gen-
erate a random population, which is our first generation:

c1 = 1001

c2 = 0011

c3 = 1010

c4 = 0101

To calculate the fitness of a chromosome, we need to first convert it to a
decimal integer and then calculate f (x) for this integer.

We will assign fitness as a numeric value from 0 to 100, where 0 is the least
fit and 100 is the most fit.

f(x) generates real numbers between �1 and 1. We will assign a fitness of
100 to f(x) = 1 and fitness of 0 to f (x) = �1. Fitness of 50 will be assigned
to f(x) = 0. Hence, fitness of x, f �(x) is defined as follows:

f�(x) = 50(f(x) + 1)

= 50(sin(x) + 1)

The fitness ratio of a chromosome is that chromosome’s fitness as a per-
centage of the total fitness of the population. We will see later why this is a
useful calculation.

Table 14.1 shows the calculations that are used to calculate the fitness val-
ues for our first generation.

Now we need to run a single step of our genetic algorithm to produce the
next generation. The first step is to select which chromosomes will repro-
duce. Roulette-wheel selection involves using the fitness ratio to randomly
select chromosomes to reproduce. This is done as follows:

14.8 Optimization of a Mathematic Function 395

The range of real numbers from 0 to 100 is divided up between the chro-
mosomes proportionally to each chromosome’s fitness. Hence, in our first
generation, c1 will have 46.3% of the range (i.e., from 0 to 46.3), c2 will
have 37.4% of the range (i.e., from 46.3 to 83.7), and so on.

A random number is now generated between 0 and 100. This number will
fall in the range of one of the chromosomes, and this chromosome has
been selected for reproduction. The next random number is used to select
this chromosome’s mate. Hence, fitter chromosomes will tend to produce
more offspring than less fit chromosomes.

It is important that this method does not stop less fit chromosomes from
reproducing at all, though, because this helps to ensure that populations do
not stagnate, by constantly breeding from the same parents.

In our example, though, chromosome c4 will be very unlikely to reproduce
because this would only occur if the random number fell in the narrow
range between 98.6 and 100.

We will need to generate four random numbers to find the four parents
that will produce the next generation. Our first random number is 56.7,
which means that c2 has been chosen as the first parent. Next, 38.2 is cho-
sen, so its mate is c1.

We now need to combine c1 and c2 to produce two new offspring. First, we
need to randomly select a crossover point. We will choose the point
between the second and third bits (genes):

10 | 01
00 | 11

Crossover is now applied to produce two offspring, c5 and c6:

c5 = 1011
c6 = 0001

In a similar way, c1 and c3 are chosen to produce offspring c7 and c8, using
a crossover point between the third and fourth bits:

c7 = 1000
c8 = 1011

The population c1 to c4 is now replaced by the second generation, c5 to c8.
c4 did not have a chance to reproduce, and so its genes will be lost. c1,

396 CHAPTER 14 Genetic Algorithms

Table 14.2 Generation 2

Chromosome Genes Integer value f(x) Fitness f�(x) Fitness ratio

c5 1011 11 �1 0 0%

c6 0001 1 0.84 92.07 48.1%

c7 1000 8 0.99 99.47 51.9%

c8 1011 11 �1 0 0%

which was the fittest chromosome in the first generation, was able to repro-
duce twice, thus passing on its highly fit genes to all members of the next
generation.

The fitness values for the second generation are shown in Table 14.2.

This generation has produced two extremely fit chromosomes and two
very unfit chromosomes. In fact, one of the chromosomes, c7, is the opti-
mal solution. At this point, the termination criteria would probably deter-
mine that the run could stop. Otherwise, the algorithm will continue to run
but will not find any better solutions. It has taken just one step to get from
a random configuration to the optimal solution.

Clearly, this was a very simplistic example. Real problems are likely to be
much harder to solve. They are also likely to involve much larger popula-
tion sizes (typically population sizes of between 100 and 500 are used), and
chromosomes are likely to contain far greater numbers of bits.

In many cases, genetic algorithms quickly produce optimal or near-optimal
solutions to combinatorial problems that would otherwise be impractical
to solve. This raises an interesting question: Why do genetic algorithms
work? We will now address this question.

14.9 Why Genetic Algorithms Work

Genetic algorithms are a local search method (see Chapter 5), in some ways
similar to simulated annealing and hill-climbing methods.

It is possible to explain genetic algorithms by comparison with natural evo-
lution: small changes that occur on a selective basis combined with repro-
duction will tend to improve the fitness of the population over time. This

14.9 Why Genetic Algorithms Work 397

argument is not very convincing, and John Holland (1975) invented
schemata (the plural of schema) to provide an explanation for genetic
algorithms that is more rigorous.

14.9.1 Schemata

In Chapter 13, we see how strings of numbers are used to represent input
patterns in classifier systems. In these patterns, * is used to represent “any
value” or “don’t care,” so that the following string:

1011*001*0

matches the following four strings:

1011000100
1011000110
1011100100
1011100110

(The bits which have matched * are shown in bold).

A schema is a string of bits that represents a possible chromosome, using *
to represent “any value.” A schema is said to match a chromosome if the bit
string that represents the chromosome matches the schema in the way
shown above. For example, the following schema:

11

matches the following four chromosomes:

0110
0111
1110
1111

Note that a schema with n *’s will match a total of 2n chromosomes.

Each chromosome of r bits will match 2r different schemata. For example,
the following chromosome:

101

matches the following eight schemata:

101
10*
1*1
1**
*01
0

398 CHAPTER 14 Genetic Algorithms

**1

Because schemata are made up of three different values (0, 1, and *), there
are 3m different schemata of length m. For example, there are nine possible
schemata of just two bits:

00
01
0*
10
*0
11
*1
1*
**

The defining length of a schema is defined as the distance between the first
and last defined bits (bits that are not *) in the schema. For example, the
defining length of each of the following schemata is 4:

**10111*
1*0*1**
11111
1***1
***********10**1***************

Note that a schema’s defining length is not dependent on the number of
bits it has, except that its defining length must be less than or equal to its
length. We write this as

dL(S) ≤ L(S)

where dL(S) is the defining length of schema S, and L(S) is the length of
schema S.

The order of a schema is defined as the number of defined bits (i.e., the
number of bits that are not *) in the schema. Hence, the following
schemata all have order 4:

**10*11*
1*0*1**1
1111
1***1***1***1
1***********10**1***************

14.9 Why Genetic Algorithms Work 399

We will write the order of a schema S as O(S). The order of a schema tells us
how specific it is. A schema with a high order is more specific than one
with a lower order.

14.9.2 How Reproduction Affects Schemata

We can think of genetic algorithms as a way of manipulating schemata.
This will help us to reason about why genetic algorithms work.

First of all, we consider what it means for a schema to be present in a pop-
ulation. Let us consider the following population of 10 chromosomes, each
of length 32:

C1 = 01000100101010010001010100101010
C2 = 10100010100100001001010111010101
C3 = 01010101011110101010100101010101
C4 = 11010101010101001101111010100101
C5 = 11010010101010010010100100001010
C6 = 00101001010100101010010101111010
C7 = 00101010100101010010101001010011
C8 = 11111010010101010100101001010101
C9 = 01010101010111101010001010101011
C10 = 11010100100101010011110010100001

Let us consider the following schema:

S0 = 11010***************************

This schema is matched by three chromosomes in our population: c4, c5,
and c10. We say that schema S0 matches three chromosomes in generation i
and write this as follows:

m(S0, i) = 3

It is useful now to consider the concept of fitness as it applies to schemata.
The fitness of a schema, S, in generation i is written as follows:

f(S, i)

The fitness of a schema is defined as the average fitness of the chromo-
somes in the population that match the schema. Hence if we define the fit-
ness of c4, c5, and c10 as follows:

f(C4, i) = 10

f(C5, i) = 22

f(C10, i) = 40

400 CHAPTER 14 Genetic Algorithms

hence, the fitness of the schema S0 is defined as the average of these three values:

f(S0, i) = (10 + 22 + 40) / 3

= 24

We will now investigate which factors affect the likelihood of a particular
schema surviving from one generation to the next. In other words, what
probability is there that a given schema that is present in the parent gener-
ation will be in the subsequent generation?

First, let us consider the process whereby chromosomes reproduce, without
introducing crossover or mutation.

First, let us assume that there is a chromosome that matches a schema, S, in
the population at time i.

The number of occurrences of S in the population at time i is

m(S, i)

and the number of occurrences of S in the population in the subsequent
generation is:

m(S, i+1)

The fitness of S in generation i is

f(S, i)

Now we will calculate the probability that a given chromosome, c, which
matches the schema S at time i, will reproduce and thus its genes will be
present in the population at time i + 1. The probability that a chromosome
will reproduce is proportional to its fitness, so the expected number of off-
spring of chromosome c is

where a(i) is the average fitness of the chromosomes in the population
at time i.

Because chromosome c is an instance of schema S, we can thus deduce

(1)

where c1 to cn are the chromosomes in the population at time i that match
the schema S.

m S, i +1
f c i f c i

a i
1 n() = () + + ()

()
, ,K

m(c, i +1)
f c, i
a i

= ()
()

14.9 Why Genetic Algorithms Work 401

Let us compare this with the definition of the fitness of schema S, f (S, i),
which is defined as follows:

(2)

By combining formula 1 with formula 2 above, we obtain:

This tells us that the more fit a schema is compared with the average fitness
of the current population, the more likely it is that that schema will appear
in a subsequent population of chromosomes. A schema whose fitness is the
same as the average fitness of the population will likely maintain the same
number of occurrences from one generation to the next. In contrast, there
will be fewer occurrences of a given schema whose fitness is lower than the
average fitness of the population and more occurrences of a given schema
whose fitness is higher than the average.

14.9.3 How Mutation and Crossover Affect Schemata

The above calculations have not taken into account mutation or crossover.
Both mutation and crossover can destroy the presence of a schema. In
other words, mutation and crossover are both capable of reducing the
number of occurrences of a particular schema in a population of chromo-
somes. They are also capable of increasing the number of occurrences of a
given schema.

A given schema can be said to have survived crossover, if the crossover
operation produces a new chromosome that matches the schema from a
parent that also matches the schema.

If the crossover point is chosen so that it is within the defining length of a
schema, S, then that schema will be destroyed by the crossover operation.
For a schema to survive crossover, the crossover point must be outside the
defining length. Hence, the probability that a schema S of defining length
dL(S) and of length L(S) will survive crossover is

p S
d S

L Ss
L() = − ()

() −
1

1

m(S, i +1)
f S, i m S, i

a i
= () ⋅ ()

()

f S, i
f c i f c i

m S, i
1 n() = () + + ()

()
, ,K

402 CHAPTER 14 Genetic Algorithms

Hence, a shorter schema is more likely to survive from one generation to
the next than a longer schema. In practical terms, this means that a feature
of the chromosomes that is expressed by relatively few bits is more likely to
be passed on from a parent to its offspring than a feature that is expressed
by a large number of bits.

The above formula assumes that crossover is applied to each pair of parents
that reproduce. In fact, it is usually the case that some chromosomes are able
to reproduce asexually (by cloning). Hence, if the crossover operator is applied
with probability pc , then the above formula can be modified as follows:

Hence, the less likely crossover is, the more likely any given schema is to
survive from one generation to the next.

In fact, even if the crossover point is chosen within the defining length, it is
still possible for a schemata to survive crossover, as in the following example.

Let us apply crossover to the following two chromosomes:

10111101
01001110

The schema **0011** is matched by the second of these chromosomes. If a
crossover point is chosen between the fourth and fifth bits, then the off-
spring will be

10111110
01001101

In this generation, the second chromosome also matches the schema
0011, despite the fact that the crossover point was chosen within the
defining length of the schema. Hence, we can modify our formula to allow
for this (fairly unlikely) occurrence:

Now let us consider the effect of mutation on schemata. The probability
that mutation will be applied to any given bit in a chromosome is pm.
Hence, a schema will survive mutation if mutation is not applied to any of

p S p
d S

L Ss c
L() ≥ − ⋅ ()

() −
1

1

p S p
d S

L Ss c
L() = − ⋅ ()

() −
1

1

14.9 Why Genetic Algorithms Work 403

the defined bits of the schema. Because a schema S has O(S) defined bits,
the probability of survival can be defined as

ps(S) = (1 � pm)O(S)

Hence, a schema is more likely to survive mutation if it has a lower order.

We can combine the three equations we have to give one equation that
defines the likelihood of a schema surviving reproduction using crossover
and mutation. This formula defines the expected number of chromosomes
that match a schema, S, in a generation at time i + 1:

This rather daunting formula represents the schema theorem, developed
by Holland, which can be stated as “Short, low order schemata which are
fitter than the average fitness of the population will appear with exponen-
tially increasing regularity in subsequent generations”.

The above analysis provides a way to understand the behavior of genetic
algorithms and goes some way toward explaining why they work, but it
does not really provide a full answer to that question.

Although genetic algorithms have been widely studied, and there is
good empirical evidence that they work, there is yet no theoretical proof
that use of crossover provides better solutions than other local search
techniques.

14.9.4 The Building-Block Hypothesis

The building-block hypothesis is a consequence of the schema theorem,
which can be stated as “Genetic algorithms manipulate short, low-order,
high fitness schemata in order to find optimal solutions to problems.” These
short, low-order, high-fitness schemata are known as building blocks.

In other words, genetic algorithms work well when a small group of genes
that are close together represent a feature that contributes to the fitness of a
chromosome. Hence, the representation that is chosen for genetic algo-
rithms is very important. Randomly selecting bits to represent particular
features of a solution is not good enough. Bits should be chosen in such a

m S, i +1
f S, i m S, i

a i
p

d S
L S

pc
L

m
O S() ≥ () ⋅ ()

() ⋅ − ⋅ ()
() −

⋅ −()

()1

1
1

404 CHAPTER 14 Genetic Algorithms

way that they group naturally together into building blocks, which genetic
algorithms are designed to manipulate.

14.9.5 Deception

One problem faced by genetic algorithms is known as deception. Let us
assume a population of chromosomes of 8 bits. We will consider four
schemata and their fitness levels:

S1 = 11****** f(S1) = 50

S2 = ******11 f(S2) = 40

S3 = 11****11 f(S3) = 5

S4 = 00****00 f(S4) = 65

Note that S1 and S2 are two building blocks, which combine together to give
S3, but that S3 is much less fit than S1 or S2.

Let us now assume that the optimal solution in this problem is

S5 = 11111111 f(S5) = 100

The genetic algorithm will find it hard to reach this optimal solution
because it will prefer to match the most fit building blocks with chromo-
somes such as

00111100

Hence, genetic algorithms can be misled or deceived by some building
blocks into heading toward suboptimal solutions.

One way to minimize the effects of deception is to use inversion, which is a
unary operator that reverses the order of a subset of the bits within a chro-
mosome. For example, inversion applied to the following chromosome:

1010011100

between the fourth and eighth bits would produce the following chromosome:

1011110000

Like mutation, inversion is applied with a low probability (such as one in a
thousand) and can help to avoid converging on incorrect solutions.

Another way to avoid deception is to use messy genetic algorithms, which
are described in the next section.

14.10 Messy Genetic Algorithms 405

14.10 Messy Genetic Algorithms

Messy genetic algorithms were developed as an alternative to standard
genetic algorithms.

With messy genetic algorithms (mGAs), each bit is labeled with its position.
A chromosome does not have to contain a value for each position, and, in
fact, a given position in a chromosome can have more than one value.

Each bit in a chromosome is represented by a pair of numbers: the first
number represents the position within the chromosome, and the second
number is the bit value (0 or 1).

Hence, the following chromosome:

((1,0), (2,1), (4,0))

could be a chromosome with four bit positions, where the third bit posi-
tion is not specified. The following chromosome, in contrast, has two val-
ues specified for the third position:

((1,0), (2,1), (3,1), (3,0), (4,0))

Goldberg (1989) specifies methods for dealing with chromosomes that are
underspecified (i.e., where a bit position is not defined) or that are over-
specified (where a bit position is defined twice).

Underspecified bits are filled in by copying bits from a template chromo-
some that is usually chosen as the best-performing chromosome from the
previous generation.

A method is needed to deal with overspecified chromosomes: the most
usual method is simply to work on a left-to-right basis and use the first
value that is assigned to a given bit position. Hence, for example, the fol-
lowing chromosome:

((1, 0), (3, 0), (2, 1), (1,1))

would be modified to

((1, 0), (3, 0), (2, 1))

Because bit 1 is overspecified. The first occurrence, working from left to
right, is used, and any other occurrences are discarded.

mGAs use the mutation operator as with standard genetic algorithms.
Instead of crossover, mGAs use the splice and cut operators.

406 CHAPTER 14 Genetic Algorithms

Two chromosomes can be spliced together by simply joining one to the end
of the other. Hence the following two chromosomes:

((1,0), (3,0), (4,1), (6,1))
((2,1), (3,1), (5,0), (7,0), (8,0))

can be spliced to produce the following chromosome:

((1,0), (3,0), (4,1), (6,1), (2,1), (3,1), (5,0), (7,0), (8,0))

Note that the genes do not need to be in any particular order because each
one has its position specified as part of its representation.

The cut operator splits one chromosome into two smaller chromosomes.
Hence, the result of the above splice operation could be cut to produce the
following two chromosomes:

((1,0), (3,0), (4,1))
((6,1), (2,1), (3,1), (5,0), (7,0), (8,0))

MGAs are more immune to deception than standard genetic algorithms
and have been shown to converge on optimal solutions with extremely
deceptive functions (Goldberg 1989).

14.11 Prisoner’s Dilemma

We will now see how genetic algorithms can be used to evolve strategies for
playing a simple game: the Prisoner’s Dilemma.

The background of the game is as follows:

Two prisoners have been arrested on suspicion of committing a crime.
They are kept in separate cells, and each is told that if he betrays his friend
he will receive a reward. If his friend does not betray him, then he will go
free, and receive a reward, while his friend is tortured. If both betray each
other, they will both be tortured, and if neither betrays the other, they will
be set free.

The dilemma for each prisoner is whether to defect and betray his friend,
or whether to cooperate with his friend and keep silent. Defection always
brings a greater reward than cooperation, but the best overall result is
obtained if both prisoners cooperate.

The game of Prisoner’s Dilemma is played over a number of turns, where
on each turn each player can choose whether to defect or to cooperate, and
points are awarded to each player according to the outcome, as defined in
Table 14.3.

14.11 Prisoner’s Dilemma 407

Table 14.3 Point allocation in Prisoner’s Dilemma

Player 1 Player 2 S1 S2 Notes

defects defects 1 1 Penalty for mutual defection

defects cooperates 5 0 Player 1 has been tempted to defect.
Player 2 is the “sucker.”

cooperates defects 0 5 Player 1 is the “sucker.” Player 2 has been
tempted to defect.

cooperates cooperates 3 3 Reward for mutual cooperation

In Table 14.3, S1 and S2 are the number of points received by player 1 and
player 2, respectively, in each given situation.

14.11.1 Strategy Representation

We will choose a representation that represents the strategy of a given
“player” or chromosome in the population. For our system, we will allow
each player to determine its move on a given turn in the game based on the
results of the previous three turns.

Each turn in the game can have one of four outcomes, as shown in Table
14.3. We shall represent each of these outcomes by a number from 0 to 3:

0: reward (both players have cooperated)

1: sucker (the player cooperates, and the opponent defects)

2: penalty (both players defected)

3: temptation (the player defects and the opponent cooperates)

Now, by using 0 to represent defection and 1 to represent cooperation, a
three-dimensional array of binary values can be used to represent a strat-
egy. Because there are four possible choices for each turn, and our strategies
will be based on the previous three turns, our array will need to be 4 � 4 �

4 = 64 bits. We will also include three bits that represent the player’s behav-
ior on the first three turns, so each chromosome will be represented by 67
bits. (We will place the three bits that represent the first three turns at the
end of the chromosome.)

408 CHAPTER 14 Genetic Algorithms

Hence, a chromosome that consists of 67 1s would cooperate on every go,
regardless of the behavior of its opponent. Similarly, 67 0s would mean that
the chromosome defected on every turn.

Hence, the following chromosome:

100111

represents the following rather simple strategy:

Cooperate on the first three turns, and thereafter, only cooperate in the
event that both players have cooperated on the previous three turns. (The
first bit represents the [0,0,0] position in the array, which corresponds to
three consecutive occurrences of “reward.”)

The following chromosome represents a slightly more sophisticated strategy:

1001000000001001000000000000000000000000000000001001000000001001111

The last three chromosomes represent the first three decisions: this chromo-
some will cooperate on the first three turns. Thereafter, this chromosome
will cooperate only if the opponent has cooperated on the previous three
turns. If the opponent cooperates, then the possible results are either reward
or temptation. Hence, there are eight possible combinations of three moves
in which the opponent has cooperated. These are represented by the eight
1’s in the chromosome above at positions 0, 3, 12, 15, 48, 51, 60, and 63.

Bit position 0 represents the decision when the previous three outcomes
have all been value 0 - reward (i.e., both players have cooperated on the
previous three turns). Position three represents (0, 0, 3) or (reward, reward,
temptation)—in other words, the opponent has cooperated on each of the
three turns, and the player cooperated on the first two turns and defected
on the third turn.

Each chromosome represents a complete strategy for how to play Prisoner’s
Dilemma over an arbitrary number of turns, basing each decision on the
outcome of the previous three turns, and with the first three decisions
hard-coded. Clearly, there are an astronomical number of possible chro-
mosomes (267 � 15 � 1019) and therefore a correspondingly large number
of possible strategies.

14.11.2 Possible Strategies

The simplest strategies for playing Prisoner’s Dilemma are “always defect”
and “always cooperate,” whose chromosomes consist of 67 0s and 67 1s,
respectively.

14.11 Prisoner’s Dilemma 409

Each of these strategies is a reasonable way to play Prisoner’s Dilemma.
“Always defect” ensures that the opponent’s score is minimized, whereas
“always cooperate” ensures a maximum possible combined score, in the
event that the opponent also always cooperates. Of course, “always cooper-
ate” does not do well against “always defect.” In fact, no strategy does well
against “always defect,” being able to achieve a maximum score of only 1
out of a possible 5 for each turn. Conversely, the player using the “always
defect” strategy can achieve the full 5 points if its opponent cooperates but
gets just 1 point if the opponent also defects.

One very successful strategy is called tit-for-tat. Tit-for-tat involves coop-
erating to begin with and thereafter doing whatever the opponent did on
the previous turn.

This strategy only uses information about the previous turn, so much of
the data of the chromosome that plays tit-for-tat is redundant. Our
hope is that chromosomes whose strategies are based on the previous
three turns, rather than just one turn, can perform better overall than
tit-for-tat.

We will assume that a game consists of 100 turns of Prisoner’s Dilemma,
and that the total score for a chromosome for a game is the sum of the
points awarded to it in those 100 turns.

Hence, playing tit-for-tat against tit-for-tat or against “always cooperate”
would achieve a total of 300 points. Playing “always defect” can achieve a
total of 500 points when playing against “always cooperate.” Table 14.4
shows the six possible total scores for these three strategies played against
each other over 100 turns.

Table 14.4 Total scores for three strategies played over 100 turns

Player1 Player2 S1 S2

Always cooperate Always cooperate 300 300

Always cooperate Always defect 0 500

Always cooperate Tit-for-tat 300 300

Always defect Always defect 100 100

Always defect Tit-for-tat 104 99

Tit-for-tat Tit-for-tat 300 300

410 CHAPTER 14 Genetic Algorithms

Clearly, the scores for a game can vary between 0 and 500, depending on
the strategy chosen and the strategy of the opponent.

14.11.3 Evolution of Strategies

The process for running this genetic algorithm is as follows:

1. Produce a random population of chromosomes. We will start with
a population of just 100 chromosomes.

2. Determine a score for each chromosome by playing its strategy
against a number of opponents.

3. Select a number of chromosomes from the population to repro-
duce, applying crossover and mutation according to appropriate
probabilities.

4. Replace the previous generation with the new population pro-
duced by reproduction.

5. Return to step 2.

A method must be applied to determine for how many generations to run
the genetic algorithm. We will use 100 runs of the genetic algorithm. A ter-
mination condition could be applied that determined when an optimal
solution has been reached, but as we will see, it is not necessarily clear how
to identify such a strategy.

14.11.4 Choice of Opponents

As a simple example, we will start by considering playing the chromosomes
against a fixed strategy.

First, we will determine each chromosome’s fitness by playing its strategy
against “always defect” over 100 turns.

Clearly, the best strategy against “always defect” is also “always defect.” In
our experiments, a population of 100 chromosomes evolved such that the
average score of the 100 chromosomes reached the maximum of 100 after
just two generations, as shown in Figure 14.4.

Similar results were found when playing the chromosomes against “always
cooperate”: the best strategy here is to play “always defect.” After just a few
generations, the average score of the population converged on the maxi-
mum of 500 points.

14.12 Diversity 411

95

85

75

65

55

45
1 5 9 13 17 21 25 29 33 37 41 45 49

Generation

A
ve

ra
g

e
S

co
re

average score over 50 generations
against "always defect"

Figure 14.4
Average scores of a
population of 100
chromosomes playing
against “always defect”
over 50 generations

When playing against tit-for-tat, the genetic algorithms converged after just
a few generations to play “always cooperate,” which is the best strategy to
play against tit-for-tat. In fact, the best strategy to play against tit-for-tat is
to cooperate on every turn except the last turn, but our representation does
not allow this strategy.

More interesting results were obtained when the chromosomes were able to
play against each other, rather than against fixed strategies. This genetic
algorithm was found to evolve strategies that were as successful as the best
heuristic methods developed by humans (Axelrod 1987).

Playing the chromosomes against each other is similar to the idea of intro-
ducing predators into a population, which is discussed in Section 14.14.

14.12 Diversity

One problem with the genetic algorithm we have described above for play-
ing Prisoner’s Dilemma is that the populations tend to stagnate. That is,
once a chromosome evolves that achieves a very high score, chromosomes
that are different and score less well than this one will tend to die out, and
the population will end up with all chromosomes playing the same strat-
egy. In other words, the population lacks diversity.

Diversity is a useful measure that is often used in genetic algorithms to
avoid stagnation. Like mutation, it also helps to avoid local maxima.

Hence, it is often a good idea to incorporate a measure of diversity into a
genetic algorithm’s fitness metric.

412 CHAPTER 14 Genetic Algorithms

For example, a diversity score of a chromosome could be calculated by
comparing that chromosome with the highest scoring chromosome and
counting the number of bits that differ. This count could then be added to
the fitness score (Winston 1992).

14.13 Evolving Pictures

In many genetic algorithm systems, the fitness of an individual chromo-
some is determined by treating the data that is contained in its genes as a
representation of a possible solution to the problem or, in some cases, a
strategy for dealing with particular situations.

In the case of Dawkins’ biomorphs, the fitness was determined by user
choice. In this case, the genes contained in each chromosome were not
interpreted as a strategy or a solution to a problem, but as a visual repre-
sentation of an image that resembled a living creature—a biomorph.

Similar work was done by Todd and Latham (1992), who used complex
chromosomes and human determination of fitness to evolve extremely
complex, rendered creatures. Their book includes pictures of surprisingly
beautiful creatures that appear to have been designed by an extremely
imaginative artist.

In biological terms, the chromosome is the genotype of the creature, and
the physical (or visual) manifestation of the genotype is the phenotype.

Using this model, in most genetic algorithm systems, the phenotype is a
kind of behavior, or a solution to a problem. It is possible to have the phe-
notype of a chromosome be interpreted in more than one way. For exam-
ple, a genetic algorithm could be used to evolve strategies for playing a
game such as Prisoner’s Dilemma and where each chromosome is also
interpreted as a visual representation of a creature. In this way, creatures
would be evolved whose appearance was dependent in some nontranspar-
ent way on their behavior. By adding human intervention in determining
fitness, a system can be developed that automatically evolves creatures, but
where humans can override a creature’s fitness in order to bias evolution
toward particular kinds of images.

Using evolutionary techniques for drawing pictures has other applications.
In principle, a person who has an idea of what he or she wants to draw can
produce a picture using crossover and mutation without having any artistic
ability. For example, police are able to use this technique to allow a witness

14.14 Predators and Co-evolution 413

to produce a picture of a suspect in a crime, by repeatedly selecting the face
that looks most like the person they are thinking of.

Evolutionary techniques can also be used to evolve behaviors. Karl Sims
evolved creatures whose genes were used to represent not only a physical
body but a set of rules to determine how those body parts would behave.
His aim was to evolve creatures that could perform simple tasks such as
walking, swimming, and jumping.

14.14 Predators and Co-evolution

In Section 14.11 we see that when genetic algorithms were evolved to play
Prisoner’s Dilemma against each other, they developed much more com-
plex strategies than they did when they were evolved to play against fixed
opponents.

There is strong empirical evidence to suggest that one of the key driving
factors behind the evolution of most complex behaviors and abilities in
real-world organisms is the existence of predators. In a world without
predators, there is less pressure to perform well and less need to develop
sophisticated behaviors in order to survive. This principle also applies in
artificial evolution.

In the 1980s, Danny Hillis used evolutionary methods to evolve algorithms
for sorting a sequence of numbers. He called the entities he was evolving
“ramps.” He found that when he introduced “parasites,” which generated
increasingly complex sets of numbers to sort, his ramps were able to per-
form far better than they had without the parasites.

When the evolution of two or more species are intertwined in this way, the
process is known as co-evolution. This phenomenon was first observed by
Charles Darwin (1859). Coevolution can be thought of as an arms race:
when one country develops the bow and arrow, its enemies need to develop
a similarly powerful weapon or an appropriate defense. In doing so, this
country might stumble upon explosives and thus force their enemies to
develop suitable defenses to this. In much the same way that the develop-
ment of one country’s military might causes other countries to develop
similar capabilities, coevolution in animals means that if one predator
develops the ability to run faster, its prey must match its speed, or develop
another defense, or it will be wiped out.

414 CHAPTER 14 Genetic Algorithms

Of course, this process does not happen quickly: at first, the prey will do
badly, and a great many of them will be wiped out. This fact will ensure that
the stronger, faster, better-defended individuals will be more likely to sur-
vive and produce offspring. In this way, over a period of many generations,
the species will gradually become better able to survive.

As a result, of course, the predator will need to become faster or develop
new abilities that enable it to catch enough prey. In some cases the cycle is
broken as one species dies out or a new species supersedes it.

Co-evolution is a vital element of biological evolutionary processes and can
also be taken advantage of in genetic algorithms and other processes that
involve artificial evolution.

14.15 Other Problems

Genetic algorithms have been successfully applied to a number of problems
in computer science. Most combinatorial search problems (described in
more detail in Chapter 5) can be successfully solved using genetic algo-
rithms. A great deal of work has been done on applying genetic algorithms
to the traveling salesman problem, for example, but also to a number of
other problems, including the following:

■ The Knight’s Tour (moving a knight over a chess board using valid
moves, such that it lands on each square exactly once)

■ The CNF-satisfiability problem

■ Robot navigation

■ The knapsack problem

■ The timetable problem (assigning teachers to pupils and classrooms)

14.16 Chapter Summary

■ A genetic algorithm consists of a population of chromosomes,
each of which contains a number of genes. The genetic algorithm
manipulates these chromosomes using crossover and mutation to
produce a new, superior generation of chromosomes. This opera-
tion is repeated, until an optimal solution is obtained.

■ A fitness metric is essential if a problem is to be solved using
genetic algorithms.

14.17 Review Questions 415

■ Mathematical functions can be readily solved using genetic algorithms.

■ Genetic algorithms manipulate schemata. A schema consists of a
set of 1s, 0s, and *, where a * represents “don’t care”.

■ The schema theory states: Short, low order schemata which are fitter
than the average fitness of the population will appear with exponen-
tially increasing regularity in subsequent generations.

■ The building-block hypothesis states that genetic algorithms solve
problems using discrete building blocks.

■ Genetic algorithms are susceptible to deception—a problem
whereby inadequate building blocks appear in highly fit entities.

■ Genetic algorithms can be used to evolve strategies for playing the
Prisoner’s Dilemma.

■ When playing against fixed strategies, the genetic algorithms
quickly converge on the optimal strategy. When playing against
each other, more complex strategies emerge.

■ Diversity can be as important as fitness in evaluating chromo-
somes for genetic algorithms.

■ Pictures can be evolved using strategies similar to genetic algo-
rithms, but with a degree of human intervention.

■ Coevolution is the process whereby the development of one
species affects the evolutionary path taken by another species.
Coevolution has been used successfully to improve the perform-
ance of systems developed using artificial evolution.

14.17 Review Questions

13.1 Explain the meaning of the following terms in the context of
genetic algorithms:

■ fitness

■ chromosome

■ gene

■ population

■ generation

■ crossover

416 CHAPTER 14 Genetic Algorithms

■ mutation

■ deception

13.2 Explain how crossover, mutation, and reproduction affect schemata.

13.3 Explain how schemata help us to understand why genetic algo-
rithms work. What does the schema theorem tell us?

13.4 Explain why genetic algorithms are susceptible to deception. Why
do messy genetic algorithms help avoid this problem?

13.5 Explain why diversity is important when using genetic algorithms
to solve problems.

13.6 Explain why introducing predators can help in systems that use
artificial evolutionary techniques.

13.7 Describe three problems that might be solved using genetic algo-
rithms that were not described in this chapter.

13.8 Could genetic algorithms be used to play complex games such as
chess and checkers? Explain your answer.

13.9 “Once you’ve chosen a good representation for your problem you
might as well solve the problem using traditional means—genetic
algorithms are a waste of effort”. Discuss.

14.18 Exercises

13.1 Using pen and paper and a die as a random number generator,
work through five generations of evolution starting from the fol-
lowing five chromosomes. You will need to select a mutation rate,
and determine a strategy for crossover.

1100110011

0001111010

1010100001

0000101000

0111000101

13.2 Write a program in the programming language of your choice that
uses a genetic algorithm to evolve strategies for playing Prisoner’s
Dilemma. Start out by having your chromosomes play against a

14.19 Further Reading 417

fixed strategy, and observe the behavior of the system. Now have
the chromosomes play against each other. How does this affect
their performance?

14.19 Further Reading

For a detailed description of messy genetic algorithms, see Goldberg
(1989). The original text on genetic algorithms is Holland (1992). More
introductory coverage is available in the standard Artificial Intelligence
texts. For a discussion of the connection between computer viruses and
Artificial Life, see Spafford (1989). The best modern discussions of coevo-
lution can be found in Kelly (1994) and Dawkins (1996).

Work carried out by Forrest and Mitchell (1992) on Royal Road functions
has shown that in fact the schema theory does not model the real behavior
of genetic algorithms as accurately as one would hope.

Genetic Algorithm for the Prisoner Dilemma Problem, by R. Axelrod (1987 -
in Genetic Algorithms and Simulated Annealing, edited by L. Davis – Hyper-
ion Books)

Efficient and Accurate Parallel Genetic Algorithms, by Erick Cantu-Paz (2002
– Kluwer Academic Publishers)

Practical Handbook of Genetic Algorithms, by Lance Chambers (1995 –
CRC Press)

Genetic Algorithms and Genetic Programming in Computational Finance,
edited by Shu-Heng Chen (2002 – Kluwer Academic Publishers)

An Introduction to Genetic Algorithms for Scientists and Engineers, by David
A. Coley (1999 – World Scientific Publishing Company)

The Origin of Species, by Charles Darwin (1859 – reprinted by Penguin)

Adaptive Learning by Genetic Algorithms: Analytical Results and Applications
to Economic Models, by Herbert Dawid (1999 – Springer Verlag)

The Blind Watchmaker, by Richard Dawkins (1996 – W. W. Norton & Com-
pany)

Genetic Algorithms and Engineering Optimization, by Mitsuo Gen and Run-
wei Cheng (1991 – Wiley Interscience)

Genetic Algorithms in Search, Optimization and Machine Learning, by David
E. Goldberg (1989 – Addison Wesley)

418 CHAPTER 14 Genetic Algorithms

Messy Genetic Algorithms: Motivation, Analysis and First Results by D.E.
Goldberg (1989 - in Complex Systems, Vol. 3, pp. 493–530)

Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic
Algorithms, by David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and
Georges Harik (1993 – in Proceedings of the Fifth International Conference
on Genetic Algorithms, pp. 56–64)

Practical Genetic Algorithms, by Randy L. Haupt and Sue Ellen Haupt (1998
– Wiley Interscience)

Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, by John H. Hol-
land (1992 – MIT Press)

Genetic Algorithms + Data Structures = Evolution Programs, by Zbigniew
Michalewicz (1999 – Springer)

An Introduction to Genetic Algorithms, by Melanie Mitchell (1998 – MIT Press)

The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Perfor-
mance, by Melanie Mitchell, Stephanie Forrest, and John H. Holland (1992
- In Towards a Practice of Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, edited by Francisco J. Varela and Paul
Bourgine, pp. 245–254, MIT Press)

Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the
Bomb, by William Poundstone (1994 – MIT Press)

Representations for Genetic and Evolutionary Algorithms, by Franz Rothlauf
and David E. Goldberg (2002 – Springer Verlag)

Artificial Evolution for Computer Graphics by Karl Sims (1991 –Siggraph ’91
- Annual Conference Proceedings, 1991, pp. 319–328).

Evolving Virtual Creatures, by Karl Sims (1994 - Siggraph ’94 - Annual Con-
ference Proceedings, 1994, pp. 43–50)

Computer Viruses as Artificial Life, by Eugene Spafford (1989 – in Artificial Life,
An Overview, edited by Christopher G. Langton, 1995, MIT Press, pp. 249–265)

The Simple Genetic Algorithm: Foundations and Theory, by Michael D. Vose
(1999 – MIT Press)

Planning
5

Introduction To Part 5

Part 5 is divided into two chapters.

Introduction to Planning

This chapter introduces the ideas behind planning. It starts
by explaining the relationship between search and plan-
ning, and explains why in many real-world problems, plan-
ning is preferable to search. It also explains situation
calculus, which is an extension to first-order predicate cal-
culus used in planning systems, to represent the way the
world changes over time.

This chapter explains the frame problem and introduces
ways to overcome the problem. It also explains means–ends
analysis, which is covered in more detail in Chapter 16.

Planning Methods

Chapter 16 expands on the ideas introduced in Chapter 15.
It presents a number of representations and methods that
are used in planning, starting with STRIPS. It presents a
number of examples to illustrate how STRIPS is able to
solve planning problems and also discusses the kinds of
problems that might be difficult to solve using STRIPS. A
number of other representations such as planning graphs
and ADL are also explored, as well as some more advanced
planning methods such as probabilistic planning and
dynamic world planning.

PART
15

CHAPTER

16
CHAPTER

This page intentionally left blank

15CHAPTER
Introduction to Planning

The best laid schemes o’ mice an’ men gang aft a-gley.

—Robert Burns, To a Mouse

You can never plan the future by the past.

—Edmunde Burke, Letter to a Member of the National Assembly

Grow old along with me!
The best is yet to be,
The last of life, for which the first was made:
Our times are in His hand
Who saith ‘A whole I planned,
Youth shows but half; trust God: see all nor be afraid!’

—Robert Browning, Rabbi Ben Ezra

In preparing for battle I have always found that plans are useless, but that
planning is indispensable.

—Dwight D. Eisenhower

15.1 Introduction

Planning has recently become a very exciting area of research in Artificial
Intelligence. Much of the work of Artificial Intelligence is concerned with
problem solving. As we will see, planning is no exception. Planning is a very
simple concept: a planner starts in an initial state and has a particular goal

422 CHAPTER 15 Introduction to Planning

it needs to achieve. To reach the goal state, the planner develops a plan and
then executes that plan.

The planner might be a robot arm, or a mobile robot, but in many cases it
exists purely in software and is designed to plan solutions to virtual problems.

A planner has a set of possible actions it can take, and as we will see, these
actions are usually limited, depending on the current state of the planner.
For example, a robot cannot open a door if the door is already open, or if it
is nowhere near the door, or if its hands are full.

The actions that a planner can take are its atomic actions—these actions
are usually described in terms of the effect they have on the planner and on
the world. For example, a planning system might use actions such as “pick
up object X” or “close door” or “go to supermarket.”

Note that thus far we have assumed that the planner is the same entity as
the entity that will execute the plan. This is not necessarily the case because
a planner may be intended to develop plans for another entity. In this book,
though, we tend to continue with the assumption that the system that
develops the plans is the same system that executes the plans.

A plan can usually be considered as a set of subgoals, much like the goal
trees we see in Chapter 3. In this chapter and in Chapter 16, we see some of
the representations that are used to describe the state of a planner and its
actions. We also examine the methods used by planners to efficiently design
and execute plans.

In this chapter, the ideas behind planning are introduced, starting with
using search as a way of identifying a plan of actions.

This chapter also introduces situation calculus, which is a form of first-
order predicate calculus, which enables us to reason about the way in which
predicates change over time as the result of actions. Effect axioms and
frame axioms are introduced, and we discuss the frame problem and how
it can be solved by using successor state axioms.

This chapter also introduces the idea of means–ends analysis, an idea that
is extensively illustrated in Chapter 16 in a discussion of STRIPS. To illus-
trate means–ends analysis, this chapter introduces the General Problem
Solver, or GPS.

15.2 Planning as Search 423

15.2 Planning as Search

One approach to planning is to use search techniques, as described in Part
2 of this book. For example, a robotic planning agent might have a state
that is described by the following variables:

Room the robot is in

Room the cheese is in

Is the robot holding the cheese?

Let us further suppose that there are just three rooms—room 1, room 2,
and room 3—and that these rooms are arranged such that there is a door
from each room to each other room. The robot starts out in room 1, and
the cheese starts in room 3. The robot’s goal is to find the cheese.

The actions the robot can take are as follows:

Move from room 1 to room 2

Move from room 1 to room 3

Move from room 2 to room 1

Move from room 2 to room 3

Move from room 3 to room 1

Move from room 3 to room 2

Pick up cheese

Note that each of these rules has a set of dependencies: to move from room
1 to room 2, the robot must currently be in room 1, in order to pick up the
cheese, and the robot and the cheese must be in the same room, and so on.
In this chapter, and in Chapter 16, we examine in more detail how these
rules are expressed, but for this example we will assume that the actions can
only be carried out in a way that makes sense in our world.

We will use a three-value vector to represent the current state:

(room robot is in, room cheese is in, is robot holding cheese?)

So the initial state can be described as (1, 3, no), and the goal state can be
described as (x, x, yes) where x is a variable that indicates the room in
which both the cheese and the robot are located.

424 CHAPTER 15 Introduction to Planning

2,3,no 3,3,no

3,3,yes

Go to room 3Go to room 2

Pick up cheese

1,3,no

Figure 15.1
A highly simplistic search
tree used to develop a plan

Note that there are 18 possible states that can be described by this vector,
but that the following 6 states are not possible because they involve the
robot holding the cheese, but with the cheese in a different room from the
robot: (1, 2, yes), (1, 3, yes), (2, 1, yes), (2, 3, yes), (3, 1, yes), (3, 2, yes).
Hence, there are actually only 12 valid states.

In each state where the robot and the cheese are in different rooms, there
are two possible actions that can be taken. For example, in the state (1, 2,
no), the robot can either move from room 1 to room 2, or can move from
room 1 to room 3.

To develop a plan, the robot can simply produce a search tree, such as the
one shown in Figure 15.1, which starts with the initial state and shows
every state that can be achieved by applying each action from that state. A
suitable plan is found when the goal state is reached. As with the search
trees we built when examining the cannibals and missionaries problem in
Chapter 3, we have excluded repeated states.

Note that in this simple problem, the search tree is very small, and finding a
suitable plan is thus very easy.

In fact, in most real-world problems, and, indeed, in most Artificial Intelli-
gence problems, there are many more possible states, many more actions
that can be taken, and many more variables to consider.

For a robotic agent to be of any use in the real world, it would need to have
hundreds or even thousands of possible actions it could take to be able to
deal with the enormous complexities it would surely face. Similarly, for the

15.2 Planning as Search 425

robot to understand the world in sufficient detail, it would need to have a
state representation that consisted of a very large number of variables.
Given these factors, the search tree that would be produced for even a very
simple problem would become prohibitively large.

The main problem with using search for planning is that it does not take
any account of the effects of actions when considering which action to take.
If the agent’s goal is to find the cheese that is in the next room, then consid-
ering paths in the search tree that start with actions such as “phone the doc-
tor,” “look out of the window,” “switch on the television set,” and so on
would be wasteful.

Additionally, as we will see, it does not necessarily make sense for a plan to
be built starting from the initial state. As we have seen in Chapters 3 and 4,
it often makes sense to approach a problem by starting from the goal state
and working back toward the initial state. Search does not necessarily func-
tion well in such situations.

Another reason that search is not usually the best way to approach plan-
ning is that it does not take into account the independence of multiple
goals. When a planner is presented with a goal that consists of several parts,
such as “buy some eggs, feed the cat, and get little Johnny a haircut,” it can
consider each of these goals separately and solve each of them consecu-
tively, rather than trying to solve them as a whole. Because a search-based
approach would consider the three goals as a single problem, it would end
up enormously overcomplicating the problem.

Of course, in some situations, the order in which subgoals are achieved can
be very important. For example, the planner might have as a goal “feed the
cat, and wash the cat’s bowl.” In this case, the planner might need to con-
sider carefully the order in which it carries out its actions if it is to avoid
making a simple error, such as putting food into the cat’s bowl and then
immediately washing it up, without waiting for the cat to eat.

Similarly, when solving problems such as the 8-puzzle, described in Chap-
ter 4, each of the subgoals very much depends on the others. When taking
actions to slide tile 5 into its square, it is very likely that all the other tiles
will be moved about, and so independently placing each tile in its appro-
priate square will not do. Hence, search is a very good way to plan a solu-
tion to problems such as the 8-puzzle or the eight-queens problem.

426 CHAPTER 15 Introduction to Planning

15.3 Situation Calculus

In the example used above, we have used a very simple notation to indicate
the current state of the planner. For most real problems this notation
would not make sense because the number of variables to consider in each
state would be prohibitively large.

One notation that is often used in discussing planning is situation calcu-
lus. Situation calculus is a form of first-order predicate calculus.

As we see in Chapter 7, first-order predicate calculus allows us to make
assertions about objects but does not provide a very good way of expressing
change, or temporal relationships. Situation calculus allows us to describe
an object in one state, or situation, and then describe how that object will
change when a given action is taken.

For example, the following situation calculus expression represents the
assertion that in situation S1, the robot is in the same room as the cheese:

Here the predicate In is used to indicate which room a given entity is in. The
predicate has been augmented with a third variable, which is the situation that
is being described. This third variable, S1, is known as a situation variable.

Of course, not all objects change over time, and so we can continue to use
standard predicates without a situation variable. For example, we could use
the following expression to assert that the robot’s name is Robbie and that
this will not change over time:

Name (Robot, Robbie)

To describe the effects that actions have on the world, we use the Result
function. The Result function takes as arguments an action and a situation
and returns the situation that occurs as a result of that action. For example,

Result (Movei,j , S1) = S2

Here we are using the notation Movei,j to indicate the action of moving
from room i to room j. Hence, if the current situation is S1, and the robot
carries out the action of moving from room 1 to room 2, this will result in
situation S2.

∃ () ∧ ()()x In Robot x S In cheese x S, , , ,1 1

15.4 The Frame Problem 427

A number of rules are needed to describe the effects of actions. These rules
are known as effect axioms. For example, we might have the following
effect axiom:

This effect axiom states the following rule:

If the robot is in a room, y, and an object x is also in that room, then if the
robot carries out a Take action, this will result in a new situation in which
the robot has object x. We might want to further refine this axiom, by
ensuring that x is the kind of object that the robot can carry—for example,
by stating that it must be light enough and small enough to carry and that
it must not be fixed down.

15.4 The Frame Problem

As we have seen, when we carry out an action, the world changes. In fact,
some aspects of the world change, but others stay the same. Determining
which stay the same is known as the frame problem.

An effect axiom states what changes when the robot carries out a particular
action in a particular situation. It does not make any statements about what
does not change. For example, when the robot carries out a Take action, it
does not find itself in a different room. This kind of rule can be expressed
in a frame axiom, such as the following:

Of course, most actions that we take do not have any effect on the vast
majority of objects in the real world. This is likely to be true in the world of
a robot or software planner. As a result, many of frame axioms are needed
if we are to describe all of the effects that do not result from carrying out a
particular action. The problem of having enormous numbers of frame
axioms is known as the representational frame problem.

The representational frame problem can be solved by using successor state
axioms, which effectively combine the effect axioms with the frame

∀ () ⇒ ()()y s In Robot y s In Robot y Result Take s, , , , , ,

∀ () ∧ () ⇒ ()()x y s In Robot y s In x y s Has Robot x Result Take s, , , , , , , , ,

428 CHAPTER 15 Introduction to Planning

axioms. Successor state axioms describe the way in which a predicate
changes over time. For example,

The axiom states the following:

There are only two ways in which an action, a, can result in the robot hold-
ing object x. The first of these is if the action is Take, and the robot is in the
same room (y) as the object. The second possibility (after the ∨ in the
expression) is if the robot already has the object, and the action is not Drop.

Note that this axiom uses iff (⇔) rather than implies. A ⇔ B means that A
implies B, but that if B is not true, then A can also not be true. In other
words, it is stating that if either the robot takes the object or it already has it,
then it will have it, but that if neither of those is true, then it will not have it.

In this way, one successor state axiom is needed for each predicate whose
value can change. Although these axioms may become very complex, they
avoid the enormous number of unhelpful rules that a system based on
effect axioms and frame axioms would have (such as “If I pick up the
cheese, then the room’s walls will not change color.”)

15.5 Means–Ends Analysis

Typically, a planner needs to find a correct set of actions (a plan) that will
take it from one state to another state—the goal state. One approach to
planning is to consider the differences between the goal state and the cur-
rent state, and select actions that aim to lessen those differences: this is
called means–ends analysis.

Unlike search techniques, means–ends analysis can select an action even if it
is not possible in the current state. If a planner selects an action that results in
the goal state, but is not currently possible, then it will set as a new goal the
conditions necessary for carrying out that action. For example, let us con-
sider the blocks world, which is often used to illustrate planning problems.

The blocks world contains a number of blocks and a surface or table top.
Blocks can be placed on top of each other or can be placed onto the table.

∀ ()() ⇔

= ∧ () ∧ ()()
() ∧ ≠()

a x y s Has Robot x Result a s

a Take In Robot y s In x y s

Has Robot x s a Drop

, , , , , ,

, , , ,

, ,

15.5 Means–Ends Analysis 429

a

b

Figure 15.2
A start state in the blocks
world

The planner is a robot arm that is able to pick blocks up and to move them
around. Let us suppose that the world consists of two blocks, a and b, as
shown in Figure 15.2.

Let us suppose that our robot’s goal is to place block b on top of block a,
with block a resting on the table. Using means–ends analysis, our planner
starts by considering how the goal state differs from the current state. In
this case, the differences are:

Block b is not on top of block a.

Block a is on top of block b.

Our planner could now consider the following two possible actions:

1. Place block b on top of block a.

2. Remove block a from on top of block b.

Each of these actions is interesting because it reduces the differences
between the current state and the goal state. Our planner might start by
selecting action 2 and removing block a from on top of block b. The differ-
ences between this new state and the goal state are now as follows:

Block b is not on top of block a.

Block a is not on the table.

The planner’s next action might therefore be to place block a on the table.
Now the difference between the current state and the goal state is as follows:

Block b is not on top of block a.

The next action to consider is thus

3. Place block b on top of block a.

Unfortunately, action 3 cannot be carried out because the robot arm is not
currently holding block b. So we have a new goal state, which is

Robot arm is holding block b.

Hence, before carrying out action 3, the planner must achieve this goal,
which it does by carrying out the following action:

4. Pick up block b.

430 CHAPTER 15 Introduction to Planning

Note that all of this planning is carried out before the robot starts to move.
Hence, when it has completed building the plan, it is able to carry out the
following actions:

Remove block a from on top of block b.

Place block a on the table.

Pick up block b.

Place block b on top of block a.

Hence, the goal has been achieved. As we will see, this approach can be used in
much more complex planning systems to solve far more interesting problems.

The General Problem Solver, or GPS, was developed by Newell, Shaw, and
Simon in the late 1950s (Newell et al. 1959, Newell and Simon 1963) as an
attempt to simulate human thought, with the intention of using this
approach to solve problems of a general nature.

GPS uses means–ends analysis to solve logic problems, such as showing the
equivalence of the following two logical expressions:

(R → ¬P) ∧ (R → Q)

¬(¬Q ∧ P)

In their 1963 paper, Newell and Simon explain how GPS examines the dif-
ferences between these two expressions and use a set of three simple meth-
ods that can be used to transform expressions, based on the logical
equivalence rules shown in Chapter 7 of this book.

For example, GPS might start by removing the → operators in the first
expression, using the following rule:

A → B ⇔ ¬ A V B

As we see in Chapter 16, STRIPS is a planning system that uses
means–ends analysis in a manner similar to that used by GPS to control the
actions of a robot through a simple environment.

15.6 Chapter Summary

■ One way to find a plan to solve a problem is to apply a search
method and search through the search space of all possible plans.
This works well for very simple problems, but is not efficient for
complex problems or those involving many possible actions and
variables.

15.8 Exercises 431

■ In solving problems where each action can undo the effects of
other actions, it is necessary to use search.

■ Situation calculus is an extension of first-order predicate calcu-
lus, which uses situation variables to express how objects change
over time.

■ Effect axioms for an action state what changes after that action
takes place.

■ Frame axioms state what variables do not change after carrying out
an action.

■ The frame problem is the problem of determining what does not
change when an action is carried out. Using successor state axioms,
which combine features of effect axioms and frame axioms, solves
this problem.

■ Means–ends analysis, as used by GPS, involves determining the dif-
ferences between the current state and the goal state, and choosing
actions that minimize those differences.

15.7 Review Questions

15.1 What is planning?

15.2 Explain why the search methods described in Chapter 4 can be
used for planning.

15.3 Why can first-order predicate calculus not be used for planning
without the addition of situation variables?

15.4 Explain what is meant by the frame problem. What is the represen-
tational frame problem? Why are these problems so important to
the study of planning?

15.5 Explain the idea behind means–ends analysis. Compare it with
search as a planning method. Which more closely matches the
methods people use when formulating plans in everyday life?

15.8 Exercises

15.1 Write a program in the language of your choice that uses search to
formulate plans for moving from one arrangement of three blocks
to another. Assume that the available actions that can be taken are to

432 CHAPTER 15 Introduction to Planning

move a block from one of three locations to another, and that if one
block is placed into a location in which another block is already
present, then the second block is placed on top of the first block.

15.2 Consider extending your program to work with larger numbers of
blocks. How well do you think it will work?

15.9 Further Reading

Most of the standard texts provide good coverage of planning. Russell and
Norvig provide a particularly thorough treatment, in the context of intelli-
gent agents. Newell, Shaw, and Simon’s papers on GPS and Fikes and Nilsson’s
paper on STRIPS provide good introductions to those systems. The Further
Reading section of Chapter 16 contains more references on planning.

STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving, by Richard E. Fikes and Nils J. Nilsson (1971 – in Computation &
Intelligence, edited by George F. Luger, 1995 – MIT Press)

The Robots Dilemma Revisited: The Frame Problem in Artificial Intelligence,
by Kenneth M. Ford and Zenon W. Pylyshyn (1996 – Ablex Publishing)

GPS, A Program That Simulates Human Thought, by Alan Newell and Her-
bert A. Simon (1963 – in Computation & Intelligence, edited by George F.
Luger, 1995 – MIT Press)

Report on a General Problem Solving Program, by Alan Newell, J. C. Shaw,
and Herbert A. Simon (1959 – in Proceedings of the International Conference
on Information Processing, pp. 256–264)

The Robots Dilemma: The Frame Problem in Artificial Intelligence, by Zenon
W. Pylyshyn (1987 – Ablex Publishing)

Choices, Values, and Frames, edited by Daniel Kahneman and Amos Tversky
(2000 – Cambridge University Press)

Recent Advances in AI Planning, by Daniel S. Weld (1998 – appeared in AI
Magazine, 1999)

16CHAPTER
Planning Methods

I have a cunning plan. . .

—Baldrick from Blackadder

This very remarkable man
Commends a most practical plan:
You can do what you want
If you don’t think you can’t,
So don’t think you can’t – think you can.

—Charles Inge, ‘On Monsieur Coué’

Awake, my St John! Leave all meaner things
To low ambition, and the pride of kings.
Let us (since Life can little more supply
Than just to look about us and to die)
Expatiate free o’er all this scene of man;
A mighty maze! but not without a plan.

—Alexander Pope, An Essay on Man

16.1 Introduction

Planning methods are used to solve problems where a sequence of actions
must be carried out to reach a goal. In this chapter, we often consider the
blocks world, in which a robot arm must reorganize a set of blocks from
one arrangement to another. Planning is also used a great deal in industry,

434 CHAPTER 16 Planning Methods

for routing transportation, organizing allocation of machines in factories,
and controlling robots and intelligent agents.

In Chapter 19, we see how intelligent agents can base their actions on beliefs,
desires, and intentions. Agents have beliefs about the world and desires that
must be fulfilled. To achieve these desires, an agent forms intentions, or
plans, which specify in advance what it will do. An agent that does not plan
is able only to respond to its environment as it encounters it and will often
find itself falling into traps that a planning agent would have foreseen.

Planning is an extremely important part of Artificial Intelligence research.

This chapter explores a number of algorithms and representations that are
used in planning and introduces some of the ideas that have been
researched in the past 10 years.

We start by examining STRIPS, which was an early planning system based
on the means–ends strategy discussed in Chapter 15. Although STRIPS has
been superseded by a number of more sophisticated methods, the language
it uses to represent planning problems is still widely used.

We then briefly explore partial order planning, in which plans are specified
such that the order in which some actions are carried out is unimportant.

This chapter explores the ways in which propositional calculus can be used
to represent and solve planning problems, including producing plans by
examining the satisfiability of propositional sentences.

We then explore some other representations for planning problems includ-
ing planning graphs (used by the GraphPlan algorithm) and ADL, which is
an extension of the STRIPS language.

We also examine ways in which planning can be carried out in an uncertain
world and ways in which planners can learn from their past actions and
mistakes.

Finally, we briefly explore the relationship between planning and scheduling.

16.2 STRIPS

STRIPS (Stanford Research Institute Problem Solver) is an operator-based
planning approach that was developed by Fikes and Nilsson in the 1970s
(Fikes and Nilsson 1971). This is in contrast with the use of situation vari-

16.2 STRIPS 435

ables and frame axioms that we see in Chapter 15, when using the logic of
situation calculus.

STRIPS uses a means–ends analysis strategy, which was described in Sec-
tion 15.5. Means–ends analysis simply involves identifying the differences
between the current state and the goal state, and selecting actions that
reduce those differences.

STRIPS uses well-formed formulae (wffs) in first-order predicate calculus
to describe the world, in much the same way that we see in Chapter 15.
STRIPS was designed to provide planning for robotic agents to enable
them to navigate through a world of blocks, but the approach can also be
used in other planning problems.

For example, the following wff can be used to state the rule that if an object
is in one location, then it cannot be in another:

This wff states that if an object, o, is in location x, where x is not the same
location as y, then object o cannot be in location y.

Note that unlike the examples in Chapter 15, locations in STRIPS are
expressed as vectors, rather than as entire rooms. In other words, in the
above expression, x and y represent the physical coordinates of the robot,
measured in some units of distance from a point that is considered to be
the origin: (0,0).

16.2.1 Planning and Executing

STRIPS uses a set of operators, which represent the actions that can be
taken, or the steps that can be included in a plan. For example, operator
Push (o, x, y) enables the robot to push object o from location x to location
y. Note that there is a distinct difference between considering the operator
Push and actually carrying out the act of pushing. This is the difference
between planning and executing. Most of this chapter is concerned with
planning, which means selecting a suitable sequence of operators. Once the
sequence has been chosen, the plan can be executed, which means carrying
out the actions described. This has some important implications: if carry-
ing out an action has an unexpected effect that was not planned for, the
plan may not succeed. Should the robot continue with the plan regardless,

∀ ∀ ∀() () ∧ ≠()() ⇒ ¬ ()()o x y AT o x x y AT o y, ,

436 CHAPTER 16 Planning Methods

or should it stop and develop a new plan based on the unexpected state it
has found the world in? We consider these issues in Section 16.11.

16.2.2 Operators

Each operator that STRIPS uses is defined by two components. The first is
the effect that the operator will have on the world, and the second is the
preconditions that must be met for the action to be carried out.

The preconditions are specified as a set of wffs that must be proven to hold
for the current state, or world model. The world model contains a list of
wffs that are true of the world in the current state, such as AT(r, x), which
means that the robot is at position x, or AT(o, y), which means that object o
is at position y.

STRIPS includes information on two different types of effect that an oper-
ator can have: the statements (or wffs) that become true after carrying out
the action and the statements that are no longer true. Each operator can
thus be defined by a list of wffs that must be added to the world model and
a list of wffs that must be deleted. These lists are often called the add list
and the delete list.

Hence, the Push (o, x, y) operator could be fully defined as in the following
example:

Precondition: AT(r, x)

∧ AT(o, x)

Delete: AT(r, x)

AT(o, x)

Add: AT(r, y)

AT(o, y)

In other words, to push object o from position x to position y, the robot
and the object must both start out in position x. As a result of this action,
neither the robot nor the object will still be in position x: both will be in
position y.

This definition defines an operator schema, which means that it does not
define an actual action, but rather a type of action. A real action is an
instance of the schema, in which the variables are instantiated with actual
objects. Hence, for example, we could describe pushing object o1 from

16.2 STRIPS 437

position with coordinates (2,3) to position (1,4) by the following operator
instance:

Push (o1, (2,3), (1,4))

When the world model includes statements that can be used to instantiate
the preconditions of a particular operator, then we say that this operator is
applicable.

The final element of STRIPS is the goal state, which is described by a wff, or
a set of wffs, that define the state that the robot wants to reach. Once the
planner finds a way to reach this goal state, it has successfully solved its
problem and is ready to execute the plan.

16.2.3 Implementation of STRIPS

The algorithm used by the original STRIPS program to develop plans was
as follows:

First, the current world model is compared with the wffs that define the
goal state. If the goal can be satisfied by the current world model, then the
problem is solved, and the planning can terminate.

In fact, STRIPS used the method explained in Chapter 8 for proving theo-
rems using resolution. This method involves assuming the negation of the
goal, and then showing that this is inconsistent with the current world
state, by using the method of unification to instantiate variables in the
schemata with real-world objects. If this method successfully shows an
inconsistency, then the goal is consistent with the world state.

If this is not the case, then a plan must be developed.

To select a suitable operator (or action) to apply, STRIPS used the same
method as GPS (which is described in Chapter 15), which means determin-
ing the differences between the current state and the goal state and select-
ing an operator that lessens those differences.

Having applied unification and resolution, the original STRIPS program
used the resulting partial proof as a representation of these differences.
Hence, the running of STRIPS involved alternately applying resolution
(theorem proving) and means–ends analysis.

STRIPS solves the frame problem by making what is known as the STRIPS
assumption: that any statement that is true before applying an operator is

438 CHAPTER 16 Planning Methods

b

ca

Figure 16.1
Start state for the blocks
world problem

also true after applying the operator, unless it is included in the operator’s
delete list.

16.2.4 Example: STRIPS

We will now examine a simple example of STRIPS in action, in the blocks
world, which consists of a table, three blocks (a, b, and c) and a robot arm
that can move blocks around.

The initial state of the world is shown in Figure 16.1. Block a is on the table,
and block b is on top of block c, which is in turn placed directly on the
table.

We will use two predicates to describe the world:

On (x, y) means that block x is on top of block y.

Clear (x) means that block x has no block on top of it.

We will also use t to represent the table. Hence, On (a, t) means that block a
is on the table. Clear (t) will always be true because we assume that the table
is large enough to hold at least three blocks at once.

Our goal is to place block c on top of block a, which can be stated as

On (c, a)

Our start state can be described as

On (a, t)

On (b, c)

On (c, t)

Clear (b)

Clear (a)

Clear (t)

We have one available operator schema: MoveOnto (x,y), which means
“move object x from wherever it is, and place it on top of object y.”

16.2 STRIPS 439

MoveOnto (x,y) is defined as

Preconditions: On (x, z) ∧ Clear (x) ∧ Clear (y)

Delete: On (x, z)

Clear (y)

Add: On (x, y)

Clear (z)

In fact, this is not quite correct because if we move object b from on top of
object c and place it on the table, Clear (t) is still true. We could address this
by including an additional operator schema MoveOntoTable (x), which is
defined as follows:

Preconditions: On (x, y) ∧ Clear (x)

Delete: On (x, y)

Add: On (x, t)

Clear (y)

A number of approaches can be used to build the plan. The first approach
we will consider is to use forward chaining. In other words, we will simply
search through the space of possible plans until we find a suitable one. This
will involve constructing a tree where the root node represents the start
state, and other nodes represent other possible states that can be obtained
by applying operators.

For example, from the initial state, there are three operators we could
apply:

MoveOnto (a, b)

MoveOnto (b, a)

MoveOntoTable (b)

Other operators, such as MoveOntoTable (c) are not possible because their
preconditions are not met by the current world state.

Let us suppose that we choose to apply MoveOntoTable (b). This has pre-
condition

On (b, y) ∧ Clear (b)

which is matched by instantiating y with c. Hence, after using the operator,
we will need to apply the following add and delete lists to our current state:

440 CHAPTER 16 Planning Methods

Delete: On (b, c)

Add: On (b, t)

Clear (c)

Hence, our state description becomes

On (a, t)

On (b, t)

On (c, t)

Clear (b)

Clear (a)

Clear (c)

Clear (t)

From this position we could apply any of the following operators:

MoveOnto (a, b)

MoveOnto (a, c)

MoveOnto (b, a)

MoveOnto (b, c)

MoveOnto (c, a)

MoveOnto (c, b)

Using the blind search method, we would simply try each of these and add
a new node to the tree for each resulting state. In fact, by applying
MoveOnto (c, a), we produce a state that matches the goal state, and so a
suitable plan has been found.

This method did not use means–ends analysis, and although it would be
feasible for a problem of this scale, it would not work at all for real-world
problems involving hundreds of operators and objects.

The means–ends analysis approach would start by noticing the differences
between the start state and the goal state: block c is not on block a and is in
fact under block b. The fact that block c is not clear does not matter because
this is not mentioned explicitly in the goal.

To reduce this difference, we could apply the operator MoveOnto (c, a).
However, this operator’s preconditions are not currently met because it

16.2 STRIPS 441

requires that c be clear. We note that operator MoveOntoTable (b) has the
desired effect of clearing c. Hence, we have arrived at a suitable plan by
using a form of backward chaining—starting at the goal and identifying
steps that could lead to the goal.

Of course, we were lucky in our second choice. We might equally have cho-
sen MoveOnto (b, a) because this also has the effect of clearing c. In this
case, we would then find ourselves in a position where we had further diffi-
culties. At this point, the planner would likely backtrack and try a different
choice because it clearly made the problem harder, rather than moving
closer to a solution.

16.2.5 Example: STRIPS and Resolution

Let us now consider in more detail the mechanics of STRIPS and, in partic-
ular, how the original program used resolution and unification. We will
consider a slightly different version of the blocks world, as designed by
Fikes and Nilsson in their original description of STRIPS. The robot
(named Shakey, due to his unstable gait) starts out in position x, and his
task is to bring two objects, a and b, together. The two objects start out in
positions y and z. We will assume that two objects are together when they
are both at the same position, and we will further assume that the robot can
push two objects together, ignoring the difficulties that this would pose in
the real world.

Hence, the initial world state is described by

AT(r, x)

AT(a, y)

AT(b, z)

The goal can be described by the following wff:

The operators available to the planner are the following:

Push (o, x, y)

Precondition: AT(r, x) ∧ AT(o, x)

Delete: AT(r, x)

AT(o, x)

∃() () ∧ ()()p AT a p AT b p, ,

442 CHAPTER 16 Planning Methods

Add: AT(r, y)

AT(o, y)

Go (x, y)

Precondition: AT(r, x)

Delete: AT(r, x)

Add: AT(r, y)

The first stage is to negate the wff that describes the goal:

(Note that we have used the equivalence between ¬(∃x)e and (∀x)¬e and
have then applied DeMorgan’s law to obtain this expression.)

For the purposes of resolution, we can consider this to be the set of clauses:

{(¬AT(a,p), ¬AT(b, p))}

We now attempt to prove by using resolution that this expression is incon-
sistent with the current world state. In fact, this will not be possible, and we
will obtain only a partial proof, which can then be used to describe the dif-
ference between the initial state and the goal state.

The first stage of this resolution would be to unify the following sets of
clauses:

{(¬AT(a,p), ¬AT(b,p))}

{(AT(r,x)), (AT(a, y)), (AT(b,z))}

We will apply the unifier {y/p} and obtain the following set of clauses:

{(¬AT(a,y), ¬AT(b,y)), (AT(r,x)), (AT(a,y)), (AT(b,z))}

This resolves to give the following set of clauses:

{(¬AT(b,y)), (AT(r,x)), (AT(b,z))}

Clearly, a difference that needs to be rectified is that object b is not at loca-
tion y, but is at location z. Hence, STRIPS will see if it can apply operator
Push (b, z, y).

To determine whether this operator’s preconditions are met, the precondi-
tions are negated and added to the set of clauses. The preconditions for the
push operator are

∀() ¬ () ∨ ¬ ()()p AT a p AT b p, ,

16.3 The Sussman Anomaly 443

b

ca

a

b

c
Figure 16.2
The start and goal states
for the Sussman anomaly
problem

AT(r, z) ∧ AT(b, z)

We negate this and apply DeMorgan’s law to give

¬AT (r,z) ∨ ¬AT (b,z)

We add these to the clauses and obtain

{(¬AT(b,y)), (AT(r,x)), (AT(b,z)), (¬AT(r,z), ¬AT(b,z))}

This resolves to give the following partial proof:

{(¬AT(b,y)), (AT(r,x)), (¬AT(r,z))}

Again, a complete proof was not possible, and we are left with a partial res-
olution proof. This shows that a further difference that needs to be rectified
is that the robot is at position x, whereas it should be in position z, in order
to carry out the Push (b,z,y) operator. Hence, the Go (x,z) operator is
attempted.

In this case, the precondition when negated is

¬AT(r, x)

This is now added to the set of clauses that are to be resolved, and the
process continues.

Eventually, a set of operators is found that enables the clauses to resolve to
falsum, meaning that the goal state has been reached.

16.3 The Sussman Anomaly

We return now to the blocks world of the example in Section 16.2.4.

Consider the start state shown in Figure 16.2. Our goal now is to place
block c on top of block b, and block a on top of block b. This is the second
state shown in Figure 16.2.

The STRIPS approach to this problem would start by either moving b onto
the table, and then placing c on a, or by moving a on top of b without first
removing b from c. In either of these cases, the solution cannot be reached
without undoing this first move. Many early planning systems could not

444 CHAPTER 16 Planning Methods

d

c

b

a

c

d

a

b

Figure 16.3
Start and goal states for a
partial order planning
problem

solve problems of this nature, in which the two aspects of the goal have
dependencies on each other. The correct solution, of course, is to first move
b onto the table, then place a on top of b, and finally move c on top of a, but
this involves interleaving the solutions to the two components of the goal,
which is not easily achieved using STRIPS in its original form. Later in this
chapter, we see methods that are able to deal with Sussman’s anomaly more
elegantly.

16.4 Partial Order Planning

The plans that we have considered so far are known as total order plans
because they dictate the order in which each action must be carried out. In
some cases, a partial order plan can be used, in which actions that are
dependent on each other are ordered in relation to each other but not nec-
essarily in relation to other independent actions.

For example, let us consider the blocks world problem with the start and
goal states as shown in Figure 16.3.

A total order plan for this problem might be described as follows:

MoveOntoTable (b)

MoveOntoTable (d)

MoveOnto (a, b)

MoveOnto (c, d)

To place a on top of b, it is important that b is moved onto the table first. It
does not matter whether c or d have moved yet.

Hence, a partial order plan can be described as shown in Figure 16.4.

This partial order plan shows that before MoveOnto (a,b) can be carried
out, MoveOntoTable (b) must be applied; similarly, it shows that MoveOn-
toTable (c) must be applied before MoveOnto (a,b) can be carried out.

To finish, or reach the goal state, the robot must have carried out all four
actions.

16.4 Partial Order Planning 445

MoveOnto Table (b)

MoveOnto Table (a, b)

MoveOnto Table (c)

MoveOnto Table (a, b)

Start

Finish Figure 16.4
A partial order plan

Start

Goal

Figure 16.5
The initial stage in build-
ing a partial order plan

This representation for a plan enables the planner to consider a number of
different plans, without worrying about ordering actions that are not
dependent on each other. At the time of execution, the robot can select any
ordering that matches this partial order. Note that the partial plans can be
interleaved. Hence, a suitable total plan might be

MoveOntoTable (b)

MoveOnto (a, b)

MoveOntoTable (d)

MoveOnto (c, d)

The idea behind partial order planning is to develop a partial order plan
that ends with the goal state and where each transition in the plan is legal,
according to the definitions of the available operators.

To see how this works, let us consider the blocks world problem shown in
Figure 16.3. We will examine how the planning system might build up a
partial order plan.

At first, the system has a start state and a goal state, as shown in Figure 16.5.

446 CHAPTER 16 Planning Methods

MoveOnto (a, b) MoveOnto (c, d)

Start

Goal

Figure 16.6
The next stage in building
the partial order plan

Our task is now to build a plan that gets us from the start state to the goal
state.

The first step is to add in operators that achieve the conditions set in the
definition of the goal state. As we saw above, these operators are MoveOnto
(a,b) and MoveOnto (c,d). In Figure 16.6, we have added these operators to
the partial plan (it is a partial order plan, but it is also a partial plan, in the
sense that it is not yet complete).

In Figure 16.6, the solid arrows represent causal links or establishes links,
which show how an action causes or establishes a set of conditions that
match the criteria for the goal state. The dashed arrows are not yet causal
links because they do not explain how one gets from the start state to the
next states. These dashed arrows simply show the order in which actions
must occur, so in this case, the two operators shown must occur after the
start state.

Next we must find operators that will enable us to satisfy the preconditions
of the operators we have just added. These preconditions are met by
MoveOntoTable (b) and MoveOntoTable (d).

Adding these operators to the partial plan shown in Figure 16.6 leads to the
partial order plan (which is no longer a partial plan because it gives all the
steps necessary to get from the start to the goal) shown in Figure 16.4.

In building a partial order plan, there is a potential problem to consider,
which is that one action might undo the effects of another action, in which
case the order in which those actions are carried out can be important. A
causal link is said to be protected when it is needed to establish the precon-
ditions of an operator below it in the plan. If another operator has the

16.5 The Principle of Least Commitment 447

Finish

Op 1 Op 2

Start

Op 2

Start

Op 3

Finish

Op 1

Op 3

Start

Finish

Op 1

Op 3 Op 2
Figure 16.7
An example of a causal link
being threatened by
another operator and two
ways in which this problem
can be rectified

effect of deleting some necessary part of that precondition, then the pro-
tected link is said to be threatened by this second operator. This is shown
in the first part of Figure 16.7.

Let us suppose that one of the preconditions of Op 3 is x, and that Op 1 has
x in its add list. In other words, x is one effect of carrying out the action Op
1. Unfortunately, Op 2 has x in its delete list, meaning that one effect of car-
rying out Op 2 is to undo x or to set ¬x to be true. Hence, the partial order
plan shown in the first part of Figure 16.7 does not work because the nature
of the partial order is such that Op 2 might be carried out between Op 1
and Op 3, thus ruining the plan. Hence, the second and third parts of Fig-
ure 16.7 show ways in which the plan can be rearranged to ensure that this
problem is avoided.

In the second part of Figure 16.7, Op 2 has been demoted, which means
that the plan ensures that it must occur before Op 1. In the final part of
Figure 16.7, Op 2 has been promoted, meaning it must be carried out after
Op 3. The partial order already dictated that Op 3 must take place after Op
1, so this also ensures that Op 2 must take place after Op 1.

16.5 The Principle of Least Commitment

In many planning problems, a number of additional variables exist that are
not relevant to the problem nor need to be modified to solve it. For exam-
ple, suppose that in solving the problem shown in Figure 16.3 there was
actually another block, block e, on the table. Because the goal does not state
anything about this block, it does not matter and can be left alone, unless it

448 CHAPTER 16 Planning Methods

in some way gets in the way of solving the problem (e.g., if it is on top of
block b).

However, the planning system may still want to use block e because in for-
ward or backward chaining it will make use of the variables that are pres-
ent.

In such cases, planners use the principle of least commitment, which
means that as few variables as possible are instantiated in producing a plan.
Hence, an operator schema such as MoveOnto (a, y) should be used in pref-
erence to one where y has been instantiated [e.g., MoveOnto (a, b)], wher-
ever that is possible. In that way, the planner works with an accurate and
working plan but does so in as efficient a manner as possible.

For example, if the solution involved moving block a onto block b via the
table or another block, the planner could consider this without deciding
whether to move it via a block or the table.

16.6 Propositional Planning

Many planning problems can be expressed purely in propositional logic
notation. In fact, plans expressed in STRIPS notation can always be con-
verted to propositional notation, although this will often involve increasing
the number of variables required enormously.

For example, if we consider a blocks world problem in which there are two
blocks, A and B, we might represent the various possible states in STRIPS
notation using the following predicates:

Clear (x)

On (x, y)

In propositional notation, we will use one propositional variable for each
possible state variable; hence:

X1 is equivalent to Clear (A)

X2 is equivalent to Clear (B)

X3 is equivalent to On (A, B)

X4 is equivalent to On (B, A)

In this case, we can represent any state by the use of just four propositional
variables. Of course, if there were four blocks instead of two, then we would

16.6 Propositional Planning 449

require 4 variables to represent Clear and 12 variables to represent On, and,
in general, for n blocks, we will require n2 propositional variables. Of
course, in most planning problems we will have more than just blocks to
consider, and so the number of propositional variables required will
increase accordingly.

A state can be represented by an assignment of truth values to each of the
available variables; hence, in our simple blocks world we could have a state
represented by the following sentence:

X1 ∧ ¬X2 ∧ X3 ∧ ¬ X4

This state can be represented in STRIPS notation as

Clear (A) ∧ ¬Clear (B) ∧ On (A, B) ∧ ¬On (B, A)

Of course, a propositional logic sentence can also represent a number of
states. For example, the following sentence represents all states in which A
is clear and B is not clear:

X1 ∧ ¬X2

In fact, due to the simplicity of this example, there is only one such state,
but if we allow additional blocks, then ¬X2 (B is not clear) could be caused
by a block other than A, and so X1 ∧ ¬X2 represents a set of states, rather
than a single state.

Actions can also be represented using propositional sentences. To do this,
we use a new notation to represent the state that results from an action. If
we use X1 to represent the fact that A is clear before an action is taken, then
we use ¬X1� to represent that A is no longer clear after the action. Hence,
the action MoveOnto (A, B) can be represented by the following proposi-
tional sentence:

X1 ∧ X2 ∧ ¬X3 ∧ ¬X4 ∧ X1� ∧ ¬X2� ∧ X3� ∧ ¬X4�

This sentence states that the preconditions for the action are X1 ∧ X2 ∧ ¬X3

∧ ¬X4, and that after the action is taken the state can be described as X1� ∧
¬X2� ∧ X3� ∧ ¬X4�.

In this case, there is only one state in which the MoveOnto (A, B) action can
be carried out. In most real problems, there will be several states from
which a given action can be applied. If we assume that it is possible to move
block A onto block B even if A is not clear (i.e., if some other object is on

450 CHAPTER 16 Planning Methods

top of A), then we would express the action MoveOnto (A, B) by the follow-
ing sentence, in disjunctive normal form:

(X1 ∧ X2 ∧ ¬X3 ∧ ¬X4 ∧ X1� ∧ ¬X2� ∧ X3� ∧ ¬X4�) ∨
(¬X1 ∧ X2 ∧ ¬X3 ∧ ¬X4 ∧ ¬X1� ∧ ¬X2� ∧ X3� ∧ ¬X4�)

The reason that this propositional notation is useful for planning is that a
number of techniques exist for manipulating propositional expressions,
and these techniques can, in theory, be applied to planning, as we will see in
the next section.

16.7 SAT Planning

One way in which propositional notation can be used in planning is to
determine the satisfiability of a set of sentences that express the problem.

As explained in Chapter 7, a sentence is satisfiable if some assignment of
truth values to the variables in the sentence makes the sentence true. The
satisfiability problem (also known as SAT) in general is NP-complete,
which means that in the worst case, solving a SAT problem for n variables
will involve testing mn possible assignments of variables, where n is the
number of variables in the expression, and m is the number of values each
variable can take.

During the 1990s, a number of techniques were developed that improved
the performance of systems designed to solve the satisfiability problem.
GSAT is an example of such a system, which is explained in detail in Sel-
man et al. (1992).

There are two main approaches to SAT. One class of solutions uses a sys-
tematic approach, meaning that each possible assignment of truth values is
tested until a solution is found. These methods are guaranteed to find a
solution if one exists, but in the worst case can be very inefficient. Stochas-
tic methods involve randomly testing assignments. One such method is
Walksat, which operates in a similar way to the exchanging heuristics seen
in Chapter 5. Walksat involves repeatedly changing the value of variables in
unsatisfied clauses until a solution is found (Selman et al. 1994).

SAT planning involves encoding the start state, goal state, and operators
(frame axioms and effect axioms) in conjunctive or disjunctive normal
form and then using a method such as GSAT to show whether the sen-

16.8 Planning Graphs 451

preconditions preconditionseffects effects

State 0 State 1 State 2

Figure 16.8
A stylized illustration of a
planning graph

tences are satisfiable or not. If they are, then a suitable plan can be formu-
lated.

16.8 Planning Graphs

A planning graph can be used to develop plans for problems that can be
represented using propositional logic. GraphPlan is an example of an algo-
rithm that uses planning graphs to develop plans for problems that are
expressed in STRIPS notation (and can, therefore, as we saw above, be con-
verted to propositional form).

A planning graph consists of a number of levels. This is illustrated in Figure
16.8. The first level (usually called the zeroth level) contains the proposi-
tions that are true in the start state for the problem. The next level of the
graph contains the actions that can be carried out in this state. The level
after that contains the states that can be led to by carrying out these actions.
Hence, each even-numbered level in the plan represents a state, and each
odd-numbered level represents actions. The final state in the graph repre-
sents the goal state.

The links between level 0 and level 1 show how the preconditions of the
actions in level 1 are met by the propositions in level 0. Similarly, the links
from level 1 to level 2 show how the actions in level 1 produce the state con-
tained in level 3 (state 1).

It is useful to be able to show which propositions do not change as a result
of a given action. These are shown by persistence actions, which are equiv-
alent to the frame axioms discussed in Section 15.4. A persistence action is

452 CHAPTER 16 Planning Methods

ba

a

b

Figure 16.9
A blocks world problem,
showing start state and
goal state

usually shown on a planning graph as an arrow with a clear box on it (see
Figure 16.10).

Planning graphs form a very compact representation: because the graph
only shows actions that are possible in each state, it reduces significantly
the number of actions that must be considered in constructing a plan.

A final feature of the planning graphs is the inclusion of mutual exclusion
information, or mutexes. A mutex exists between two effects or actions
that are mutually exclusive. For example, in our blocks work, Clear (B) is
mutually exclusive with On (A, B) because the two statements cannot be
true at the same time. At each level of the planning graph, lines are drawn
between actions or propositions that are mutually exclusive with each
other.

Let us examine the planning graph for the problem illustrated in Figure
16.9.

The available actions are MoveOnto and MoveOntoTable, as defined above
in Section 16.2.4. We will continue to use the STRIPS notation predicates
On (x, y) and Clear (x).

An incomplete planning graph for this problem is shown in Figure 16.10.

The planning graph in Figure 16.10 shows the actions that are possible
from the initial state (State 0). The actions in level 1 are connected by links
to their preconditions in Level 0. Similarly, the results of the actions in level
1 are shown by links to propositions in level 2 (which represents state 1).

Mutexes between actions and between propositions are shown as heavy
black lines. For example, Clear (A) is mutex with both ¬Clear (A) and On
(B, A).

Note that not all mutexes have been shown because to do so would involve
rendering the diagram hard to follow. Similarly, not all propositions are
included. For example, propositions such as ¬On (A, Table) and ¬On (B,
Table) have been excluded, again for the sake of clarity.

16.8 Planning Graphs 453

On (B, Table)

On (A, Table)

Clear (A)

Clear (B)

On (A, B)

On (B, A)

¬Clear (B)

¬Clear (A)

MoveOnto (B, A)

MoveOnto (A, B)

State 0 Action 0 State 1

On (B, Table)

On (A, Table)

Clear (B)

Clear (B)

Figure 16.10
Partial planning graph for
the blocks world problem
shown in Figure 16.9

The graph shows persistence actions as lines with squares on them. These
represent the possibility that a proposition might not change from one
state to the next.

Note that for even an extremely simple problem, the planning graph can
appear very complex. In fact, planning graphs produce a much more com-
pact representation than many other methods.

The planning graph shows at each state every proposition that could possi-
bly be true in that state, as a result of the actions that are in the previous
level.

Having produced the planning graph, it is possible to determine immedi-
ately whether it is possible to formulate a plan that will solve the problem.
If any of the literal propositions that are included in the goal state defini-
tion are not included in the final level of the planning graph, then it is not
possible to formulate a plan to reach the goal state. On the other hand, if all
the goal propositions are included in the final level, then it may be possible
to formulate a suitable plan. This will depend on the mutexes in the final
level, which restrict which states can be achieved.

454 CHAPTER 16 Planning Methods

Note that each state level in the graph contains information about a num-
ber of different possible states, which can be determined by examining the
mutex information at that level.

The next stage in using planning graphs is to extract a plan from the plan-
ning graph. This can be done using an algorithm such as GraphPlan, which
is explained in the next section.

16.8.1 GraphPlan

GraphPlan is a planning algorithm that was invented by Avrim Blum and
Merrick Furst (1997). It uses planning graphs to formulate plans to prob-
lems that are expressed in STRIPS notation.

The GraphPlan algorithm runs by iteratively building a planning graph,
starting from the initial state and working toward the goal state.

First, the propositions that describe the goal state are compared with the
current state. If all of these propositions are present, and no two of them
are joined by a mutex link, then it is possible that a solution has already
been reached. At this stage, a second phase of the algorithm is run to try to
extract a plan from the current graph plan.

If the current state does not contain all the necessary propositions, then the
next level of the planning graph is produced by applying all applicable
operators, and determining all possible propositions that can be made true
by these operators.

This algorithm repeats until a suitable plan is found, or until it can be
shown that no plan exists.

GraphPlan has the desirable property that if a plan exists, it is guaranteed
to find it, and it is guaranteed to find the shortest possible plan due to the
iterative way in which it builds the planning graph. It is also guaranteed to
terminate in the case where no plan exists. In such cases, the planning
graph will reach a state where each new level that is added is the same. At
this stage, the graph is said to have leveled off. If the graph levels off, and
the final level does not have all of the desired propositions or some of them
are connected to each other by mutex links, then no suitable plan exists.

When a state is found in which all goal propositions are present and are not
mutex, the method for finding a plan is applied, which works as follows:
Starting from the final level in the planning graph and working backward,

16.9 ADL and PDDL 455

operators are selected at each level that are not mutex and that provide all
of the conditions required at each level, either to meet the goal conditions
or to meet the preconditions of the actions in the next level.

The plan that GraphPlan produces is a partial order plan, in which no
ordering constraint is placed on actions that are at the same level.

16.8.2 Mutex Conditions

There are a number of reasons that a pair of actions or propositions are
mutually exclusive, or mutex, to each other:

1. Two actions that have effects inconsistent with each other are
mutex. For example, MoveOnto (A, B) and MoveOntoTable (A) are
mutex because one has the effect of adding On (A, B) and the other
adds On (A, Table).

2. If the effect of one action interferes with the precondition of
another, then the two actions are mutex. For example, MoveOnto
(A, B) has the effect of deleting Clear (B) and so is mutex with
MoveOnto (B, A), which has the precondition Clear (B).

3. If one action has proposition P as its precondition, and another
action has precondition ¬P, then the two actions are mutex.

4. If one proposition is inconsistent with, or the negation of, another
proposition, then the two are mutex. For example, in our simple
blocks world, On (A, B) is mutex with On (A, Table) and is also
mutex with ¬On (A, B).

16.9 ADL and PDDL

A number of alternative representations exist for expressing planning
problems, in addition to STRIPS. ADL (Action Description Language) is a
more expressive language than STRIPS, which can be used to represent a
number of problems that cannot be adequately represented in STRIPS.
Unlike STRIPS, which can only represent unquantified expressions such as
A ∧ B, goals in ADL can be quantified, allowing expressions such as ∃x.
P(x) ∧ ¬ Q(x).

Preconditions in STRIPS must be expressed as conjunctions (such as A ∧ B
∧ ¬C), but preconditions in ADL can be expressed as disjunctions (such as
A ∨ B). Additionally, ADL allows for conditional effects, which state effects

456 CHAPTER 16 Planning Methods

that will occur as a result of carrying out a particular action depending on
certain conditions.

For example, in a more complex blocks world, it might be that block A is
twice as big as blocks B and C, and so the action MoveOnto (B, A) might
only have the effect of negating Clear (A) if On (C, A) is already true. This
type of conditional effect would be hard to express in STRIPS notation.

Another feature of ADL is that it enables types to be attached to variables.
This means that in many situations, fewer rules need to be expressed than
with STRIPS because rules can be set up that ensure that objects involved
in actions have the correct type.

PDDL (Planning Domain Definition Language) is a standardized syntax
for expressing planning problems, which was developed for the AIPS (Arti-
ficial Intelligence Planning Systems) planning competition. PDDL can be
used to represent STRIPS and ADL, and was introduced to provide a com-
mon notation that could be used by all planning systems.

16.10 Probabilistic Planning

In all of our discussion of planning so far, we have assumed that actions are
deterministic. That is, we have assumed that if you apply action A in state S,
then we can state with certainty what the resulting state will be. Of course,
this is unrealistic for many real-world planning situations, and probabilis-
tic planners have been developed that aim to deal with this uncertainty.

In some systems, it is possible to consider nondeterministic actions, where
an action applied in a particular state will nondeterministically lead to one
of several possible states.

Situation calculus can be extended to express probabilistic relationships
(Mateus et al. 2001). This enables the language to express the various effects
that can occur as a result of a particular action and how probable each of
those effects are. Deterministic actions are a special case of probabilistic
actions in which the probability of the effect is 1.

16.11 Dynamic World Planning

In addition to assuming that the actions our planner takes are determinis-
tic, we have also assumed in this discussion that the world itself is static. Of
course, the real world is dynamic, and in many situations there are other
agents that can also affect the world.

16.12 Case-Based Planning Systems 457

It has been said that planning in a dynamic world is pointless because the
world may change in such a way that the plan becomes useless. In spite of
this difficulty, there are methods that can be applied to planning in
dynamic environments.

One principle that is often applied is execution monitoring. Once a plan-
ner has produced a plan, let us say for a robot, that robot is usually expected
to simply carry out, or execute, the plan. A planner that uses execution
monitoring checks the preconditions of each action as it executes it. If the
preconditions are no longer met, because something has changed, then the
planner may need to start again and devise a new plan.

This process of devising a new plan when something has gone wrong is
known as replanning.

Similarly, the planner checks the goal conditions at each step, in case it has
accidentally solved the problem. For example, while executing a plan for a
blocks world problem, another robot may have arrived and solved the rest
of the problem, in which case our robot can stop executing its plan.

An alternative method for dealing with dynamic environments, or uncer-
tainty, is to use conditional planning. Conditional planning assumes that
at each step of the plan, one of several different possible situations could
result. In other words, the planner does not have complete information
about the problem domain before it starts planning.

The conditional planning approach involves developing a plan that covers
every possible eventuality. This is a good way to guarantee that a plan will
not fail, but in the real world, there may be far too many possibilities to
plan for.

16.12 Case-Based Planning Systems

A traditional planning system must reformulate its plan every time it is
presented with a new problem. Of course, in some situations it will be pre-
sented with a problem it has seen before, or a problem that shares elements
with previous problems.

A case-based planning system stores each plan it formulates in memory
and is able to reuse these plans to help it solve new problems.

CHEF is an example of a case-based planning system, which was designed
to produce recipes for Chinese food based on a given set of ingredients.

458 CHAPTER 16 Planning Methods

When CHEF is presented with a set of ingredients that it has not encoun-
tered before, such as chicken and carrots, it is able to formulate a recipe
based on an existing recipe, such as stir-fried beef and onions.

In situations where CHEF’s plan has not been successful, it is able to learn
from its errors, in order to avoid making such errors again. If for example it
overcooks the chicken, it will learn that in future plans it should not cook
chicken for as long as it might cook beef.

One important aspect of case-based planning systems is the memory that is
used to store plans. Clearly it must be possible to look up a variety of items
in this memory to find the plan or plans that best suit the current situation.

16.13 Planning and Scheduling

The planning techniques we have discussed in this chapter are extremely
useful for solving a range of problems. We have mainly considered prob-
lems in the toy blocks world, which involve selecting the right sequence of
actions to rearrange a collection of blocks from one configuration to
another. Planning can also be helpful in solving problems such as the trav-
eling salesman problem, which was discussed in Chapter 3, along with a
range of other similar problems that involve selecting a suitable course of
travel that meets a set of constraints, and enable the traveler to move from
one location to another in a desired time frame.

A rather different kind of problem is job shop scheduling, which is used to
plan a sensible allocation of machinery to a set of jobs. Each job consists of
a set of tasks that must be carried out, usually specified as a partial order
(hence, some tasks must be done sequentially, but other tasks can be car-
ried out in parallel). Each machine can perform a subset of the available
tasks, and the problem of job shop scheduling is to allocate tasks to
machines such that no machine is being used for two tasks at the same time
and so that all the tasks get carried out. In some cases, it is desirable to find
the most efficient such arrangement, so that the jobs are completed as
quickly as possible.

The problem of scheduling a number of tasks among a set of machines is
very similar in many ways to the planning problems we have examined
already. The main difference is that a schedule must specify when each task
is carried out and how long it will take, whereas the plans we have exam-

16.14 Chapter Summary 459

ined simply specify a sequence of actions, with no concern about how long
each action takes or when it should be done.

One approach to scheduling is to treat it as a straightforward planning
problem. This results in a plan that describes the order in which actions
should be carried out. A human operator can then augment this plan with
information about when to perform each task.

Alternatively, scheduling can be seen as a constraint satisfaction problem
(see Chapter 5), where the constraints specify how long each task will take
and that one machine cannot be used for two tasks at a time.

In practice, a combination of approaches is usually used. Planning tech-
niques such as the ones we have discussed in this chapter are applied in
conjunction with search methods suitable for solving constraint satisfac-
tion problems.

16.14 Chapter Summary

■ STRIPS is an operator-based planning approach based on
means–ends analysis.

■ An operator can be defined by an operator schema that describes a
number of possible operators, using variables that are instantiated
to provide an operator.

■ The Sussman anomaly occurs in problems in which a planner
needs to be able to consider two aspects of the problem independ-
ently. Such problems cannot be readily solved using the traditional
STRIPS approach.

■ A total order plan specifies the order in which all actions must be
carried out. A partial order plan allows some operators to be spec-
ified in parallel, such that the order is determined at execution
time.

■ The principle of least commitment states that it is a good idea at
each stage of planning to commit to as few decisions as possible.

■ Most plans (and in particular, all plans that can be represented
using the STRIPS language) can be represented in propositional
logic notation, meaning that plans can be developed using meth-
ods that solve the satisfiability problem for a set of propositions.

460 CHAPTER 16 Planning Methods

■ A planning graph represents states and actions at alternate levels,
and shows all possible states and all possible actions at each point
by using mutex relationships to show which combinations are not
allowed.

■ GraphPlan is an algorithm that uses planning graphs to extract
plans.

■ ADL is an alternative planning representation that is more expres-
sive than the STRIPS language.

■ Probabilistic planning involves working with operators where the
outcome of a given operator is not certain. Similarly, planning in
many situations needs to function in a dynamic environment in
which the world can change from one time-step to the next.
Dynamic world planners often use replanning to cope when such
changes interfere with their plans.

■ Case-based planning involves storing plans in a searchable mem-
ory and reusing them to solve new problems.

■ Planning means selecting which operators to apply; scheduling is
used to determine at what time to carry out the actions in order to
meet a set of constraints.

16.15 Review Questions

16.1 Explain the difference between the STRIPS language and the ADL
language. Why is ADL described as being more expressive than
STRIPS? What kinds of problems might ADL be used to solve for
which STRIPS might not be adequate?

16.2 Explain what is meant by the principle of least commitment. How
do you think it might relate to the generation of partial order
plans?

16.3 Explain how the satisfiability problem relates to planning. How
efficient do you think this method might be compared with
STRIPS planning or using GraphPlan?

16.4 Explain what is meant by dynamic world planning. What is meant
by probabilistic planning? What is the difference between proba-
bilistic planning and nondeterministic planning?

16.5 What is meant by replanning?

16.17 Further Reading 461

c

b

da ca

b

d
Figure 16.11
Start and goal state for
Exercise 16.1

16.6 Explain why case-based planning can be used to produce a plan-
ning system that is able to learn.

16.7 Compare and contrast planning and scheduling.

16.16 Exercises

16.1 Use the operators described in Section 16.2.4 and the STRIPS
method to solve the blocks world planning problem shown in Fig-
ure 16.11. The first state shown is the start state, and the second
state is the goal state.

16.2 Produce a planning graph for the blocks world problem shown in
Figure 16.11.

16.3 Use resolution and unification to solve the blocks world problem
shown in Figure 16.11. How does this plan compare with the one
you generated in exercises 16.1 and 16.2?

16.17 Further Reading

Planning has increased in prominence in the Artificial Intelligence world in
the past decade, and as a result, better coverage can be found in the more
recent textbooks. Russell and Norvig (1995) provide the fullest coverage of
the standard texts.

Reasoning About Plans, by James F. Allen, Henry A. Kautz, Josh Tenenberg,
and Richard Pelavin (1991 – Morgan Kaufmann)

Recent Advances in AI Planning, by Susanne Biundo and Maria Fox (2000 –
Springer Verlag)

Fast Planning Through Planning Graph Analysis, by A. Blum and M. Furst
(1997 – in Artificial Intelligence, Vol. 90, pp. 281–300).

Robot Motion: Planning and Control, edited by Michael Brady, John Holler-
bach, Timothy Johnson, Tomás Lozano-Pérez, and Matthew T. Mason
(1983 – MIT Press)

462 CHAPTER 16 Planning Methods

STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving, by Richard E. Fikes and Nils J. Nilsson (1971 – in Computation &
Intelligence, edited by George F. Luger, 1995, MIT Press)

Artificial Intelligence & Manufacturing Research Planning Workshop, edited
by George F. Luger (1998 – AAAI)

Probabilistic Situation Calculus, by Paulo Mateus, António Pacheco, Javier
Pinto, Amílear Sernadas, and Cristina Sernadas (2001 – in Annals of Math-
ematics and Artificial Intelligence)

A New Method for Solving Hard Satisfiability Problems, by B. Selman, H.
Levesque, and D. Mitchell (1992 – in AAAI, Vol. 92, pp. 440–446)

Noise Strategies for Improving Local Search, by B. Selman, H. A. Kautz, and
B. Cohen (1994 – in AAAI, Vol. 94, pp. 337–343)

Planning and Learning by Analogical Reasoning, by Manuela M. Veloso
(1994 – Springer Verlag Telos)

Recent Advances in AI Planning, by Daniel S. Weld (in AI Magazine, Sum-
mer 1999)

Practical Planning: Extending the Classical AI Planning Paradigm, by David
E. Wilkins (1989 – Morgan Kaufman)

Intelligent Scheduling, edited by Monte Zweben and Mark S. Fox (1998 –
Morgan Kaufmann)

Intelligent Planning: A Decomposition and Abstraction Based Approach, by
Qiang Yang (1998 – Springer Verlag)

Advanced Topics
6

Introduction to Part 6

Part 6 is divided into five chapters.

Advanced Knowledge Representation

This chapter builds on the ideas presented in several of the
earlier chapters in this book, in particular Chapters 7, 9, 15,
and 16. It presents a number of more sophisticated knowl-
edge representation methods, including the blackboard
architecture, scripts, and the Copycat architecture.

It also presents more material on nonmonotonic reasoning
and reasoning about change. Finally, this chapter expands
on topics introduced elsewhere in this book by discussing
case-based reasoning and knowledge engineering.

Fuzzy Reasoning

This chapter introduces the subject of fuzzy logic. It dis-
cusses fuzzy sets and explains how they are used in fuzzy
systems. It also explains how fuzzy logic provides an alter-
native to the traditional logic presented in Chapters 7 and 8
of this book. It also discusses the ideas of fuzzy expert sys-
tems and neuro-fuzzy systems.

Intelligent Agents

Chapter 19 introduces the concept of software agents and,
in particular, intelligent agents, which are able to independ-
ently carry out tasks on behalf of a user. The chapter dis-
cusses a number of properties that agents can have such as

PART
17

CHAPTER

18
CHAPTER

19
CHAPTER

intelligence, autonomy, benevolence, the ability to learn, and the ability to
move about through a network, such as the Internet. The chapter intro-
duces a number of types of agents, such as interface agents, reactive agents,
collaborative agents, and mobile agents. It also discusses architectures and
methods that can be used to build agents. The chapter also discusses
robotic agents, such as the Braitenberg vehicles.

Understanding Language

This chapter discusses a number of techniques that are used by computer sys-
tems to understand written or spoken human language. In particular, it
focuses on natural language processing (NLP) and information retrieval (IR).
It presents the methods used to parse sentences and explains how semantic
and pragmatic analysis are used to derive meaning from sentences while
avoiding being confused by the ambiguity inherent in human language.

Machine Vision

This chapter presents a range of methods that are used to enable computers
to analyze visual data. It discusses edge detection and explains how convo-
lution can be used to detect edges in images. It also explains how images are
segmented, and how the edges of three-dimensional line drawings can be
labeled. It discusses texture and explains how important it is for computer
vision systems to use information derived from texture.

This chapter also briefly discusses one method that is used for face recognition.

464 Part 6 Advanced Topics

20
CHAPTER

21
CHAPTER

17CHAPTER
Advanced Knowledge
Representation

Let knowledge grow from more to more,
But more of reverence in us dwell;
That mind and soul, according well,
May make one music as before.

—Alfred Lord Tennyson, In Memoriam

Whether there be knowledge, it shall vanish away.

—The first epistle of Paul the apostle to the Corinthians, Chapter 13

What is all knowledge too but recorded experience,
and a product of history; of which therefore,
reasoning and belief, no less than action and passion,
are essential materials?

—Thomas Carlyle, Critical and Miscellaneous Essays

So it is in travelling; a man must carry knowledge with him, if he would bring
home knowledge.

—Samuel Johnson

17.1 Introduction

Human beings use representations for the world around them all the time.
One example is the use of language. Consider the following sentence:

The cat sat on the mat.

466 CHAPTER 17 Advanced Knowledge Representation

This sentence may seem trite, but it has real meaning to us. The word “cat”
represents a four-legged feline creature. The word “sat” represents an action
and tells us something about when that action took place. The word “mat”
represents another object, and the word “on” represents a relationship
between objects. What the word “the” represents is hard to define, but
clearly each word in a sentence, taken individually and grouped with other
words, conveys meaning to a person who reads, hears, or speaks the words.

Another representation we use regularly is that of images, or signs. Note
that there is a significant difference between the audible representation of a
word when it is spoken compared with the visible representation when it is
written down. We use a vast number of signs, symbols, and images in our
everyday lives, including the following:

■ letters and numbers

■ mathematical equations

■ road signs

■ photographs of people, places, and things

■ caricatures and cartoons

■ alarms and other audible signals

The list is endless.

The human mind uses some form of representation for all concepts,
which enables us to understand such abstract ideas as “happiness,” “late-
ness,” and “common sense.” In this way, even a human baby is able to
understand the connection between the sound “woof!,” the cartoon char-
acter Snoopy, and a dog. We use some kind of internal representation for
a dog that allows us to associate those three different concepts together
in some way.

Clearly this internal representation has a lot to do with our ability to think,
to understand, and to reason, and it is no surprise, therefore, that much of
Artificial Intelligence research is concerned with finding suitable represen-
tations for problems.

Throughout this book, we have considered representations and how they
can be manipulated to solve problems. Representations we have consid-
ered include:

17.1 Introduction 467

■ propositional and predicate calculus

■ semantic nets

■ search trees

■ frames

Most of the methods we have examined are dependent on a suitable repre-
sentation being chosen. It is impossible to solve a problem using genetic
algorithms, planning, or classifier systems without first selecting an appro-
priate representation for the problem.

In this chapter, we consider a number of methods of representing knowl-
edge, as well as exploring extensions to some of the representations we have
explored elsewhere.

A number of the sections in this chapter build on ideas presented in earlier
chapters—in particular, Chapter 7 on logic, Chapter 9 on rules and expert
systems, and Chapters 15 and 16 on planning.

The chapter starts by discussing the ideas of representation, semantics, and
interpretations and tries to explain why these are so important to Artificial
Intelligence.

It then introduces a number of specific representational methods—the
blackboard architecture, scripts, and the Copycat architecture—and illus-
trates how each of them is used.

This chapter then concentrates on nonclassical logics, starting with a
detailed discussion of nonmonotonic logics and nonmonotonic reasoning
methods. The methods explained in this discussion include default reason-
ing, truth maintenance systems, the closed world assumption, circumscrip-
tion, and abductive reasoning. This chapter also examines two methods for
dealing with uncertainty: the Dempster–Shafer theory and certainty factors.

This chapter also expands on the discussion of situation calculus from
Chapter 15 by explaining event calculus, temporal logic, and mental situa-
tion calculus, all of which are used to represent data in worlds that are sub-
ject to change.

This chapter has a brief discussion of the important steps in knowledge
engineering, an idea that was first introduced in Chapter 9, and also briefly
explains why case-based reasoning (introduced in Chapter 16) is useful.

468 CHAPTER 17 Advanced Knowledge Representation

17.2 Representations and Semantics

Many representations involve some kind of language. We have seen, for
example, propositional calculus and predicate calculus in Chapter 7, which
are languages used to represent and reason with logical statements; the lan-
guage of mathematics enables us to represent complex numeric relation-
ships; programming languages such as Java and C++ use objects, arrays,
and other data structures to represent ideas, things, and numbers.

Human beings use languages such as English to represent objects and more
complex notions. Human language is rather different from the languages
usually used in Artificial Intelligence, as we shall see in Chapter 20. In par-
ticular, although human languages are able to express an extremely wide
range of concepts, they tend to be ambiguous—a sentence can have more
than one meaning, depending on the time and place it is spoken, who said
it, and what was said before it. Human languages are also very efficient: it is
possible to express in a few words ideas that took thousands of years for
humans to develop (for example, the words existentialism, solipsism, and
mathematics).

When considering any representational language, it is vital to consider the
semantics of the language (i.e., what expressions in the language mean or
what they represent).

In some ways, despite its tendency for ambiguity, human language is very
explicit—each sentence has a meaning that can be determined without any
external information. The sentence “the cat sat on the mat,” for example,
has a fairly specific meaning (although, it does not specify which cat or
which mat).

In contrast, sentences in a language such as predicate calculus need to have
an interpretation provided. For example, we might write

∀x P(x) → Q(x)

This sentence might have a number of interpretations, depending on our
choice of meaning for P and Q. For example, we could interpret it as mean-
ing “all men are mortal.” An inference engine that manipulates such sen-
tences does not need to know the meanings of the sentences, but if the
sentences are being used to reason about the real world and to form plans,
then of course the interpretations must be carefully chosen.

17.3 The Blackboard Architecture 469

17.3 The Blackboard Architecture

The blackboard architecture is a method for structured knowledge repre-
sentation that was invented in the 1970s by H. Penny Nii (Nii 1986) for a
system called HEARSAY-II. HEARSAY-II contained an index of computer
science papers, about which it was able to retrieve information in response
to spoken queries by users.

In Chapters 3 and 9, we saw the difference between reasoning forward from
a start state, applying rules or actions until a goal is reached, and working
backward from a goal, seeing which rules or actions could lead to the goal
state, and then selecting additional actions that satisfy the preconditions of
those rules, and so on, until the start state is reached.

Each of these approaches has its advantages and is particularly useful when
applied to certain problems. In other situations, it is more appropriate to
use an opportunistic reasoning model, where rules can be applied forward
or backward at different times, in whatever order most effectively solves the
current problem. Opportunistic reasoning applies well to planning (which
was discussed in Part 5 of this book), but in this section we are going to
examine how it is used by blackboard systems to effectively represent and
use specific domain knowledge.

In Chapters 3 and 9, we examined a structured knowledge representation
system based on frames. Each frame contains information about an object,
and frames are linked to other frames by relations that express the ways in
which the objects relate to each other. As we saw, this representation uses
the idea of inheritance to provide an efficient way to represent the ways in
which one object shares properties with another object.

Also in Chapter 9, we examined production systems, which use rules to
represent expert knowledge about a domain. Similarly, blackboard systems
are also used to represent and manipulate expert domain knowledge. The
idea behind blackboard systems is that disparate knowledge from different
expert sources can be combined by providing a central database—the
blackboard—on which the experts (known as knowledge sources) can
“write” information. Because the blackboard is shared, one knowledge
source can see facts appear as another knowledge source puts them there,
and it can thus deduce new facts and add them to the blackboard. In this

470 CHAPTER 17 Advanced Knowledge Representation

Knowledge Source 1

Knowledge Source 2

Knowledge Source n

Blackboard

Figure 17.1
A simple blackboard
architecture

way, a number of knowledge sources can be used together to solve a com-
plex problem, but each knowledge expert does not need to know from
where the data on the blackboard came.

A simple blackboard architecture is illustrated in Figure 17.1.

Because the blackboard system uses opportunistic reasoning, the various
knowledge sources do not need to take turns to act. Each knowledge source
can proactively examine the blackboard and add new data to it when it feels
that it has something useful to contribute to the solution of the problem. In
practice, there is usually a central control mechanism that determines when
each knowledge source can interact with the blackboard, but it would be
equally possible to have each knowledge source an independent agent,
allowed to make its own decisions about when to act.

Nii (1986) compared this approach with a group of people solving a jigsaw
puzzle on a large blackboard. Each person has a number of pieces of the
puzzle, and when a person notices an opportunity to place one of his or her
pieces on the board, he or she does so. The people involved do not need to
communicate with each other, and no one needs to tell the individuals
when to place their pieces on the board—they can each act independently
and autonomously.

Nii extends the analogy by supposing that the room has a monitor, who is
a person able to control who is allowed to visit the blackboard and when.
Now only one person is allowed to place a piece on the blackboard at a
time, and the monitor has complete authority to decide who can do so.

The jigsaw puzzle analogy is helpful, but it does not quite describe the real
use of blackboard systems. Each person solving the jigsaw puzzle has differ-
ent pieces of the puzzle, but they all have the same kind of domain knowl-
edge. The idea behind blackboard systems is that experts with entirely

17.3 The Blackboard Architecture 471

different types of knowledge can work together to solve a single problem.
In the next section, we explore in more detail the architecture of the black-
board system, and in the section after that we see how the blackboard sys-
tem works in practice by considering the HEARSAY-II system.

17.3.1 Implementation

As has already been suggested, the particular implementation of black-
board system that is used can depend on the problem that is being solved,
and also on the computer systems that are available. We will now look at
some of the key elements of real implementations of blackboard systems.

The knowledge sources used in a blackboard system are entirely independ-
ent. This means that by use of appropriate interfaces, a blackboard system
can use a number of different representations for its knowledge sources.
Typically, knowledge sources are represented as rules or procedures. It is
also possible to represent the information in a language such as first-order
predicate calculus.

The only interaction that occurs between the different knowledge sources is
through the blackboard data structure. The blackboard can contain items
of data, partial solutions to the problem, and finally, a complete solution.
These data are usually arranged hierarchically, so that each level in the hier-
archy represents a different level of abstraction of the problem. In
HEARSAY, for example, the levels represent aspects such as

1. the digital audio signal

2. the phonemes that make up the entire signal

3. the syllables that can be constructed from the phonemes

4. the words that can be constructed from the syllables

5. the complete sentence

Each knowledge source looks at data in the level(s) that are appropriate for
it and places data onto levels that are appropriate. For example, one knowl-
edge source might have the ability to extract phonemes from an audio sig-
nal, in which case it would need only to examine data at Level 1 and would
need only to add data at Level 2.

Typically, the blackboard system has a control mechanism that determines
which knowledge source should act next, based on the most recent changes
that have occurred in the database. Hence, if in the example given above a

472 CHAPTER 17 Advanced Knowledge Representation

new set of phonemes has been determined, the control module might
select a knowledge source that has the ability to analyze phonemes to act
next. In making this choice, the control module is said to be choosing the
focus of attention of the system. At any one time, the system’s focus of
attention is directed at one knowledge source, or one piece of data, or a pair
that consists of a knowledge source and a piece of data.

The overall strategy of the blackboard system is determined by the control
module and which ordering it uses when choosing the point of focus.
Hence, this choice is clearly of particular importance.

17.3.2 HEARSAY

HEARSAY was designed as a system that would combine phonology, syn-
tax, semantics, and a contextual understanding of words in order to under-
stand human speech. In Chapter 20, we learn more about systems that
understand spoken words, but in this section we will briefly examine how
the blackboard architecture was applied to the problem.

In the HEARSAY-II architecture, there were a number of knowledge
sources, each of which understood a different aspect of the sounds gener-
ated when a human user would speak into the system’s microphone. The
context knowledge source has knowledge about the world, which it is able
to use to disambiguate words such as “their” and “there.” This problem is
discussed in more detail in Chapter 20.

One advantage of using the blackboard architecture for this problem is that
a number of different knowledge sources could in fact be applied at each
stage—in particular, for example, in determining which word is being spo-
ken, a number of different possible solutions might be generated by differ-
ent modules at one level, and a higher level would later disambiguate
(using context, for example) and select the correct word. In this way, the
sound can be analyzed in a number of different ways in parallel to ensure
that the best solution is obtained.

17.4 Scripts

A script (also known as a schema) is a data structure that is used as a struc-
tured representation for a situation that can be broken down into a
sequence of events. Scripts are often used in natural language processing,
which is discussed in more detail in Chapter 20.

17.4 Scripts 473

The idea behind scripts is that for a given situation (such as buying food in
a supermarket or attending a job interview) there is a finite set of knowl-
edge that is needed to understand what is said, and thus to determine how
to act and what to say. A script is a data structure that represents a very spe-
cific situation (such as buying apples from a fruit market).

The script contains knowledge about the situation (such as the fact that in
order to buy an apple, one must pay the market seller, and that apples are
good to eat unless they are rotten). A script has a set of entry conditions,
which state the preconditions necessary for a script to be used (e.g., to use
the apples script, the story must start with someone near a fruit market),
and results, which occur as a result of running through the situation
described by the script.

A script also encodes reasons: that is, why one engages in the situation
described by the script. This enables a script-based system to understand
motivations (e.g., why a person would want to buy an apple).

A story can be understood by matching elements in the story to appropri-
ate parts of the script. In this way, the script-based system can answer ques-
tions whose answers are not explicitly stated in the story.

Schank (1975) proposes a script for understanding stories about restau-
rants. His script includes a number of roles, or types of people that might
be involved, including customer, waitress, and chef. The script includes
information about reasons or why a customer might want to eat at a restau-
rant (clearly, hunger has something to do with this, as does money).

The script is then broken down into a set of episodes, such as “entering,”
“ordering,”“eating,” and “leaving.”

Each episode is represented in the script data structure by a number of
related actions that the various people might perform.

Let us consider the following short story:

Fred went to his favorite restaurant. The food was not as good as usual.
On his way home, he realized he had left his wallet behind.

The script system is able to match entities described in the story with its roles
(Fred is the customer, for example). Although the story does not mention a
waitress or a chef, the script system knows that they would have been involved.

The script system would also be able to answer questions such as“did Fred eat
at the restaurant?” even though the answer is not explicitly stated in the story.

474 CHAPTER 17 Advanced Knowledge Representation

A script is necessarily extremely specific. As we see in Chapter 20, more
general systems for understanding language are extremely complex. How-
ever, in many situations it is possible to use scripts to understand natural
language, provided the available scenarios are sufficiently restricted.

17.5 Copycat Architecture

The Copycat architecture was invented by Melanie Mitchell in 1993. The
motivation behind the Copycat system was an interest in solving problems
by analogy, such as the following problem:

hat is to head as glove is to what?

Of course, the answer to this problem is obvious, but for computer pro-
grams to make such analogies is not easy. The Copycat system invented by
Mitchell works on textual analogies, such as the following:

abc → abd

Hence,

tuv → ?

In fact, there are a number of possible answers to this problem, depending
on the approach you choose to take. The answer most people will give
would be “tuw” because they will have noted that in the first line, the third
letter in the group of three has been replaced by the letter that comes
immediately after it in the alphabet (its successor, in other words). How-
ever, the following might also be a reasonable answer:

tud

To solve such problems, the Copycat system uses a nondeterministic
method, such that when run repeatedly with the same problem it generates
different answers.

The architecture of the Copycat system consists of the following components:

■ the Workspace

■ the Slipnet

■ the Coderack

17.5 Copycat Architecture 475

F

E

D

C

B

A

G H I R S T U

V

W

X

Y

Z

Letter category

opposite

first last

Figure 17.2
A simplified diagram of
the slipnet in the Copycat
system

The workspace is a data structure similar to a blackboard or to the message
lists used in classifier systems (see Chapter 13). It contains the input data
(such as “abc,”“abd,” and “tuv,” for the problem given above) and is used as
a working memory when solving problems. Eventually, it contains the
answer that has been found.

The slipnet is a network that contains a number of concepts. Each letter is
represented as a concept, as are ideas such as “opposite,” “predecessor,”
“sameness,”“right,” and “left.” Each concept in the slipnet has an activation
level that indicates how relevant the concept is to the current problem. As a
problem is being solved, the activation levels change.

The slipnet can be thought of as the system’s long-term memory. It stores
information that the system has built up about the nature of objects and
concepts, and the relationships between those concepts. The slipnet can
change over time, as the system solves problems.

Figure 17.2 shows a simplified version of the slipnet used by the Copycat
system. Label nodes are included in the network that show, for example,
which concepts are “opposite” to each other. In other words, concepts are
used to show the relationship between concepts within the slipnet.

The coderack contains a number of agents, or codelets. Each codelet
embodies a relationship between objects—such as “the b in abc is the suc-
cessor of a.” The higher a concept’s activation level is, the more codelets will
be assigned to working with that concept.

476 CHAPTER 17 Advanced Knowledge Representation

An important concept in the Copycat system is slippage. Slippage is the
idea that allows Copycat to find analogies that are not necessarily directly
apparent. For example, consider the following problem:

abc → abd

iijjkk → ?

A solution to this problem would be iijjll, which is found by relating the
first letter in abc to the first group of identical letters (ii) in iijjkk. This
means that the rule has changed from “replace the last letter with its succes-
sor” to “replace the last group of identical letters with their successor.” This
kind of change is slippage and is vital to solving analogy problems.

The final part of the Copycat architecture is the idea of temperature. As
with simulated annealing (Chapter 5), temperature represents the degree of
disorder in the system. The greater the temperature, the further from a
solution the system is, and the more random its codelets are allowed to be.

The Copycat system starts with the problem representation in its work-
space and with a reasonably high temperature.

As it works, it builds up relationships in its workspace, such as “the letters
abc form a group where each letter is the successor of the letter to its left.” It
then tries to form correspondences between objects. For example, it might
form a correspondence between the entire group of letters abc and the
group ijk because they have a similar structure.

Copycat works by forming a rule that explains how to transform one object
into another. For example, its rule might be “replace the rightmost letter by
its successor.” This rule is adapted as Copycat works, in order to produce a
rule that will work with the problem object.

As the system runs, the temperature lowers until it falls below a probabilis-
tic threshold, at which point it has reached a solution and can stop.

To fully understand the Copycat system, it is well worth trying the online
demonstration system.

17.6 Nonmonotonic Reasoning

As was explained in Section 7.18, propositional logic and predicate logic
are monotonic reasoning systems. This means that if a conclusion C can be
derived from a set of expressions, S, then any number of additional expres-

17.6 Nonmonotonic Reasoning 477

sions being added to S cannot change the truth value of C, provided the
expressions in S remain consistent.

In other words, a monotonic reasoning system that stores facts about the
world can deduce new facts from its existing facts but would never have
cause to delete or modify an existing fact (unless the world changed).
Hence, the number of facts the system stores will increase monotonically.

In real life, reasoning tends not to be so straightforward. For example, you
might know that dogs like to eat meat, and that Fido is a dog. Hence, you
conclude that Fido will like to eat meat. If you are later informed that Fido
is a vegetarian dog, you will need to change your conclusion. This kind of
reasoning is called nonmonotonic reasoning.

A nonmonotonic reasoning system needs to be able to deal with the fact
that conclusions change as new facts are introduced and, hence, that its
knowledge is not always certain because later facts may contradict it. In this
context, we often use the word “belief” rather than “fact” to describe items
of data that the system stores or deduces about the world.

In this section, we introduce a number of systems and principles that are
used to deal with nonmonotonic reasoning situations.

17.6.1 Nonmonotonic Logic with the Modal Operator, M

One way to reason in nonmonotonic situations is to use nonmonotonic
logic. This involves augmenting the predicate calculus with a modal opera-
tor, M, which is used to represent the idea that a statement is consistent
with all our beliefs. Hence, we might write

∀x bird (x) ∧ M flies (x) → flies (x)

This can be read as follows:“for all x, if x is a bird and it is consistent with our be-
liefs to believe that x can fly, then x can fly.” In other words, most birds can fly.

We would consider M flies (x) to be false if we already knew that the bird
was dead and, in addition, we knew that dead birds could not fly. Note that
we have just described a nonmonotonic logic, which is used for nonmonot-
onic reasoning.

17.6.2 Default Reasoning

Default reasoning is another form of nonmonotonic reasoning that
involves assuming certain statements to be true, unless there is some clear

478 CHAPTER 17 Advanced Knowledge Representation

evidence to the contrary. This is a form of reasoning that people employ all
the time. For example, a car might drive past you too fast for you to see
whether it has a driver or not. It would be reasonable for you to assume that
the car has a driver, unless you happen to know that it is a remote-con-
trolled car, or you saw the driver jump out previously. This is default rea-
soning, as it assumes certain facts by default, unless they are disproved by
some other facts.

A notation similar to that described in Section 17.6.1 is used for default logic:

Car (x) ∧ :Has_Driver (x) → Has_Driver (x)

This is a default rule, which states, in default logic notation, that if x is a
car, and it is consistent with our beliefs to believe that x has a driver, then
we can conclude that x does indeed have a driver.

Similarly, the sentence above could be read as “if x is a car and there’s no
reason to suppose that x does not have a driver, then conclude that x does
have a driver.”

17.6.3 Truth Maintenance Systems

A truth maintenance system (or TMS) stores information about how each
belief was derived, as well as the beliefs themselves.

Truth maintenance systems are used in situations where belief revision is
important. In other words, situations in which the system’s beliefs need to
change over time, as new facts come to light.

The justification-based truth maintenance system (JTMS) was proposed by
Jon Doyle in 1979.

The JTMS stores reasons or justifications for beliefs, where a reason con-
sists of a pair of sets, such that the belief is true if the statements in the first
set (known as the in set) are all true, and the statements in the second set
(known as the out set) are all false. For example, the belief Q might have the
following reason:

({P, R}, {¬S})

This means that if P and R are both true, and ¬S is false, then we can
deduce that Q is true. If we use this reason to conclude that Q is true, and
later discover that ¬S is true, then we must retract our earlier conclusion.

The JTMS uses a network of nodes, where each node represents a belief
(which can either be a simple statement such as “Fido is a dog” or a rule

17.6 Nonmonotonic Reasoning 479

such as modus ponens, or “all dogs like to eat meat”). The JTMS also stores
justifications for each belief.

The JTMS does not carry out logical operations on beliefs (such as ∧, ∨,
and →) because these operations can be carried out by a problem-solving
system external to the JTMS. Similarly, the JTMS does not need to under-
stand the meanings of its beliefs. This kind of logical interpretation is car-
ried out by the problem-solving system. The JTMS simply ensures that as
new beliefs are added to the system, the existing beliefs remain consistent.

The JTMS is able to create new nodes, to add or retract justifications for
nodes, and can mark a node as a contradiction if it is informed by the prob-
lem solver that that is the case.

The system either believes or does not believe in the statement represented
by each node, and so a node is described as being either in (the system
believes in it) or out (if the system does not believe in it). Of course, these
beliefs can change, as new information is presented to the system and as it
makes new arguments.

A node is considered to be contradictory if it represents a belief that is now
believed to be untrue. When such a contradiction is determined, the JTMS
must use this information to retract beliefs that it had formed based (directly
or indirectly) on the incorrect belief. This retraction is done using depend-
ency-directed backtracking (also called nonchronological backtracking—
see Section 5.17). Dependency-directed backtracking in this case simply
means working back from the contradictory node to find assumptions that led
to the contradiction. These assumptions are retracted, until a minimal combi-
nation of retractions is found to ensure that the contradiction disappears.

An alternative to the JTMS is the assumption-based truth maintenance sys-
tem, or ATMS. An ATMS is very similar to a JTMS, but rather than repre-
senting a complete statement of the system’s beliefs at any given time, it
includes information about all possible beliefs, or all possible worlds. Each
node has associated with it a set of premises or assumptions that can be
used to make the node true. Hence, a node might have the following
assumptions associated with it:

({P}, {Q})

This would mean that the node would be true if P is true, or it would be
true if Q is true. A node that has an empty set associated with it is neces-
sarily true, which means that it does not depend on other assumptions.

480 CHAPTER 17 Advanced Knowledge Representation

17.6.4 Closed-World Assumption

The closed-world assumption (also known as negation by failure, partic-
ularly as used by PROLOG) is an assumption used by systems that any fact
not specifically known to be true is not true. For example, if a system uses a
database of facts, and a particular fact is not included in the database, then
that fact is assumed to be false.

The open-world assumption is the inverse of this: that any fact not explic-
itly contained within the database is assumed to be true. Note that one sig-
nificant difference between STRIPS and ADL, two planning methods
described in Chapter 16, is that STRIPS uses the closed-world assumption,
whereas ADL uses the open-world assumption.

Clearly, systems that use the closed-world assumption (or the open-world
assumption) must use nonmonotonic reasoning because they make
assumptions that may later prove to be false.

PROLOG uses the closed-world assumption, which means that if a fact is
not contained within its database, then it is assumed to be false.

17.6.5 The Ramification Problem

The ramification problem is similar to the frame problem, described in
Chapter 15, which concerns the difficulty of needing to define all facts that
do not change when an action is performed. The ramification problem
concerns the additional consequences of actions that might not be imme-
diately obvious. For example, if a robot picks up a block, and a fly has
landed on the block, then the robot will also be picking up the fly. The ram-
ification problem is the problem of determining how to deal with such
potentially highly complex consequences.

17.6.6 Circumscription

McCarthy (1980) proposed a form of nonmonotonic reasoning, which he
called circumscription. Circumscription was designed to deal, like the
closed-world assumption, with situations in which not every possible fact
is stated or denied.

McCarthy imagined someone attempting to solve the missionaries and
cannibals problem (see Section 3.9.1), which involves having a group of
missionaries and cannibals cross a river without the cannibals eating the

17.6 Nonmonotonic Reasoning 481

missionaries. McCarthy imagined a person trying to solve this question by
asking questions such as “Does the boat leak?” or “Is there a bridge?”

Circumscription allows us to modify a first-order predicate calculus
expression to show that no facts are true other than those stated in the
expression.

By applying circumscription in the problem of the cannibals and mission-
aries, we can conclude that any facts not explicitly stated in the problem
specification are not true.

The circumscription of predicate P in an expression E is written

E(�) ∧ ∀x (�(x) → P(x)) → ∀x (P(x) → �(x))

where �(x) is the result of substituting all occurrences of P with � in E.

Let us consider a simple example from the blocks world:

E = IsBlock (A) ∧ IsBlock (B) ∧ IsBlock (C)

Here the predicate IsBlock is used to indicate that an object is a block.

We can circumscribe the predicate IsBlock in E as follows:

First, we note that E(�) is the following expression:

�(A) ∧ �(B) ∧ �(C)

Hence, the circumscription of IsBlock in E is

�(A) ∧ �(B) ∧ �(C) ∧ ∀x (�(x) → IsBlock(x)) →
∀x (IsBlock (x) → �(x))

Now to see what this really means, let us make the following substitution:

�(x) ≡ (x = A ∨ x = B ∨ x = C)

Clearly, �(A) will become (A = A ∨ A = B ∨ A = C), which is true, and sim-
ilarly for �(B) and �(C). Hence, these parts can be eliminated from the
expression (since TRUE ∧ A = A).

This results in the following expression:

∀x ((x = A ∨ x = B ∨ x = C) → IsBlock(x)) → ∀x (IsBlock (x) →
(x = A ∨ x = B ∨ x = c))

Now, we can use our original expression:

E = IsBlock (A) ∧ IsBlock (B) ∧ IsBlock (C)

482 CHAPTER 17 Advanced Knowledge Representation

Hence, (x = A ∨ x = B ∨ x = C) → IsBlock (x) is clearly true. Since

TRUE → A = A

We can thus eliminate the left-hand side of the first implication, to give the
following expression:

∀x (IsBlock (x) → (x = A ∨ x = B ∨ x = C))

In other words, not only are A, B, and C blocks, but there is nothing else in
the world that can be called a block.

Note that if we now add an additional expression to E,

IsBlock (D)

the circumscribed expression we derived above is no longer true. We can
instead, derive the following new circumscribed expression:

∀x (IsBlock (x) → (x = A ∨ x = B ∨ x = C ∨ x = D))

This is a property of a nonmonotonic reasoning system: adding a new fact
negates conclusions that have been logically deduced.

17.6.7 Abductive Reasoning

Recall the modus ponens rule from Section 7.11.4, which is written as follows:

This tells us that if A is true, and we know that A implies B, then we can
deduce B.

Abductive reasoning is based on a modified version of modus ponens,
which while not logically sound, is nevertheless extremely useful:

This tells us that if we observe that B is true, and we know that A implies B,
then it is sensible to see A as a possible explanation for B.

For example, consider the case where B represents “Fred is not at work” and
A represents “Fred is sick.” If we know that when Fred is sick he does not
come to work, and we also know that Fred is not at work, then we use
abductive reasoning to conclude that Fred is sick. This might not be the
case, as he may be on holiday or at a conference, but the point of abductive

B A B
A

→

A A B
B

→

17.6 Nonmonotonic Reasoning 483

reasoning is that it provides a “good-enough” explanation for a phenome-
non, which can be retracted later, if a preferable explanation is determined.
In other words, abductive reasoning is nonmonotonic.

17.6.8 The Dempster–Shafer Theory

The Dempster–Shafer theory of evidence is used to discuss the degree of
belief in a statement. A degree of belief is subtly different from probability.
For example, suppose that a barometer tells you that it is raining outside
and that you have no other way to determine whether this is the case or not
and no knowledge about the reliability of the barometer.

Using probability theory, we might suppose that there is a 0.5 chance that the
barometer is right, in which case the probability that it is raining would be 0.5.

However, using the Dempster–Shafer theory, we would start by stating that in
fact we have no knowledge about whether it is raining or not, and so we write

Bel (Raining) = 0

Since we also have no knowledge about whether it is not raining, we can
also write

Bel (¬Raining) = 0

Note that Bel (A) and Bel (¬A) do not need to sum to 1.

Now let us further suppose that we have determined that the barometer is
80% accurate.

Hence, we can modify our belief as follows:

Bel (Raining) = 0.8

This tells us that because the barometer says it is raining, we have a belief of
0.8 that it is in fact raining. At this point, we still have the following:

Bel (¬Raining) = 0

Because the barometer is telling us that it is raining, we do not have any rea-
son to believe that it is not raining. Note again the difference between this
notation and normal probabilistic notation, where P (Raining) and
P (¬Raining) must sum to 1.

We also define the plausibility of a statement, X, as follows:

Pl (X) = 1 � Bel (¬X)

484 CHAPTER 17 Advanced Knowledge Representation

Hence, we can define a range for X, which is [Bel (X), Pl (X)]. For the
example above, our range is

[0.8, 1]

The narrower this range is, the more evidence we have, and the more cer-
tain we are about our belief. That is to say, if we have a belief range of [0, 1],
then we really do not know anything. If we have a belief range of [0.5, 0.5],
then we are certain that the probability of the proposition is 0.5. Hence, if
we have a wide range, then we know that we need to seek more evidence.

Let us now suppose that we have a second barometer, which is 75% accu-
rate, and which is also saying that it is raining outside. How does this affect
our belief? Dempster (1968) proposed a rule for combining beliefs of this
kind, which is applied as follows.

The probability that both barometers are reliable is

0.75 � 0.8

= 0.6

The probability that both are unreliable is

0.25 � 0.2

= 0.05

Hence the probability that at least one of the barometers is reliable is

1 � 0.05

= 0.95

Thus, we can assign the following belief range to the belief that it is raining:

[0.95, 1]

Once again, we have no reason to believe that it is not raining, and so the
plausibility of the statement “it is raining” is 1. If we receive some evidence
that it is not raining (e.g., if we cannot hear any rain), then we might mod-
ify this value.

Let us now suppose that the second barometer says that it is not raining,
while the first barometer continues to say that it is raining.

Now, it cannot be the case that both barometers are reliable because they
disagree with each other. The probability that the first barometer is reliable
and that the second is unreliable is

17.6 Nonmonotonic Reasoning 485

0.8 � 0.25

= 0.2

Similarly, the probability that the second is reliable and the first unreliable is

0.75 � 0.2

= 0.15

The probability that neither is reliable is

0.2 � 0.25

= 0.05

Dempster’s rule now lets us calculate the belief that it is raining. We can cal-
culate the posterior probability that it is raining, given that at least one of
the barometers is unreliable as follows:

Similarly, the probability that it is not raining, given that at least one of the
barometers is unreliable is

Hence, our belief that it is raining is Bel (Raining) = 0.5, and the plausibil-
ity of this belief is 1 � Bel(¬Raining) = 1 � 0.375 = 0.625. Hence, our belief
can be expressed as the range

[0.5, 0.625]

17.6.9 MYCIN and Certainty Factors

In Chapter 9, we introduced expert systems or production systems and
briefly mentioned MYCIN, which was a system developed at Stanford Uni-

0 15
0 2 0 15 0 05

0 15
0 4

0 375

.
. . .

.
.

.

+ +

=

=

0 2
0 2 0 15 0 05

0 2
0 4

0 5

.
. . .

.

.

.

+ +

=

=

486 CHAPTER 17 Advanced Knowledge Representation

versity in the 1980s for medical diagnosis. MYCIN was designed to help
doctors select the correct antimicrobial agent to treat a patient, based on
information about the patient’s symptoms.

MYCIN uses abductive reasoning and backward chaining to estimate,
based on a set of evidence concerning the patient’s symptoms, which bacte-
ria is most likely to be causing the illness.

MYCIN uses certainty factors to represent degrees of belief: much as the
Dempster–Shafer theory uses the Bel notation, certainty factors represent
the degree of belief or disbelief, where the two do not necessarily sum to 1,
as they would in classical logic.

We use MB(H|E) to represent the measure of belief of hypothesis H, given
evidence E, and MD(H|E) to represent the measure of disbelief of hypothe-
sis H, given evidence E.

Because a particular piece of evidence either supports or contradicts a
hypothesis, either MB(H|E) or MD(H|E) must be zero for any H and E.

We now define the certainty factor, CF(H|E) as follows:

CF(H|E) = MB(H|E) � MD(H|E)

This value ranges from �1 to 1, where a high negative value indicates that
the evidence gives a strong confidence that the hypothesis is false, and a
high positive value indicates that the evidence gives a strong confidence
that the hypothesis is true.

Each production rule used by MYCIN has a certainty factor associated with
it. The following is a simplified example of one of MYCIN’s rules:

IF: The patient has meningitis
AND: The patient has no serious skin infection
AND: The infection is bacterial
THEN: The infection could be caused by staphylococcus-coag-pos (0.75)
OR: streptococcus-group-a (0.5)

This rule is of the form

IF A ∧ B ∧ C ∧ . . . N THEN H1 (P1) ∨ H2 (P2) ∨ . . . ∨ Hn (Pn)

17.7 Reasoning about Change 487

where A . . . N are the observed evidence, H1 . . . Hn are the possible hypothe-
ses to explain the evidence, and Pi is the certainty factor associated with Hi.

Certainty factor algebra is used to combine the certainty factors of rules
with the certainty factors of the evidence to determine how certain the
hypotheses are.

When a rule has a conjunction of premises, as in the example rule above,
the minimum of the certainty factors of the premises is used as the cer-
tainty factor. If the rule has a disjunction of premises, then the maximum
of the certainty factors is used.

17.7 Reasoning about Change

As we saw in Chapter 7, the classical propositional and predicate calculi
provide us with a way to reason about an unchanging world. Most real-
world problems involve a dynamic world, in which other people (or agents)
effect changes, where the world itself changes, and where robotic agents can
move themselves and thus change their environment proactively.

In Chapter 15, we briefly introduced the situation calculus that enables us
to use a notation such as the following:

∃x(In(Robot,x,S1) ∧ In(cheese,x,S1))

This sentence says that in situation S1, the robot is in the same room as
the cheese.

In this section we will explore two alternatives to the situation calculus:
event calculus and temporal logic.

17.7.1 Temporal Logic

An early system for dealing with change was temporal logic, a form of
modal logic. Temporal logic extends predicate calculus with a set of modal
operators, which are usually defined as follows:

P means from now on, P will be true

�P means that at some point in the future, P will be true

488 CHAPTER 17 Advanced Knowledge Representation

Compare these with the modal operators presented in Chapter 7, where the
same symbols were used to indicate “necessarily” and “possibly.” In tempo-
ral logic, the symbols are read as “henceforth” and “eventually.”

Linear time temporal logic defines two other operators: “until” and “in the
next time interval,” which are usually written

QµP means that Q is true until P is true

�P means that P will be true in the next time interval

A number of other operators are also sometimes used, including

P awaits Q means that Q is true until P is true, or if P is never true,
then Q is true forever (this contrasts with “until,” which
implicitly assumes that P will at some point be true)

Sofar P means that P has been true until now

Once P means that P was true at some time in the past

P precedes Q means that P occurred before Q

These temporal operators implicitly assume that there is a concept of time,
which is broken down into intervals. In particular, the � operator indicates
that some expression will be true in the next time interval. Temporal logic
does not require the lengths of these time intervals to be defined, although
clearly for it to be applied to real-world problems a mapping needs to be
defined. In linear time temporal logic there is a finite set of states, such that
each state has a unique successor. Hence, the logic cannot reason about
multiple possible futures. This is possible with an alternative form of tem-
poral logic: computation tree logic (CTL—also known as branching time
temporal logic), which reasons about time in the form of a tree, with states
represented by nodes in the tree. Because each state can have more than one
successor, it is possible in this logical system to reason about several possi-
ble future outcomes.

CTL provides methods for reasoning about paths through the tree. For
example, it is possible to create expressions such as “a path exists in which P
is true” or “a path exists in which eventually P is true for all successor states.”
There also exist modal operators similar to the “necessarily” and “possibly”
operators presented in Chapter 7, which state, for example, “P is true in all
possible future states” or “P is true in at least one possible future state.”

17.7 Reasoning about Change 489

17.7.2 Using Temporal Logic

Temporal logic can be used in a number of applications. It is used, for
example, in specification and verification of software programs and can
also be used to verify the behavior of other systems, such as elevators. It can
also be used to reason about problems that cannot otherwise be reasoned
about using classical logics.

A system being defined by temporal logic has three main sets of conditions
that define its behavior:

1. Safety conditions define behaviors that should never occur (such
as the elevator being on two floors at once).

2. Liveness conditions specify what the system should do—for exam-
ple, if someone pushes the button on the first floor, then the eleva-
tor should move toward that floor.

3. Fairness conditions define the behavior of the system in nondeter-
ministic situations. For example, if the elevator is stationary on the
second floor, and someone pushes the button on the first floor at
the same time that someone else pushes the button on the third
floor, the system must decide which direction to move the elevator.

We will now examine an example of temporal logic being used to specify a
problem. The dining philosophers problem is defined as follows:

A number of philosophers are sitting around a round table, eating
spaghetti and cogitating. There are six philosophers, six plates, and six
forks. Each philosopher has a plate in front of him or her, and there is a fork
between each pair of philosophers. For a philosopher to eat spaghetti, he or
she must use two forks. Hence, only three philosophers can be eating at any
one time. When a philosopher is not eating, he or she is thinking.

We will use the notation eating(i) to indicate that philosopher i is eating
and thinking(i) to indicate that philosopher i is thinking.

The safety properties for this problem are defined as follows:

Each philosopher cannot be eating and thinking at the same time:

¬(eating (i) ∧ thinking (i))

Each philosopher is always either eating or thinking:

(eating (i) ∨ thinking (i))

490 CHAPTER 17 Advanced Knowledge Representation

Party
starts

Party
ends

space

time

Figure 17.3
The space–time event that
is a party at Tom’s house

If one philosopher is eating, then the next philosopher cannot be eating:

¬(eating (i) ∧ eating (i + 1))

We can also define the liveness properties of the system as follows:

If a philosopher is eating now, then at some point in the future he or she
will be thinking:

(eating (i) → � thinking (i))

Similarly, if a philosopher is thinking now, then at some point in the future
he or she will be eating:

(thinking (i) → � eating (i))

Note that in this notation, unlike situation calculus, there is no mention of
explicit states. This is not necessary with temporal logic, which is one rea-
son for using it in preference to situation calculus.

17.7.3 Event Calculus

An alternative method for reasoning about properties that vary over time is
the event calculus. Event calculus is concerned mainly with fluents. A flu-
ent is a function that varies with time. For example, if a ball is dropped
from a first-story window, then the ball’s speed and height are both fluents.

17.7 Reasoning about Change 491

The event calculus also uses the notion of an event, which is a period of
time bounded by a start and a finish point. Events can also be thought of as
taking place in the real world and so have a space dimension as well as a
time dimension. For example, the event called “the party at Tom’s house”
has a start and stop time, and takes place in a finite space, as shown in Fig-
ure 17.3.

The event calculus uses a number of predicates:

Happens (e, t)

Starts (e, f, t)

Ends (e, f, t)

where f is a fluent, e is an event, and t is a variable of time.

Happens (e, t) means that event e happens at time t. In fact, t can be a func-
tion of time, and thus this predicate can be used to express the fact that an
event (e) takes place over a period of time, defined by the function t.

Starts (e, f, t) means that the event e causes fluent f to hold immediately after
time t, and similarly, Ends (e, f, t) means that event e stops fluent f at time t.

A further predicate lets us state that fluent f was beginning at the start of
the time period we are considering:

Initially (f)

For example, let us consider the event in which a ball drops from a height of
10 meters to the ground. For this example, we will assume that time starts at
the moment the ball is dropped, and we will consider the following fluents:

f1 means the ball is motionless

f2 means the ball is falling

f3 means the ball is on the floor

We will also consider the following events:

e1 is the event that the ball is dropped

e2 is the event that the ball hits the floor

Hence, we can start with the following expression:

Initially (f1)

492 CHAPTER 17 Advanced Knowledge Representation

because the ball starts out motionless.

Next we can say

Happens (e1, t1)

which tells us that the ball is dropped at time t1.

We can also define the causal relationships involved in this scenario, by say-
ing the following:

Starts (e1, f2, t1)

Ends (e1, f1, t1)

Finally, we can define the consequences of the ball hitting the floor:

Happens (e2, t2)

Ends (e2, f2, t2)

Starts (e2, f3, t2)

Starts (e2, f1, t2)

An additional predicate is used to express a period of time over which
something occurs:

T (e, i)

This means that event e took place throughout the interval defined by i. For
example, we might say

T (Dropping (Ball), Today)

which would mean that the ball started dropping on or before the stroke of
midnight this morning and continued to drop for the entire day.

It might be more useful to express the idea that the ball was dropping at
some time today, for which we use the E predicate:

E (Dropping (Ball), Today)

17.7.4 Mental Situation Calculus

The situation calculus and event calculus are used to describe events and
their effects on the world. It is also useful to consider the effects that events
have on an agent’s beliefs about the world. For this, we use mental situa-
tion calculus.

17.7 Reasoning about Change 493

The following functions are used:

Holds (P, S) means that proposition P holds in situation S

Believes (P) means that the agent believes proposition P

Hence, we might write:

Holds (Believes (Fly (Pigs)), S)

This means that it is true in situation S that the agent believes that pigs can fly.

We also use a number of functions based around the idea of knowledge. It
is convenient to write all of these using the same symbol:

Knows (P)

In fact, this can have a number of different meanings depending on the
nature of P.

For example,

Holds (Knows (¬Knows (P)), S)

means that it is true in situation S that the agent knows that it does not know
P, where P is some individual concept (such as the whereabouts of the piece
of cheese for which the robot is searching, or Tom’s telephone number).

Additionally, the Knows function can be used to refer to knowledge about
propositions:

Holds (Knows (Fly (Pigs)), S)

This means that it is true in situation S that the agent knows that pigs can
fly. Note that in this notation we are treating Fly (Pigs) as a fluent, which
may vary over time: It may be true at the moment that pigs can fly, but
tomorrow they may forget how.

We can extend the Believes function to allow it to express the idea that a
belief exists for an interval of time:

Believes (P, i)

which means that the agent believes proposition P during the entirety of
the interval defined by i.

We can also treat knowledge and beliefs as fluents. For example, we might
want to say

T(Believes (Fly (Pigs), Yesterday), Today)

494 CHAPTER 17 Advanced Knowledge Representation

which means it is true (for the whole of) today that throughout yesterday
the agent believed that pigs could fly.

Events can occur that change an agent’s beliefs. For this purpose, we define
a point fluent as defining the fact that an event takes place at some
moment in time. We write

Occurs (e, S)

to state that event e occurs in situation S.

We can then define a new function:

Learns (P)

which means that the agent learns proposition P.

Hence,

Occurs (Learns (P), S) → Holds (F (Knows (P)), S)

F (P) means that P will be true in the future. Hence, this sentence means
that if in situation S the agent learns proposition P, then it is true that the
agent will know proposition P at some future time.

17.8 Knowledge Engineering

Knowledge engineering was introduced in Chapter 9, in the context of
expert systems. In fact, knowledge engineering is an essential part of many
Artificial Intelligence systems.

All systems that are based on propositional calculus, predicate calculus, sit-
uation calculus, event calculus, temporal logic, and other such languages
are primarily designed to manipulate knowledge. For those systems to per-
form useful tasks, knowledge needs to be gathered that can be entered into
the system. Of course, in some systems, knowledge is gathered by an
autonomous agent, and no knowledge engineering is necessary. In many
Artificial Intelligence systems today, this is not the case, and a knowledge
engineer is an essential component of the system.

The knowledge engineer’s task is to gather knowledge (knowledge acquisi-
tion) about the problem space and to convert this knowledge into a form
usable by the system (e.g., into first-order predicate calculus). The knowl-
edge engineer must also consider the level of detail to use. For example, in
defining the properties of a building, it might be considered sufficient to

17.9 Case-Based Reasoning 495

simply say Building (P) to define P as representing a building. It might also
be more useful to include details such as HasWindows (P, 6), HasFloors (P,
2), and HasRoof (P). Alternatively, it might make more sense to define these
properties for all buildings:

∀x Building (x) → HasWindows (x) ∧ HasFloors (x) ∧ HasRoof (x)

The knowledge engineer might then choose to include detail about the
nature of buildings in terms of bricks, wood, and steel, and might further
include details about the physical nature of these materials. In some cases,
this detail might be superfluous. In other words, it is important for the
knowledge engineer to select the correct level of detail to include in the
knowledge base that is being built.

The important principle is to select predicates, functions, and constants
that match the problem to be solved. If a system is being designed to deter-
mine the best layout of windows in a building, where the desired answer is
simply the number of windows to include on each wall, then having a con-
stant to represent each brick in the building would be unnecessary.

17.9 Case-Based Reasoning

Case-based reasoning was briefly introduced in Chapter 16, where it was
discussed in the context of planning. Case-based reasoning involves reusing
previously identified solutions to solve new problems and is often used in
expert systems, as well as in other types of systems, such as the checkers-
playing system developed by Samuel (see Chapter 6).

A case-based reasoning system uses a memory that can store solutions to past
problems, along with information about whether each solution was successful
or not. Such a system must therefore have the ability to look up a new prob-
lem, in order to find a previous case that was similar or identical to the current
problem. Once such a case is found, the solution that was applied is modified
in order to apply it directly to the current problem. This solution is then stored
in the memory, along with information about whether it succeeded or failed.

For a case-based system to function adequately, the representation of cases
must be carefully considered. The details that are used to index each case
need to be relevant and also must be able to distinguish the case from other,
dissimilar cases. The notion of similarity is important: what features mark
two cases as similar? This is not always obvious, and the features that are
used to define each case must be carefully selected.

496 CHAPTER 17 Advanced Knowledge Representation

Case-based systems make the task of knowledge acquisition relatively straight-
forward: the knowledge engineer simply needs to obtain examples of prob-
lems and their solutions (cases), which are entered into the system’s memory.

Cases can be stored in a number of formats. For example, each case can be
defined simply as a vector of the features that define the case and its solu-
tion. Alternatively, each case can be stored as a set of situated action rules (as
used in Brooks’ subsumption architecture, which is described in Chapter
19), each of which represents a solution to a particular situation (problem).

Case-based reasoning can be a very efficient way for a system to learn to solve
problems, by examining its performance at solving past problems. As the sys-
tem encounters more cases, it becomes better able to solve new problems. Of
course, as the database of cases becomes larger, it becomes slower at retrieving
cases from the database, and so there is a trade-off between performance and
efficiency. It is possible to avoid this problem by only storing the most suc-
cessful solutions and “forgetting” solutions that were less successful. Samuel’s
checkers program used this idea to remember only the “best” positions.

17.10 Chapter Summary

■ Knowledge representation is vital to Artificial Intelligence and has
been used extensively throughout this book.

■ The blackboard architecture is a structured knowledge representa-
tion that uses opportunistic reasoning to combine inputs from a
number of knowledge sources.

■ Scripts are used to represent situations (such as going to a restau-
rant) that often conform to a particular pattern.

■ The Copycat architecture is used to solve analogy problems of the
form “A is to B as C is to what?”

■ Classical logic is monotonic, which means that as new facts are
added to a database, old conclusions are never contradicted. Many
real-life situations require nonmonotonic reasoning.

■ The modal operator M is used to represent the idea that a proposi-
tion is consistent with our current beliefs.

■ Default reasoning uses assumptions about default values for cer-
tain variables, unless evidence to the contrary is found.

17.11 Review Questions 497

■ Truth maintenance systems are used to ensure that the facts con-
tained in a system’s database are consistent, in a nonmonotonic
reasoning environment.

■ The closed-world assumption is the assumption that any statement
not explicitly known to be true is false.

■ The ramification problem is an extension of the frame problem.
The ramification problem is the problem of dealing with small but
potentially significant side effects of actions.

■ Circumscription is a form of nonmonotonic reasoning that enables
us to deduce which facts are false, based on a limited set of statements.

■ Abductive reasoning involves determining a possible explanation
for an observed phenomenon and is widely used by people and
Artificial Intelligence systems.

■ The Dempster–Shafer theory provides a way to reason about
degrees of belief.

■ MYCIN uses certainty factors to reason about degrees of certainty.

■ Temporal logic is an extension of first-order predicate calculus,
which uses a set of modal operators to reason about change.

■ Event calculus is similar to situation calculus, but reasons about
finite events.

■ Mental situation calculus allows us to reason about beliefs and
knowledge, and how they change over time.

■ Knowledge engineering is a vital element of many Artificial Intelli-
gence systems.

■ Case-based reasoning allows a system to learn from previous solu-
tions to problems, in order to solve new problems.

17.11 Review Questions

17.1 Explain why the blackboard architecture is an effective way to
combine information from a number of knowledge sources.
Describe the main components of the blackboard architecture.

17.2 Explain what kinds of problems the Copycat architecture can solve.

498 CHAPTER 17 Advanced Knowledge Representation

17.3 Explain what is meant by nonmonotonic reasoning, and explain
why it is so important in Artificial Intelligence. Explain the differ-
ence between the terms nonmonotonic reasoning and nonmonotonic
logic.

17.4 Explain the purpose of a truth maintenance system.

17.5 Explain what is meant by abductive reasoning. Explain your views
on its usefulness in solving the following types of problems:

a. solving logical puzzles

b. medical diagnosis

c. controlling the behavior of a robotic agent

d. understanding spoken human language

17.6 Compare and contrast the Dempster–Shafer theory and certainty
factors.

17.7 Explain the idea behind temporal logic. What kinds of problems is
it useful for solving? Give three examples.

17.8 Can semantic networks be used to represent anything that can be
represented using temporal logic? Explain your answer.

17.9 Explain what is meant by knowledge engineering, and why it is
useful for systems other than expert systems.

17.10 What is case-based reasoning? From which attributes of human
intelligence do you think it is derived? Describe the last time you
used case-based reasoning in your normal life.

17.12 Exercises

17.1 Download the Copycat demonstration applet, the details for which
can be found on the Internet using any search engine. Examine the
following problems, and observe how the Copycat system solves
them. In each case, produce three suitable solutions yourself before
you see what solutions Copycat comes up with. How often does it
find the same solutions as you do?

a. AABB is to AACC as JJKK is to what?

b. ABB is to ABCC as JKK is to what?

c. AABC is to AABD as IJKK is to what?

17.12 Exercises 499

d. BCD is to BCE as JFFWWW is to what?

e. A is to Z as EFG is to what?

f. FSF is to SFS as ABBBC is to what?

17.2 Use temporal logic to describe the following situation:

There are three barbers in the shop. Each barber can shave either of
the other two barbers but cannot shave himself. If a barber is not
shaving, then he sits and reads the newspaper. If a customer arrives
and a barber is free, then he will shave that customer. If a customer
arrives and no barber is free, then the customer will sit and read the
paper until a barber is free. Each barber needs to be shaved once a
day.

17.3 Devise a representation for the following statement:

Yesterday, Bob went to the cinema, and he saw the film Titanic. After-
ward, he went straight home, with thoughts of the film going through
his head. Angela went to the cinema at the same time and saw the film
The Lord of the Rings. After the film, Angela went for a swim.

Now add sufficient facts to the knowledge base you have created to
enable an Artificial Intelligence system to answer the following
questions:

Did Bob meet Angela yesterday?

Did Bob and Angela leave the cinema at the same time?

Did Bob and Angela spend time together after the films?

Did Bob enjoy the film?

You will need to add basic facts to the knowledge base such as:

Lord of the Rings is longer than Titanic.

Lord of the Rings started at the same time as Titanic.

Some of these facts will be common sense, and others you will
need to invent to give reasonable answers to the questions.

How do you use the facts in the knowledge base to derive answers
to the questions?

500 CHAPTER 17 Advanced Knowledge Representation

17.13 Further Reading

Luger (1995) provides an excellent range of papers on the subject of Artifi-
cial Intelligence in general, and in particular it has a number of papers that
are relevant to this chapter. Russell and Norvig (1995) have a great deal of
coverage of knowledge representation and knowledge engineering, prima-
rily in the context of intelligent agents.

Additional references for MYCIN are contained in the Further Reading sec-
tion of Chapter 9 of this book.

Nonmonotonic Reasoning, by Grigoris Antoniou (1997 – MIT Press)

A Logical Theory of Nonmonotonic Inference and Belief Change, by Alexan-
der Bochman (2001 – Springer Verlag)

Nonmonotonic Reasoning : An Overview, by Gerhard Brewka, Jürgen Dix,
and Kurt Konolige (1995 – Cambridge University Press)

Nonmonotonic Reasoning : From Theoretical Foundation to Efficient Compu-
tation, by G. Brewka (1991 – Cambridge University Press)

A Generalization of Bayesian Inference, by A. P. Dempster (1968 - in Journal
of the Royal Statistical Society)

A Truth Maintenance System, by Jon Doyle (1979 – in Computation & Intel-
ligence – Collected Readings, edited by George F. Luger, The MIT Press)

Probabilistic Interpretations for Mycin’s Certainty Factors, by O. Heckerman
(1986 – in Uncertainty in Artificial Intelligence, edited by L. N. Kanal and
J. F. Lemmer, Elsevier Science Ltd., pp. 167–196)

Handbook of Logic in Artificial Intelligence and Logic Programming: Non-
monotonic Reasoning and Uncertain Reasoning, edited by Dov M. Gab-
bay, J. A. Robinson, and Christopher John Hogger (1994 – Oxford
University Press)

Case-Based Reasoning, by Janet Kolodner (1993 – Morgan Kaufmann)

Case-Based Reasoning: Experiences, Lessons, and Future Directions, edited by
David B. Leake (1996 –AAAI Press)

For the Sake of the Argument : Ramsey Test Conditionals, Inductive Infer-
ence and Nonmonotonic Reasoning, by Isaac Levi (1996 – Cambridge Uni-
versity Press)

17.13 Further Reading 501

Nonmonotonic Logic: Context-Dependent Reasoning, by V. W. Marek and M.
Truszczynski (1993 – Springer Verlag)

Circumscription: A Form of Non-Monotonic Reasoning, by John McCarthy
(1980 – in Computation & Intelligence – Collected Readings, edited by
George F. Luger, The MIT Press)

A Production System Version of the Hearsay-II Speech Understanding System,
by Donald McCracken (1981 - UMI Research)

Blackboard Systems: The Blackboard Model of Problem Solving and the Evolu-
tion of Blackboard Architectures, by H. Penny Nii (1986 – in Computation &
Intelligence – Collected Readings, edited by George F. Luger, The MIT Press)

Soft Computing in Case Based Reasoning, edited by Sankar K. Pal, Tharam S.
Dillon, and Daniel S. Yeung (2000 – Springer Verlag)

Inside Case-Based Reasoning, by Christopher K. Riesbeck and Roger C.
Schank (1989 – Lawrence Erlbaum)

Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic
Reasoning, by Hans Rott (2002 – Oxford University Press)

The Structure of Episodes in Memory, by Roger C. Schank (1975 – in Com-
putation & Intelligence – Collected Readings, edited by George F. Luger, The
MIT Press)

This page intentionally left blank

18CHAPTER
Fuzzy Reasoning

And new philosophy calls all in doubt,
The element of fire is quite put out;
The sun is lost, and th’earth, and no man’s wit
Can well direct him, where to look for it.

—John Donne, An Anatomy of the World

To be, or not to be: that is the question.

—William Shakespeare, Hamlet

I used to love mathematics for its own sake, and I still do, because it allows for
no hypocrisy and no vagueness, my two bêtes noires.

—Henri Beyle Stendahl, La Vie d’Henri Brulard

18.1 Introduction

This chapter introduces the idea of fuzzy sets and fuzzy logic. The chapter
explains how fuzzy sets are defined and explains how linguistic variables,
fuzzy operators, and hedges are applied. It also explains the concepts of
fuzzy logic and how they can be applied in solving real-world problems.

This chapter explains how fuzzy expert systems can be built, as well as neuro-
fuzzy systems, which are a cross between neural networks and fuzzy systems.

504 CHAPTER 18 Fuzzy Reasoning

18.2 Bivalent and Multivalent Logics

In classical logic, which is often described as Aristotelian logic, there are
two possible truth values: propositions are either true or false. Such systems
are known as bivalent logics because they involve two logical values.

The logic employed in Bayesian reasoning and other probabilistic models is
also bivalent: each fact is either true or false, but it is often unclear whether
a given fact is true or false. Probability is used to express the likelihood that
a particular proposition will turn out to be true.

One early multivalent logic was used to reason about the Uncertainty Prin-
ciple, used in quantum physics. This logic had three values: true, false, and
undetermined.

An extension of this three-valued logic is to consider 0 to represent false, 1
to represent true, and to use real numbers between 0 and 1 to represent
degrees of truth.

Note that this is not the same as probability: if a fact has a probability value
of 0.5, then it is as likely to be true as it is to be false, but in fact it will only
be either true or false. If in a multivalent logic we have a proposition that
has a logical value of 0.5, we are saying something about the degree to
which that statement is true. In probability theory we are dealing with
uncertainty (at the moment we don’t know whether the proposition will be
true or false, but it will definitely either be true or false—not both, not nei-
ther, and not something in between), but with multivalent logic we are cer-
tain of the truth value of the proposition; it is just vague—it is neither true
nor false, or it is both true and false.

Although this kind of logic may sound absurd, in this chapter we will see
how it can be put to practical use and indeed how multivalent logics, and in
particular fuzzy logic, have become an extremely important part of Artifi-
cial Intelligence.

18.3 Linguistic Variables

In fuzzy set theory and fuzzy logic, we make great use of linguistic vari-
ables. A linguistic variable is a concept such as “height,” which can have a
value from a range of fuzzy values including “tall,” “short,” and “medium.”
The linguistic variable “height” may be defined over the universe of dis-

18.4 Fuzzy Sets 505

1

0

4 ft 8 ftHeight

Degree of
membersip
of the fuzzy
set of tall
people

Figure 18.1
Chart showing the mem-
bership function for the
fuzzy set of tall people

course from 2 feet up to 8 feet. As we will see, the values “tall,” “short,” and
“medium” define subsets of this universe of discourse.

18.4 Fuzzy Sets

Fuzzy logic is used to reason about fuzzy sets. Fuzzy sets contrast with the
sets used in traditional set theory, which are sometimes known as crisp
sets. A crisp set can be defined by the values that are contained within it. A
value is either within the crisp set, or it is not. For example, the set of natu-
ral numbers is a crisp set: 1, 2, 3, 4, and so on are natural numbers and so
are definitely members of the set of natural numbers. Numbers such as 0.2,
101.101, and � are definitely not members of the set of natural numbers.

On the other hand, let us consider the set of tall people. Bill is 7 feet tall,
and so it is pretty clear that he is included in the set of tall people. John is
only 4 feet tall, and so most would say that he is not included in the set.
What about Jane, who is 5 feet 10 inches tall? Some would certainly say she
is tall, but others would say she is not.

The fuzzy set of tall people contains Bill, and it also contains Jane, and it
even contains John. Each is a member of the set to some degree and is not a
member of the set to some degree. This can be seen in the chart in Figure
18.1, which shows the degree of membership that a person of a given height
has in the fuzzy set of tall people.

This definition of a fuzzy set is extremely natural and fits much better with
the way people really talk about things. It is very common to say of some-
one that she is “fairly tall” or “not very tall” but actually quite unusual to use
the unqualified descriptions “tall” or “not tall.” This is because each person

506 CHAPTER 18 Fuzzy Reasoning

Baby Child AdultTeenager

Degree of
membership

1

0

0 100
Age

Figure 18.2
Graph showing member-
ship of the fuzzy sets baby,
child, teenager, and adult

has his or her own idea of what tall means, and in fact our definitions of tall
are not precise—if we were asked to define a group of people as either tall
or not tall, and then asked to repeat the exercise, we might well classify one
person as tall on the first occasion and as not tall on the second occasion.
This is modeled very clearly in the fuzzy set, which defines each person as
being both tall and not tall, to some extent.

You may recall from Section 7.20 that we defined the law of the excluded
middle, which is a fundamental rule of classical logic, and which states that
a proposition must either be true or false: it cannot be both true and false,
and it is not possible for a statement to be neither true nor false. This is the
basis of Aristotelian logic, but as we will see, in fuzzy logic, a statement can
be both true and false, and also can be neither true nor false. Whereas in
classical logic we can state axioms such as

A ∨ ¬A = TRUE

A ∧ ¬A = FALSE

in fuzzy logic these do not hold—A ∨ ¬A can be, to some extent, false, and
A ∧ ¬A can to some extent be true: the law of the excluded middle does not
hold in fuzzy logic.

The idea of the intersection between crisp sets is easy to understand: if an
item is in set A and is also in set B, then it is in the intersection of sets A and
B. Similarly, we can define an intersection between fuzzy sets. Consider the
fuzzy sets whose membership functions are shown in Figure 18.2.

Figure 18.2 shows the membership functions for the fuzzy sets baby, child,
teenager, and adult. Note that there are intersections between baby and

18.4 Fuzzy Sets 507

child, between child and teenager, and between teenager and adult. Note
that at some age, let us say 12, a person might be defined as all of the fol-
lowing: a child, not a child, a teenager, and not a teenager. Our definitions
of the sets do not allow a person to be a child and an adult at the same time,
but we could easily redefine the sets such that a person could be to some
extent a child and at the same time to some extent an adult.

18.4.1 Fuzzy Set Membership Functions

A fuzzy set A is defined by its membership function, MA.

For example, we might define the membership functions for the fuzzy sets
B and C (baby and child) as follows:

Similarly, we could define membership functions for fuzzy sets T (teenager)
and A (adult). Note that there is nothing special about these functions—
they have been chosen entirely arbitrarily and reflect a subjective view on
the part of the author. Different functions could very well be chosen for
MB(x) and MC(x), which would equally reasonably define those sets.

To represent a fuzzy set in a computer, we use a list of pairs, where each pair
represents a value and the fuzzy membership value for that value. Hence,
we write the fuzzy set A as

A = {(x1, MA(x1)), . . . , (xn, MA(xn))}

For example, we might define B, the fuzzy set of babies as follows:

B = {(0, 1), (2, 0)}

This can also be thought of as representing the x and y coordinates of two
points on the line, which represents the set membership function, as shown in
Figure 18.2. Similarly, we could define the fuzzy set of children, C, as follows:

C = {(1, 0), (7, 1), (8, 1), (14, 0)}

M x
x

for x

for x

M x

x
for x

for x and x
x

for x

B

C

() = − ≤

>

() =

− ≤

> ≤
− >

1
2

2

0 2

1
6

7

1 7 8
14

6
8

508 CHAPTER 18 Fuzzy Reasoning

18.4.2 Fuzzy Set Operators

Traditional set theory (developed by Georg Cantor in the 19th century)
uses a number of operators that can be applied to sets A and B:

Not A the complement of A, which contains the elements that are
not contained in A

A ∩ B the intersection of A and B, which contains those elements
that are contained in both A and B

A ∪ B the union of A and B, which contains all the elements of A
and all the elements of B

We can think of these as being related to the logical operators, ¬, ∧, and ∨.
Naturally, the set “Not A” is the same as ¬A. The intersection of A and B is
the same as the conjunction of A and B: A ∧ B. Similarly, the union of A
and B is the same as the disjunction of A and B: A ∨ B.

As a result, the set operators are commutative, associative, and distributive,
as we would expect, and they obey DeMorgan’s laws:

¬(A ∪ B) = ¬A ∩ ¬B

¬(A ∩ B) = ¬A ∪ ¬B

We can define similar operators for fuzzy sets. The complement of fuzzy set
A, whose membership function is MA is defined as

M¬A(x) = 1 � MA(x)

Thus, we could define the set of not-babies, ¬B, as follows:

M¬B(x) = 1 � MB(x)

So,

¬B = {(0, 0), (2, 1)

Similarly, we can define ¬C:

¬C = {{(1, 1), (7, 0), (8, 0), (14, 1)}

For each x, we have defined M¬C(x) as being 1 � MC(x).

We can now define fuzzy intersection of two sets as being the minimum of
the fuzzy membership functions for the sets. That is,

MA ∩ B (x) = MIN (MA (x), MB (x))

So, for example, let us determine the intersection of B and C, babies and
children:

18.4 Fuzzy Sets 509

Recall that we define B and C as follows:

B = {(0, 1), (2, 0)}

C = {(1, 0), (7, 1), (8, 1), (14, 0)}

To determine the intersection, we need to have the sets defined over the
same values; hence, we augment set B:

B = {(0, 1), (1, 0.5), (2, 0), (7, 0), (8, 0), (14, 0)}

Similarly, we augment C:

C = {(0, 0), (1, 0), (2, 0.166), (7, 1), (8, 1), (14, 0)}

Now we can find the intersection, by using

MB ∩ C (x) = MIN (MB (x), MC (x))

∴ B ∩ C = {(0, 0), (1, 0), (2, 0), (7, 0), (8, 0), (14, 0)}

But this has not worked! Clearly we need to define the set using values that
will correctly define the ranges. In other words, we can correctly define B ∩
C as follows:

B ∩ C = {(1, 0), (1.75, 0.125), (2, 0)}

where 1.75 was used as the value for x. This was determined by calculating
the value of x for which MB(x) = MC(x).

Let us consider for a moment what the intersection of two fuzzy sets actually
means. As we said previously, B ∩ C can be thought of as being similar to B
∧ C. If a person is in the set B ∩ C, then she is both a baby And a child. So the
intersection of two sets is the set of elements that belong to both those two
sets, or the elements that belong to the conjunction of the two sets.

Similarly, we can define the union of two fuzzy sets A and B as follows:

MA ∪ B (x) = MAX (MA (x), MB (x))

Hence, the union of the fuzzy sets of babies and children is as follows:

B ∪ C = {(0, 1), (1.75, 0.25), (7, 1), (8, 1), (14, 0)}

Again, recall that the union B ∪ C is similar to the disjunction B ∨ C. A per-
son who belongs to the set B ∪ C is either a baby Or a child.

Let us consider one final fuzzy set operator—containment.

In traditional set theory, if crisp set A contains crisp set B, then this means
that all elements of set B are also elements of set A. In other words, the

510 CHAPTER 18 Fuzzy Reasoning

A

Degree of
membership

1

0
0 100

Age

P

Figure 18.3
Membership functions for
the fuzzy sets adults (A)
and pensioners (P)

union A ∪ B = A and the intersection A ∩ B = B. In this case, B is said to be
a subset of A, which is written A ⊂ B.

To see how fuzzy subsets work, let us consider a new fuzzy set, P, which is
the fuzzy set of pensioners. We will define this set by the following mem-
bership function:

Let us suppose in this case that we are considering the universe of people to
range over the ages between 0 and 100 (not to exclude people over the age
of 100, but simply to make the mathematics a little simpler).

In Figure 18.3 we can see the membership functions for A and P.

The intersection of A and P, A ∩ P, can be seen clearly from this diagram to
be P. Hence, P is a subset of A, or A ⊂ P.

The definition of fuzzy containment is as follows:

B ⊂ A iff ∀x (MB (x) ≤ MA (x))

In other words, B is a fuzzy subset of A if B’s membership function is always
smaller than (or equal to) the membership function for A.

18.4.3 Hedges

A hedge is a fuzzy set qualifier, such as “very,” “quite,” “extremely,” or
“somewhat.” When one of these qualifiers is applied to a fuzzy set, such as
“tall people,” we produce a new set. For example, by applying the “very”

M x
for x

x
for xp() =

≤
− >

0 55
55

45
55

18.5 Fuzzy Logic 511

hedge to “tall people,” we produce a subset of “tall people” called “very tall
people.” Similarly we can produce a new subset of “quite tall people” or
“somewhat tall people.”

The meanings of these hedges are fairly subjective, as are the meanings of
fuzzy sets themselves. However, it is usual to use a systematic mathematic
definition for the hedges so that they can be applied logically.

Often a hedge is applied by raising the set’s membership function to an
appropriate power. For example, it is common to consider the “very” hedge
to square the value of the membership function. For example, if MA is the
membership function for fuzzy set A of tall people, then the membership
function for VA, the fuzzy set of very tall people is

MVA (x) = (MA (x))2

Similarly, we can define hedges such as “quite,”“somewhat,” and “extremely,”
as raising the membership function to powers of 1.3, 0.5, and 4, respectively.

Hence, if Jane has a fuzzy membership value of the “tall people” set of 0.6,
then she has a membership value of “very tall people” of 0.62 = 0.36; a
membership value of “quite tall people” of 0.61.3 = 0.515; a membership
value of “somewhat tall people” of 0.60.5 = 0.775; and a membership value
of “extremely tall people” of 0.64 = 0.1296.

Note that while hedges such as “very,”“extremely,” and “quite” define a sub-
set of a fuzzy set, hedges such as “somewhat” or “more or less” expand the
set to which they are applied. A person who is not at all tall, for example,
might be defined as being, to some extent, “somewhat tall.”

18.5 Fuzzy Logic

Fuzzy logic is a form of logic that applies to fuzzy variables. Fuzzy logic is non-
monotonic, in the sense that if a new fuzzy fact is added to a database, this fact
may contradict conclusions that were previously derived from the database.

We have already seen that the functions MAX and MIN can be used with
fuzzy sets to calculate the intersection and union of two fuzzy sets. Simi-
larly, the same functions can be used in fuzzy logic to calculate the disjunc-
tion or conjunction of two fuzzy variables.

Each fuzzy variable can take a value from 0 (not at all true) to 1 (entirely
true) but can also take on real values in between. Hence, 0.5 might indicate
“somewhat true,” or “about as true as it is false.”

512 CHAPTER 18 Fuzzy Reasoning

If A and B are fuzzy logical values, then we can define the logical connec-
tives ∧ and ∨ as follows:

A ∨ B ≡ MAX (A, B)

A ∧ B ≡ MIN (A, B)

Similarly, we can define negation as follows:

¬A ≡ 1 � A

Recall from Chapter 7 that we can define any binary logical connective
using just ¬ and ∧ . Hence, we can define any fuzzy logic connective using
just MIN and the function f (x) = 1 � x.

Clearly, we cannot write a complete truth table for a fuzzy logical connec-
tive because it would have an infinite number of entries. We can, however,
produce a fuzzy truth table for a finite set of input values. For example, we
could consider the set {0, 0.5, 1}, which would be used in a multivalent logic
that had three logical values. Hence,

A B A ∨ B

0 0 0

0 0.5 0.5

0 1 1

0.5 0 0.5

0.5 0.5 0.5

0.5 1 1

1 0 1

1 0.5 1

1 1 1

We could similarly draw up truth tables for ∧ and the other logical connec-
tives. Consider the following, which is the three-valued truth table for ¬:

A ¬A

0 1

0.5 0.5

1 0

18.5 Fuzzy Logic 513

Note in particular that if A = 0.5, then A = ¬A. The extent to which A is true
is the same as the extent to which it is false. This is a fundamental aspect of
fuzzy logic and is a feature that would be entirely anathema to the thinking
of most classical logicians.

Now let us look at defining fuzzy logical implication, or →. Recall from
Chapter 7 that in classical logic → is defined by the following:

A → B ≡ ¬A ∨ B

Hence, it would seem natural to define fuzzy implication as follows:

A → B ≡ MAX ((1 � A), B)

Let us now examine the truth table for this function:

A B A → B

0 0 1

0 0.5 1

0 1 1

0.5 0 0.5

0.5 0.5 0.5

0.5 1 1

1 0 0

1 0.5 0.5

1 1 1

It is interesting to note that using this definition of implication, 0.5 → 0 =
0.5. This is somewhat counterintuitive because we would expect 0.5 → 0 =
0. Also, we have the counterintuitive statement that 0.5 → 0.5 = 0.5,
whereas we would expect 0.5 → 0.5 = 1.

As a result of this, a number of alternative definitions for fuzzy implication
have been proposed. One such definition is known as Gödel implication,
which is defined as follows:

A → B ≡ (A ≤ B) ∨ B

Using this definition, we can draw up an alternative fuzzy truth table for →
over three logical values as follows:

514 CHAPTER 18 Fuzzy Reasoning

A B A → B

0 0 1

0 0.5 1

0 1 1

0.5 0 0

0.5 0.5 1

0.5 1 1

1 0 0

1 0.5 0.5

1 1 1

This table seems more intuitive.

Now let us consider modus ponens, the logical rule we saw in Section 7.11.4:

In fuzzy logic this rule also holds. We will now examine, by drawing up a
truth table, whether it also holds for three-valued fuzzy logic.

A B A → B (A∧ (A → B)) → B

0 0 1 1

0 0.5 1 1

0 1 1 1

0.5 0 0 1

0.5 0.5 1 0.5

0.5 1 1 1

1 0 0 1

1 0.5 0.5 1

1 1 1 1

A A B
B

→

18.6 Fuzzy Logic as Applied to Traditional Logical Paradoxes 515

We have drawn up this truth table using our original, less satisfactory defi-
nition of →, and as a result, we have found that modus ponens does not
quite hold. If A = 0.5 and B = 0.5, then we have

(A ∧ (A → B)) → B = 0.5

Assuming we want modus ponens to hold, then this is not satisfactory
because we would want to obtain

(A ∧ (A → B)) → B = 1

If we draw up the equivalent truth table but use Gödel implication, then we
find that each row in the truth table has a final value of 1, as we would
expect, and thus modus ponens holds.

18.6 Fuzzy Logic as Applied to Traditional Logical Paradoxes

There are a number of well-known paradoxes in classical logic: problems
that cannot be solved using propositional logic because they lead to a con-
clusion that contradicts one or more of the premises. For example, Rus-
sell’s paradox can be stated as follows:

A barber, who himself has a beard, shaves all men who do not shave
themselves. He does not shave men who shave themselves.

We now ask the following question: Who shaves the barber? If he shaves
himself, then according to the second sentence in the statement above, he
cannot shave himself. But if he does not shave himself, then the first sen-
tence above tells us that he does shave himself.

This paradox exemplifies the law of the excluded middle—the problem
arises due to the fact that we cannot have A ∧ ¬A. In fuzzy logic, this prob-
lem does not exist, and Russell’s paradox is not a paradox: the barber both
shaves himself and does not shave himself.

Similarly, consider another commonly discussed paradox:

“All Cretans are liars,” said the Cretan.

If the Cretan is a liar, as his claim would suggest, then his claim cannot be
believed, and so he is not a liar. But if he is not a liar, then he is telling the
truth, and all Cretans are liars. But because he is a Cretan, he must therefore
be a liar. Again, this is a paradox that can be resolved by using fuzzy logical

516 CHAPTER 18 Fuzzy Reasoning

values, instead of the two logical values “true” and “false.” The Cretan’s
statement is true and false, to some extent, at the same time.

This makes perfect sense: when the Cretan says that all Cretans are liars, it
is unlikely that he is really speaking of every single Cretan. It is also unlikely
that he really means that every Cretan lies every time he opens his mouth.
Hence, his statement has a fuzzy truth value somewhere below 1, but some-
where above 0.

18.7 Fuzzy Rules

We will now consider fuzzy rules, which are the fuzzy equivalent of the
rules we used in Chapter 9, when we considered expert systems.

The rules we saw in Chapter 9 had the following form:

IF A THEN B

A fuzzy rule has the form

IF A = x then B = y

In fact, to be more precise, a fuzzy rule can take the following form:

IF A op x then B = y

Where op is some mathematical operator (such as =, >, or <)

Hence, we might have fuzzy rules such as the following:

IF temperature > 50 then fan speed = fast

IF height = tall then trouser length = long

IF study time = short then grades = poor

By using fuzzy inference, which is explained in the next section, an expert
system can be built based around fuzzy rules such as these.

18.8 Fuzzy Inference

An alternative to Gödel implication called Mamdani implication (or Mam-
dani inference) is often used in fuzzy systems. Mamdani inference allows a
system to take in a set of crisp input values (from a set of sensors or inputs
from a human operator, for example) and apply a set of fuzzy rules to those
values, in order to derive a single, crisp, output value or action recommen-
dation. Mamdani inference was invented by Professor Ebrahim Mamdani
in the 1970s and was used by him to control a steam engine and boiler.

18.8 Fuzzy Inference 517

We will now examine a simple example to see how this form of reason-
ing works.

Let us suppose that we are designing a simple braking system for a car,
which is designed to cope when the roads are icy and the wheels lock.

The rules for our system might be as follows:

Rule 1 IF pressure on brake pedal is medium

THEN apply the brake

Rule 2 IF pressure on brake pedal is high

AND car speed is fast

AND wheel speed is fast

THEN apply the brake

Rule 3 IF pressure on brake pedal is high

AND car speed is fast

AND wheel speed is slow

THEN release the brake

Rule 4 IF pressure on brake pedal is low

THEN release the brake

To apply these rules, using Mamdani inference, the first step is to fuzzify
the crisp input values.

To do this, we need first to define the fuzzy sets for the various linguistic
variables we are using.

For this simple example, we will assume that brake pressure is measured
from 0 (no pressure) to 100 (brake fully applied). We will define brake pres-
sure as having three linguistic values: high (H), medium (M), and low (L),
which we will define as follows:

H = {(50, 0), (100, 1)}

M = {(30, 0), (50, 1), (70, 0)}

L = {(0, 1), (50, 0)}

Figure 18.4 shows the membership functions for these three fuzzy sets.

Let us suppose that the pressure value in a given situation is in fact 60. This
corresponds to fuzzy membership values for the three sets of

518 CHAPTER 18 Fuzzy Reasoning

1

0 100

Pressure

M

HL

Figure 18.4
Graph showing member-
ship functions for fuzzy
variable pressure

ML(60) = 0

MM(60) = 0.5

MH(60) = 0.2

Similarly, we must consider the wheel speed. We will define the wheel speed
as also having three linguistic values: slow, medium, and fast. We will define
the membership functions for these values for a universe of discourse of
values from 0 to 100:

S = {(0, 1), (60, 0)}

M = {(20, 0), (50, 1), (80, 0)}

F = {(40, 0), (100, 1)}

If the wheel speed is in fact 55, then this gives us membership values as follows:

MS(55) = 0.083

MM(55) = 0.833

MF(55) = 0.25

For the sake of simplicity, we will define the linguistic variable car speed
using the same linguistic values (S, M, and F for slow, medium, and fast),
using the same membership functions. Clearly, in a real system, the two
would be entirely independent of each other.

Let us suppose now that the car speed is 80, which gives us the following
membership values:

MS(80) = 0

18.8 Fuzzy Inference 519

MM(80) = 0

MF(80) = 0.667

We now need to apply these fuzzy values to the antecedents of the sys-
tem’s rules.

Rule 1, taken on its own, tells us that the degree to which we should apply
the brake is the same as the degree to which the pressure on the brake pedal
can be described as “medium.”

We saw above that the pressure is 60 and that MM(60) = 0.5. Hence, Rule 1
gives us a value of 0.5 for the instruction “Apply the brake.”

Rule 2 uses an AND:

IF pressure on brake pedal is high

AND car speed is fast

AND wheel speed is fast

THEN apply the brake

The membership functions for the three parts of the antecedent are

MH(60) = 0.2

MF(80) = 0.667

MF(55) = 0.25

Usually, the conjunction of two or more fuzzy variables is taken to be the
minimum of the various membership values. Hence, the antecedent for
Rule 2 in this case has the value 0.2. Thus, Rule 2 is giving us a fuzzy value
of 0.2 for “Apply the brake.”

Similarly, we evaluate Rules 3 and 4:

Rule 3 MH(60) = 0.2

MF(80) = 0.667

MS(55) = 0.083

Hence, Rule 3 gives a value of 0.083 for “Release the brake.”

Rule 4 ML(60) = 0

Hence, Rule 4 gives us a fuzzy value of 0 for “Release the brake.”

Now we have four fuzzy values: 0.5 and 0.2 for “Apply the brake” and 0.083
and 0 for “Release the brake.”

520 CHAPTER 18 Fuzzy Reasoning

1

0 100

Pressure

AR

Figure 18.5
Membership functions for
“Apply the brake” (A) and
“Release the brake” (R)

We now need to combine these values together.

First, let us see what we mean by “Apply the brake” and “Release the brake.”
Figure 18.5 shows fuzzy membership functions for “Apply the brake” (A)
and “Release the brake” (R), which show the degree of pressure the brake
should apply to the wheel for each value of these variables.

To put that another way, the x-axis of the graph in Figure 18.5 shows the
pressure applied by the brake to the wheel, and the y-axis shows the degree to
which “Apply the brake” and “Release the brake” are true (M[A] and M[R]).

To apply the rules, we first need to decide how to combine the differing val-
ues for each of the two fuzzy variables. We have 0.2 and 0.5 for “Apply the
brake” and 0.083 and 0 for “Release the brake.” We could sum the values or
take the minimum or take the maximum. The appropriate combination
will depend on the nature of the problem being solved. In this case it makes
sense to sum the values because the separate rules are giving different rea-
sons for applying or releasing the brakes, and those reasons should com-
bine together cumulatively.

Hence, we end up with a value of 0.7 for “Apply the brake” and 0.083 for
“Release the brake.”

The next step is to clip the membership functions of the two variables to
these values, as is shown in Figure 18.6.

18.8 Fuzzy Inference 521

1

0.7

0.083

0 100

Pressure

AR

Figure 18.6
Showing how the fuzzy
values for the antecedents
of the rules are applied to
the consequents

In Figure 18.6, the membership function for A has been clipped at 0.7, and
the membership function for R has been clipped at 0.083. The resulting
shape is the shaded area under the two clipped lines and shows the com-
bined fuzzy output of the four rules.

To use this fuzzy output, a crisp output value must now be determined
from the fuzzy values. This process of obtaining a crisp value from a set of
fuzzy variables is known as defuzzification. This can be done by obtaining
the center of gravity (or centroid) of the shaded shape shown in Figure
18.6.

The formula for the center of gravity, C, is as follows:

where MA(x) is the membership function illustrated by the shaded area in
Figure 18.6.

In fact, the center of gravity should really be calculated as a continuous
integral, but if we use a discrete sum over a reasonable selection of values,
we can obtain an answer that is close enough. In fuzzy systems it is not usu-
ally necessary to be accurate to several decimal places, but rather to obtain
a value in the right range.

C
M x x
M x

A

A
= ()

()
∑
∑

522 CHAPTER 18 Fuzzy Reasoning

Hence, we can calculate the center of gravity of the shaded shape in Figure
18.6 as follows:

Hence, the crisp output value for this system is 68.13, which can be trans-
lated into the pressure applied by the brake to the wheel in the car.

18.9 Fuzzy Expert Systems

Expert systems, or production systems, are described in more detail in
Chapter 9. An expert system consists of a set of rules that are developed in
collaboration with an expert. Expert systems are used, for example, for
medical diagnosis. Traditional expert systems use crisp logical values to
determine a diagnosis or a recommendation based on a set of evidence. In
many ways, this is a fine way to apply the expert’s knowledge. On the other
hand, most expert decisions are not black and white. An expert who is pre-
sented with a patient with one set of symptoms will not usually be able to
provide a diagnosis with absolute certainty but will have a strong feeling
about a diagnosis based on the weight of evidence.

Hence, applying fuzzy logic to these rules seems like a natural way to progress.

The fuzzy expert system can be built by choosing a set of linguistic vari-
ables appropriate to the problem and defining membership functions for
those variables. Rules are then generated based on the expert’s knowledge
and using the linguistic variables. The fuzzy rules can then be applied as
described above using Mamdani inference.

Let us now look at a simple example of how a fuzzy expert system can be
built from an expert’s knowledge.

We will consider an imaginary medical system designed to recommend a
dose of quinine to a patient or doctor based on the likelihood that that
patient might catch malaria while on vacation.

Creating the fuzzy expert system will involve the following steps:

C =
×() + ×() + ×() + ×() + + ×()

+ + + + +

= =

5 0 83 10 0 1 15 0 15 20 0 2 100 1
0 083 0 1 0 15 0 2 1

717 666
10 533

68 13

. . . .
. . . .

.
.

.

K

K

18.9 Fuzzy Expert Systems 523

1. Obtain information from one or more experts.

2. Define the fuzzy sets.

3. Define the fuzzy rules.

To use the fuzzy expert system, we will use the following steps:

1. Relate observations to the fuzzy sets.

2. Evaluate each case for all fuzzy rules.

3. Combine information from the rules.

4. Defuzzify the results.

18.9.1 Defining the Fuzzy Sets

Having obtained suitable information from our experts, we must start by
defining the fuzzy sets.

In this case, we will use the following fuzzy sets, or linguistic variables:

■ average temperature of destination (T)

■ average humidity of destination (H)

■ proximity to large bodies of water (P)

■ industrialization of destination (I)

Note that this is a purely imaginary example for the purposes of illustration
and explanation and has no real bearing on the way that malaria is pre-
vented or treated!

As well as defining the linguistic variables, we need to give each one a range
of possible values. For this example, we will assume that each has just two
values: Temperature, humidity, and industrialization can be high (H) or
low (L), and proximity to water can be near (N) or far (F).

To represent the fuzzy membership functions, we will use the notation MAB

(x), where A is the variable (T, H, P, or I) and B is the value (H, L, N, or F).
For example, MHL is the membership function for the fuzzy subset
described as “humidity low.”

The crisp values that we will allow as inputs will range from 0 to 100 for
temperature, humidity, and industrialization, and from 0 to 50 for proxim-
ity to water.

524 CHAPTER 18 Fuzzy Reasoning

We will define the membership functions for each of these fuzzy subsets
using the following equations:

M x

for x
x

for x

for x

IL () =

<
− ≤ <

≥

1 10
20

10
20

0 20

 10

M x

for x
x

for x

for x

IH () =

<
− ≤ <

≥

0 10
10

10
20

1 20

 10

M x

for x
x

for x

for x

PF () =

<
− ≤ <

≥

0 10
10

30
40

1 40

 10

M x

for x
x

for x

for x

PN () =

<
− ≤ <

≥

1 10
40

30
40

0 40

 10

M x
x

M x
x

HH

HL

() =

() = −

100

1
100

M x
x

for x

for x

M x
x

for x

for x

TH

TL

() =
− ≥

<

() =
− ≤

>

25
75

25

0 25

1
75

75

0 75

18.9 Fuzzy Expert Systems 525

1

0 1007525

Temperature

HL

Figure 18.7
Graph showing member-
ship function for tempera-
ture (high and low)

1

0 10050

Humidity

HL

Figure 18.8
Graph showing member-
ship function for humidity
(high and low)

Figures 18.7 to 18.10 show graphs for all of these fuzzy membership functions.

We need to define one more fuzzy set, which is the set used to describe the
output of the system. In this case, our system will prescribe a dose of qui-
nine which can take on one of three values:

very low dose (V)

low dose (L)

high dose (H)

526 CHAPTER 18 Fuzzy Reasoning

1

0 504010

Proximity to Water

N F

Figure 18.9
Graph showing member-
ship function for proximity
to water (near and far)

1

0 10010 20

Industrialization

L H

Figure 18.10
Graph showing member-
ship function for industri-
alization (high and low)

We will define three membership functions for these three fuzzy sets as follows:

M x
x

for x

for x
QL () =

− ≤

>

50
50

50

0 50

M x
x

for x

for x
QV () =

− ≤

>

10
10

10

0 10

18.9 Fuzzy Expert Systems 527

1

0 10010 40 50

Quinine dose

L

V

H

Figure 18.11
Membership functions for
quinine dose values; V
(very low), L (low), and H
(high).

Graphs for these three membership functions are shown in Figure 18.11.

18.9.2 Defining Fuzzy Rules

The second step in creating our fuzzy expert system is to define a set of
fuzzy rules.

These rules, unlike those used by traditional expert systems, are expressed in
vague English terms and do not define cut-off points or thresholds, but rather
use subjective terms such as“high”and“low.”This maps more naturally to the
way an expert would express his or her knowledge and makes the process of
converting that knowledge into rules far simpler and less prone to error.

Our rules are defined as follows:

Rule 1 IF temperature is high

AND humidity is high

AND proximity to water is near

AND industrialization is low

THEN quinine dose is high

M x
for x

x
for xQH () =

≤
− >

0 40
40

60
40

528 CHAPTER 18 Fuzzy Reasoning

Rule 2: IF industrialization is high

THEN quinine dose is low

Rule 3: IF humidity is high

AND temperature is high

AND industrialization is low

OR proximity to water is near

THEN quinine dose is high

Rule 4: IF temperature is low

AND humidity is low

THEN quinine dose is very low

These rules may not be the best way to express this information, but they
will suffice for this example.

18.9.3 Relating Observations to Fuzzy Sets

We are now ready to make use of our fuzzy expert system.

We will examine five sets of data, for five individuals, each of whom is trav-
eling to a country that is at risk from malaria.

The crisp data are as follows:

temperature = {80, 40, 30, 90, 85}

humidity = {10, 90, 40, 80, 75}

proximity to water = {15, 45, 20, 5, 45}

industrialization = {90, 10, 15, 20, 10}

Hence, for example, person three is traveling to an area where the average
temperature is 30, the humidity is 40, the distance to water is 20, and the
level of industrialization is 25.

We must now convert these crisp values into fuzzy membership values.
This can be done by simply applying the relevant fuzzy membership func-
tions to each of the values. For example, let us look at some of the calcula-
tions for the first person:

Temperature = 80.

These membership functions were defined as:

18.9 Fuzzy Expert Systems 529

So,

MTH(80) = (80 – 25) / 75 = 0.733

MTL(80) = 0

Similarly, we obtain the following membership function values:

MHH(10) = 10 / 100 = 0.1

MHL(10) = 1 � (10 / 100) = 0.9

MPN(15) = (40 � 15) / 30 = 0.833

MPF(15) = (15 � 10) / 30 = 0.167

MIH(90) = 1

MIL(90) = 0

In a similar fashion, we can obtain membership values for the other four
travelers, which results in the following:

MTH = {0.733, 0.2, 0.067, 0.867, 0.8}

MTL = {0, 0.467, 0.6, 0, 0}

MHH = {0.1, 0.9, 0.4, 0.8, 0.75}

MHL = {0.9, 0.1, 0.6, 0.2, 0.25}

MPN = {0.833, 0, 0.667, 1, 0}

MPF = {0.167, 1, 0.333, 0, 1}

MIH = {1, 0, 0.5, 1, 0}

MIL = {0, 1, 0.5, 0, 1}

Note that for all of the fuzzy sets apart from temperature, the two possible
values sum to 1 in every case. For example, for the third person, member-
ship of “high humidity” is 0.4, and membership of “low humidity” is 0.6.
This relationship does not always have to hold for fuzzy sets, and in this
case it does not hold for temperature.

M x
x

for x

for x
TL () =

− ≤

>

1
75

75

0 75

M x
x

for x

for x
TH () =

− ≥

<

25
75

25

0 25

530 CHAPTER 18 Fuzzy Reasoning

18.9.4 Evaluating Each Case for the Fuzzy Rules

We now have a set of fuzzy inputs that can be applied to the antecedents of
the rules.

For example, let us examine traveler number 1. The values are as follows:

MTH = 0.733

MTL = 0

MHH = 0.1

MHL = 0.9

MPN = 0.833

MPF = 0.167

MIH = 1

MIL = 0

Rule 1, written with the appropriate fuzzy membership values for person 1,
is as follows:

IF temperature is high (0.733)

AND humidity is high (0.1)

AND proximity to water is near (0.833)

AND industrialization is low (0)

THEN quinine dose is high (0)

Recall that to apply the fuzzy AND operator, we take the minimum value of
the antecedents. In this case, therefore, the rule fires with value 0, which
means it does not fire at all.

We will now apply the remaining rules in the same way:

Rule 2 IF industrialization is high (1)

THEN quinine dose is low (1)

In this case, the rule fires with fuzzy strength of 1.

Rule 3 IF humidity is high (0.1)

AND temperature is high (0.733)

AND industrialization is low (0)

OR proximity to water is near (0.833)

THEN quinine dose is high (0.1)

18.9 Fuzzy Expert Systems 531

Note that in this case, the rule has an OR clause. This is calculated by taking
the maximum value of its arguments, which in this case is 0.833. Hence, the
overall result of the rule is the minimum of 0.1, 0.733, and 0.833, which is 0.1.

Rule 4 IF temperature is low (0)

AND humidity is low (0.9)

THEN quinine dose is very low (0)

We can use this method for all of the five sets of input data and obtain
results as follows:

Rule 1 (high dose): {0, 0, 0.067, 0, 0}

Rule 2 (low dose): {1, 0, 0.5, 1, 0}

Rule 3 (high dose): {0.1, 0.2, 0.067, 0.8, 0.75}

Rule 4 (very low dose): {0, 0.1, 0.6, 0, 0}

In this case, to combine Rules 1 and 3, which each give values for the “high
dose” fuzzy set, we will take the maximum value, thus obtaining the follow-
ing values for “high dose” from these two rules:

high dose: {0.1, 0.2, 0.067, 0.8, 0.75}

18.9.5 Defuzzification

We now need to defuzzify the outputs to obtain a crisp dosage recommen-
dation for each traveler.

Let us examine this process for traveler 1:

Traveler 1 obtained the following three fuzzy outputs:

very low dose (V): 0

low dose (L): 1

high dose (H): 0.1

To defuzzify this output, we use the clipping operation described in Section
18.8. This clipping is shown graphically in Figure 18.12.

In this case, we clip the V set to value 0, which means it is effectively not
used at all. We clip the L set to value 1, which means it is not clipped, and
we clip the H set to value 0.1.The shaded area in Figure 18.12 is the com-
bined result of the three fuzzy sets, and obtaining the centroid of this
shaded shape will give us the crisp output value, which is the recommenda-
tion for dosage for this traveler.

532 CHAPTER 18 Fuzzy Reasoning

1

0 10010 40 50

Quinine dose

L

V

H

Figure 18.12
Clipped fuzzy set for the
output for traveler 1

C = (0.9 � 5) + (0.8 � 10) + (0.7 � 15) + (0.6 � 20) + (0.5 � 25) + (0.4 � 30) +
(0.3 � 35) + (0.2 � 40) + (0.1 � 45) + (0.1 � 50) + (0.1 � 55) + (0.1 � 60) +
(0.1 � 65) + (0.1 � 70) + (0.1 � 75) + (0.1 � 80) + (0.1 � 85) + (0.1 � 90) +
(0.1 � 95) + (0.1 � 100)

0.9 + 0.8 + 0.7 + 0.6 + 0.5 + 0.4 + 0.3 + 0.2 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1
+ 0.1 + 0.1 + 0.1 + 0.1 + 0.1

= 165 / 5.6

= 29.46

Recall that we define the center of gravity as follows:

We will sum over values of x, which increase in increments of 5. A more
accurate result could be obtained using smaller increments, but for this
example, increments of 5 will give sufficient accuracy.

Hence,

C
M x x
M x

A

A
= ()

()
∑
∑

Thus, the recommended dose for traveler 1 is 29.46.

We will now defuzzify the results for traveler 3.

18.9 Fuzzy Expert Systems 533

1

0.6

0.5

0.067

0 10010 40 50

Quinine dose

L

V

H

Figure 18.13
Clipped fuzzy set for the
output for traveler 3

C = (0.6 � 5) + (0.5 � 10) + (0.5 � 15) + (0.5 � 20) + (0.5 � 25) + (0.4 � 30) +
(0.3 � 35) + (0.2 � 40) + (0.1 � 45) + (0.067 � 50) + (0.067 � 55) + (0.067 � 60) +
(0.067 � 65) + (0.067 � 70) + (0.067 � 75) + (0.067 � 80) + (0.067 � 85) +
(0.067 � 90) + (0.067 � 95) + (0.067 � 100)

0.6 + 0.5 + 0.5 + 0.5 + 0.5 + 0.4 + 0.3 + 0.2 + 0.1 + 0.067 + 0.067 + 0.067 + 0.067 + 0.067 +
0.067 + 0.067 + 0.067 + 0.067 + 0.067 + 0.067

= 128 / 4.3

= 29.58

Traveler 3 had the following results:

very low dose (V): 0.6

low dose (L): 0.5

high dose (H): 0.067

Figure 18.13 shows the result of using these values to clip the three fuzzy
sets, H, L, and V.

The centroid of the shaded area shown in Figure 18.13 is calculated as fol-
lows:

Using this same method, dosages can also be calculated for the other four
travelers. This is left as an exercise for the reader.

534 CHAPTER 18 Fuzzy Reasoning

18.10 Fuzzy Systems That Learn

The fuzzy systems we have seen so far are static: once the fuzzy sets and
rules are set up, they do not change. As new inputs are presented to them,
they do not learn from those inputs. This makes sense because the rules
that we have given to the systems are designed by experts and, so, should
not need to change. On the other hand, we have already said that the rules
from the experts are subjective and vague. When one expert says that a dial
should be set to “high,” another expert might say it should be set to “very
high,” but mean the same crisp setting.

Fuzzy systems are designed to be able to cope with this kind of vagueness
and inaccuracy, and tend to produce good results regardless. However, in
some situations it makes more sense to allow the fuzzy system to adapt. In
Chapter 11, we saw how neural networks use a system based on the neural
structures in human brains to learn how to deal with new problems. These
systems are able to adapt—to learn how to deal with situations that they
have not previously encountered and, in extreme cases, are able to learn to
survive when the environment in which they operate changes.

We will now look at how fuzzy logic can be used in combination with neu-
ral networks to produce fuzzy systems that are able to adapt and learn.

18.10.1 Neuro-fuzzy Systems

A neuro-fuzzy system is a neural network that learns to classify data using
fuzzy rules and fuzzy classifications (fuzzy sets). A neuro-fuzzy system has
advantages over fuzzy systems and traditional neural networks: A tradi-
tional neural network is often described as being like a “black box,” in the
sense that once it is trained, it is very hard to see why it gives a particular
response to a set of inputs. This can be a disadvantage when neural net-
works are used in mission-critical tasks where it is important to know why
a component fails.

Fuzzy systems and neuro-fuzzy systems do not have this disadvantage.
Once a fuzzy system has been set up, it is very easy to see which rules fired
and, thus, why it gave a particular answer to a set of inputs. Similarly, it is
possible with a neuro-fuzzy system to see which rules have been developed
by the system, and these rules can be examined by experts to ensure that
they correctly address the problem.

18.10 Fuzzy Systems That Learn 535

T

H

Q

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 18.14
Typical layout of a five-
layer neuro-fuzzy network

Typically, a fuzzy neural network is a five-layer feed-forward network. The
five layers are as follows:

1 input layer—receives crisp inputs

2 fuzzy input membership functions

3 fuzzy rules

4 fuzzy output membership functions

5 output layer—outputs crisp values

Figure 18.14 shows the typical layout of such a network.

The network in Figure 18.14 has two crisp inputs, T and H, and produces
one crisp output, Q. It has five layers, whose functions are as follows:

The first layer, the input layer, simply passes its crisp input values to the
next layer in the network.

The second layer contains information about the various fuzzy sets that are
being used to map the crisp inputs. In other words, it fuzzifies the inputs in
the same way that we fuzzified our inputs in the examples in Section 18.9.3.

Typically, the neurons used in this second layer have triangular activation
functions, which represent the triangular membership functions of the
fuzzy sets, although any functions can be used.

The third layer represents the fuzzy rules of the system. Each neuron in this
layer represents a single fuzzy rule.

536 CHAPTER 18 Fuzzy Reasoning

Typically, the system would be set up with initial fuzzy rules built in, and the
network would develop suitable weightings to give the best possible responses.
In some cases, it is possible to start the system with no built-in rules, in which
case the system learns its own rules and develops weights for them.

The fourth layer in the network contains the neurons that represent the
membership functions of the various possible outputs of the fuzzy rules (in
this case there are three possible outputs, and so three neurons in the
fourth layer).

The fifth and final layer is the layer that combines and defuzzifies the various
outputs to produce one single crisp output for the network in response to a
given set of inputs. In this case, the network has just one final output, but it is
possible to have a fuzzy neural network that produces a number of outputs.

The connections between the layers have weights associated with them, and
using the methods such as back-propagation, which are described in Chap-
ter 11, the system is able to learn.

Let us now examine in detail the behavior of each of the levels of neurons
in the network to see how the entire network behaves.

We will use the network shown in Figure 18.14 to learn a simple version of
the fuzzy rules used in Section 18.9.2 for prescribing quinine. We will use
just two input variables: temperature (T) and humidity (H).

18.10.2 Layer 1: The Input Layer

This layer simply passes the input values it receives (T and H in our exam-
ple) to each of the neurons in the second layer. In fact, in our example this
layer is set up so that input T is passed to the top two neurons of Layer 2,
and input H is passed to the bottom two neurons. This is because in this
example each of the inputs has two possible values, which have different
membership functions.

18.10.3 Layer 2: The Fuzzification Layer

The neurons in Layer 2 represent the fuzzy membership functions for the
two inputs to the system. The top two neurons in this layer represent the
membership functions for “high temperature” and “low temperature,”
whereas the bottom two represent “high humidity” and “low humidity.” If
the membership functions for “high humidity” and “high temperature”
were the same, then these could be combined into one neuron.

18.10 Fuzzy Systems That Learn 537

Each neuron in this layer has an activation function (defined in Chapter
11) that is identical to the membership function it is representing. In this
case, the activation functions will be the membership functions shown in
Figures 18.7 and 18.8.

Hence, the output of each neuron (or the extent to which it fires) in this layer
is determined by applying the appropriate membership function to its inputs.

18.10.4 Layer 3: The Fuzzy Rule Layer

The outputs of Layer 2 are the values that represent the extent to which
each of the inputs belongs to each of the fuzzy sets “high humidity,” “low
humidity,”“high temperature,” and “low temperature.”

The way in which this layer usually works is that the various input values
are multiplied together to give the fuzzy intersection of the inputs. This
single input is then used as the antecedent of the rule, which determines the
extent to which the neuron fires.

The network in this example will be using rules such as these:

IF TH THEN QH AND QL

IF TH AND TL AND HH THEN QH AND QL

IF TL AND HH AND HL THEN QL AND QV

IF HL THEN QL AND QV

(These can be seen by examining the network shown in Figure 18.14 and
assuming that the neurons in Layer 2 are ordered from the top—TH, TL, HH,
HL—and that the neurons in Layer 4 are ordered from the top—QH, QL, QV).

These rules will also be modified by the weights of the network. In cases
where the system is initially set up so that each rule uses each of the inputs, the
weights adapt so that inputs that are not relevant to a given rule fade to zero.

18.10.5 Layer 4: The Output Membership Function Layer

Each neuron in Layer 4 represents the membership function of one of the
fuzzy outputs of the rules in Layer 3. In our example, the neurons thus rep-
resent the membership functions for “high quinine dose,” “low quinine
dose,” and “very low quinine dose.” The activation functions for these neu-
rons thus match the membership functions shown in Figure 18.11.

538 CHAPTER 18 Fuzzy Reasoning

18.10.6 Layer 5: The Defuzzification Layer

Each output of the system has a neuron in the fifth layer. In our case, the
system outputs just one value—the dose of quinine to prescribe to the trav-
eler. The single node in Layer 5 takes inputs from each of the output nodes
in Layer 4 and combines them together to form one crisp output. This is
calculated, as explained in Section 18.8, by combining the clipped fuzzy
membership sets and determining the centroid of the shape that this com-
bined function describes. This centroid is the output value of the system.

18.10.7 How the System Learns

The neuro-fuzzy system learns using the same techniques used by tradi-
tional neural networks. Learning is done by adjusting the weights of the
connections between neurons in the network.

For example, using back-propagation, a set of input training data is applied
to the system and the outputs compared with the correct outputs. The
error between the outputs and the correct outputs is then fed back through
the network to adjust the weights to improve the network’s performance
with that set of training data. When this process is repeated, the network
eventually converges on an optimal set of weights.

The system can start with a set of rules that are a “blank canvas”—where all
nodes in one layer are connected to all nodes in the next layer. In this case,
the system learns its own rules from the training data and eliminates
unnecessary inputs and outputs from nodes by setting their weights to zero.

Alternatively, the system can be set up using input from an expert or
experts. This information can be used to create suitable rules in much the
same way as for a traditional fuzzy system, and the network will determine
the optimal weights to use with those rules. Such systems are very robust
and can usually detect rules that have been entered erroneously. For exam-
ple, if one expert gave the following rule:

IF TH and HH then QH

and another expert gave the following rule:

IF TH and HH then QV

clearly, one of these experts is incorrect. The system would show this by set-
ting all the weights for the wrong rule to zero because the training data
would match the correct rule but would not match the incorrect rule
(assuming the training data are correct).

18.12 Review Questions 539

18.11 Chapter Summary

■ Bivalent logics are based on two truth values (true and false, usually).

■ Multivalent logics allow a range of possible values.

■ A linguistic variable is a word such as “height” that can be used to
represent a variable that can take a number of possible fuzzy values.

■ A fuzzy set is defined by its membership function.

■ A number of fuzzy operators can be applied to fuzzy sets, including
fuzzy intersection, fuzzy union, and fuzzy inverse.

■ A hedge such as “very” or “extremely” can be applied to linguistic
variables.

■ Fuzzy logic defines how we reason about fuzzy variables.

■ Fuzzy rules can be defined that tell a fuzzy system how to behave
based on the value of certain fuzzy inputs.

■ Fuzzy inference (such as Mamdani inference) allows a fuzzy system
to convert crisp input values into fuzzy variables and then to rea-
son about those variables, resulting in a single crisp output.

■ Fuzzy expert systems have several advantages over traditional,
nonfuzzy expert systems.

■ Neuro-fuzzy systems are fuzzy systems that use techniques from
neural networks in order to learn.

18.12 Review Questions

18.1 Explain the difference between bivalent and multivalent logics.
Which type of logic are you more familiar with?

18.2 What is the law of the excluded middle? Argue against the need for
this law.

18.3 What is a linguistic variable? Give 10 examples of linguistic vari-
ables that you might use to describe a building.

18.4 What are hedges? Give five hedges that apply to the linguistic vari-
ables you gave in answer to question 18.3.

18.5 How do fuzzy sets differ from traditional sets? What is the connec-
tion between linguistic variables and fuzzy sets?

18.6 What is the connection between fuzzy sets and fuzzy logic?

540 CHAPTER 18 Fuzzy Reasoning

18.7 Explain carefully how fuzzy logic differs from traditional Aris-
totelian logic.

18.8 Explain how Mamdani inference works.

18.9 Explain what is meant by Defuzzification. How is it performed?

18.10 What advantages would fuzzy expert systems have over traditional
expert systems. Would they have any disadvantages?

18.11 What is a neuro-fuzzy system? How does it learn? Compare and
contrast neuro-fuzzy systems with traditional neural networks.

18.13 Exercises

18.1 Develop fuzzy rules to control a set of traffic lights at a four-way
junction. Assume that there are sensors at each junction that
determine how many cars are waiting and how long they have
been waiting. The fuzzy rules should control the lights to mini-
mize delay to all cars. Each junction has a traffic light that can be
red (stop) or green (go). You can add additional lights to each
junction to control traffic moving in different directions: in other
words, you could allow traffic turning right to go, while traffic
going straight or turning left is required to stop. You can allow
more than one light to be green, as long as it cannot cause any
accidents. Implement the fuzzy rules in a fuzzy system in the pro-
gramming language of your choice.

18.2 Prove the following expressions using fuzzy logic:

A ∧ B → A

A ∧ B → ¬A

A ∧ B → A ∨ B

18.14 Further Reading

Kosko (1993) provides a nontechnical introduction to the subjects covered
in this chapter. Of the main texts, Negnevitsky (2002) provides the greatest
coverage of fuzzy logic and fuzzy systems, providing some excellent con-
crete examples of how fuzzy systems work and how fuzzy techniques can be
combined with other Artificial Intelligence methods, such as neural net-
works and expert systems.

18.14 Further Reading 541

The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, &
Maintaining Fuzzy Systems, by Earl Cox (1999 – Morgan Kaufmann)

Fuzzy Logic for Business and Industry, by Earl Cox (2000 – Charles River Media)

An Introduction to Fuzzy Control, by Dimiter Driankov, Hans Hellendoorn,
and M. Reinfrank (1996 – Springer Verlag)

Computational Intelligence: An Introduction, by Andries P. Engelbrecht
(2003 – John Wiley & Sons)

Fuzzy Control: Synthesis and Analysis, edited by Shehu S. Farinwata, Dimi-
tar P. Filev, and Reza Langari (2000 – John Wiley & Sons)

Fuzzy and Neural Approaches in Engineering, by J. Wesley Hines (1997 –
Wiley Interscience)

Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient
Systems, edited by Mohammad Jamshidi, Andre Titli, Lotfi Zadeh, and
Serge Boverie (1997 – Prentice Hall)

Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning
and Machine Intelligence, by Jyh-Shing Roger Jang, Chuen-Tsai Sun, and
Eiji Mizutani (1996 – Prentice Hall)

Multistage Fuzzy Control: A Model-Based Approach to Fuzzy Control and
Decision Making, by Janusz Kacprzyk (1997 – John Wiley & Sons)

Fuzzy Thinking: The New Science of Fuzzy Logic, by Bart Kosko (1994 –
Hyperion)

Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our
World, by Daniel Mcneill (1994 – Simon & Schuster)

Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions,
by Jerry M. Mendel (2000 – Prentice Hall)

An Introduction to Fuzzy Sets: Analysis and Design, by Witold Pedrycz and
Fernando Gomide (1998 – MIT Press)

The Importance of Being Fuzzy, by Arturo Sangalli (1998 – Princeton Uni-
versity Press)

This page intentionally left blank

19CHAPTER
Intelligent Agents

An active line on a walk, moving freely without a goal. A walk for a walk’s
sake. The agent is a point that shifts position.

—Paul Klee, Pedagogical Sketchbook

My team had written a number of programs to control swarms of agents.
These programs were modeled on behavior of bees. The programs had many
useful characteristics. Because swarms were composed of many agents, the
swarm could respond to the environment in a robust way. Faced with new and
unexpected conditions, the swarm programs didn’t crash; they just sort of
flowed around the obstacles, and kept going.

—Michael Crichton, Prey

For I also am a man set under authority, having under me soldiers, and I say
unto one, Go, and he goeth; and to another, Come, and he cometh; and to my
servant, Do this, and he doeth it.

—The Gospel according to St Luke, Chapter 7, Verse 8

19.1 Introduction

An agent is an entity that is able to carry out some task, usually to help a
human user. Agents can be biologic (people or animals, for example),
robotic, or computational. This chapter is primarily concerned with the
latter type, in particular with software agents. A software agent is a com-
puter program designed to carry out some task on behalf of a user.

544 CHAPTER 19 Intelligent Agents

As we will see, there are a number of ways in which software agents can be
built and a number of properties that they can have. One property with
which we are particularly concerned is intelligence. We will discuss in
more detail what is meant by intelligence, in the context of agents, in Sec-
tion 19.2.1.

This chapter also introduces other important properties that agents may or
may not have, including autonomy, benevolence, the ability to collaborate
(with other agents, for example), and the ability to learn.

A number of architectures that can be used to build agents are discussed.

This chapter also introduces a number of types of agents, such as reactive
agents, interface agents, information agents, and multiagent systems,
which use a number of agents together to solve a single problem.

Finally, the chapter briefly introduces the ideas behind robotic agents and
discusses a particular type of robot, known as a Braitenberg vehicle, which is
used to discuss the nature of intelligence and our interpretation of behavior.

In many ways, the field of Artificial Intelligence as a whole can be seen as
the study of methods that can be used to build intelligent agents. For exam-
ple, the techniques discussed in Chapters 3 through 6 can be thought of as
methods that intelligent agents can use to enable them to search or to play
games. Each of the methods explained in this book can be used by an intel-
ligent agent or to build intelligent agent systems.

19.2 Properties of Agents

19.2.1 Intelligence

An agent is a tool that carries out some task or tasks on behalf of a human. For
example, a simple agent might be set up to buy a particular stock when its
price fell below a particular level. A simple Internet search agent might be
designed to send queries to a number of search engines and collate the results.

Intelligent agents have additional domain knowledge that enables them to
carry out their tasks even when the parameters of the task change or when
unexpected situations arise. For example, an intelligent agent might be
designed to buy books for a user on the Internet at the lowest possible
price. The agent would need to be able to interact with a set of online book-
stores but would also need to be able to learn how to deal with new book-
stores or with individuals who were offering secondhand books. These

19.2 Properties of Agents 545

kinds of agents that perform tasks on behalf of people are called interface
agents, which are discussed in Section 19.5.

Many intelligent agents are able to learn, from their own performance,
from other agents, from the user, or from the environment in which they
are situated. The ways in which agents can learn have been covered in some
detail in Part 4 of this book, and the way in which some of these ideas can
be applied by intelligent agents are introduced in Section 19.12.

19.2.2 Autonomy

In addition to intelligence, an important feature of many intelligent agents
is autonomy—the ability to act and make decisions independently of the
programmer or user of the agent. For example, an intelligent buying agent
that is designed to buy goods on behalf of a user needs to be able to make
decisions about what items to purchase without checking back with the
user. This autonomy is what sets intelligent agents aside from many other
Artificial Intelligence techniques.

19.2.3 Ability to Learn

Many agents have an ability to learn. In other words, when presented with
new information, such an agent is able to store that new information in a
useful form. For example, agents can learn from a user by observing actions
or by being given instruction. We see how interface agents use these kinds
of learning in Section 19.5. Agents can also learn from other agents in mul-
tiagent systems, which are described in Section 19.8.

Learning allows agents to improve their performance at carrying out a par-
ticular task over time. If a human user tells an agent that it has carried out
a task poorly, it is useful for that agent to be able to learn from this experi-
ence to avoid making the same mistakes in the future.

19.2.4 Cooperation

In multiagent systems, agents usually cooperate with each other. This coop-
eration implies some form of social interaction between agents. For exam-
ple, a buying agent may negotiate with selling agents to make purchases. As
has been mentioned, agents can also learn from each other. To use the buy-
ing agent example again, a buying agent may be informed by another buy-
ing agent of a new shopping portal that the agent may find useful.

546 CHAPTER 19 Intelligent Agents

Of course, it is also useful for agents to cooperate with the humans who use
them. Although in most agent systems, this cooperation is in the form of
simple inputs and instructions, the manner in which agents cooperate with
people can be very important, as we see in Section 19.5 when we discuss
interface agents.

19.2.5 Other Agent Properties

Agents can have a number of other properties. A versatile agent is one that
is able to carry out many different tasks. Most agents are benevolent, but
some can be competitive or nonhelpful. Similarly, agents may be altruistic
or antagonistic. Some agents can have the ability to lie to other agents, or
to users, whereas other agents are always truthful (this property is known as
veracity).

Other properties of agents include the extent to which they can be trusted
with delegated tasks and whether or not they degrade gracefully (i.e.,
when the agent encounters a new problem that it is unable to solve, does it
fail completely, or is it able to make some progress?).

An agent’s mobility is defined by its ability to move about on the Internet
or another network.

19.3 Agent Classifications

As has been discussed in Section 19.2, agents can be classified according to
a number of parameters. We will now discuss a variety of types of agents
that are classified according to these, and other, parameters.

The types of agents that we will look at are not mutually exclusive: an interface
agent can be reactive or utility based. It can also be versatile or nonversatile.

The main classes of agents are defined as follows:

■ reactive agents

■ collaborative agents

■ interface agents

■ mobile agents

■ information-gathering agents

19.4 Reactive Agents 547

We also look at the difference between reactive agents and goal-based and
utility-based agents, which are defined by the ways in which they are moti-
vated. Reactive agents simply respond to inputs they receive, whereas goal-
based and utility-based agents have an ability to reason about their
positions and make decisions on the basis of that reasoning.

Some agents are hybrids, which exhibit properties of more than one of the
categories listed above. The eventual aim of most intelligent agent research
is to develop smart agents, which would be fully autonomous and able to
learn and cooperate with other agents. Smart agents do not yet exist and are
not covered by this book.

19.4 Reactive Agents

A simple reactive agent (also known as a reflex agent) is a production sys-
tem where inputs from the environment are compared with rules to deter-
mine which actions to carry out. In other words, reactive agents simply
react to events in their environment according to predetermined rules.

A simple example of a reactive agent is the automatic mail filter that many
e-mail systems now possess. This mail filter examines each e-mail as it
arrives and compares it against a set of rules, or templates, and classifies it
accordingly. A common use for such systems is to reject so-called “junk
mail” or “spam.” More complex systems are used to route e-mails within an
organization, so that a consumer can send an e-mail to a central mail
address, and the system will determine to which department within the
company to send the mail, based on its contents.

In the case of the e-mail–filtering agent, the environment is simply an e-
mail inbox and the contents of that inbox.

A reactive agent does not tend to perform well when its environment
changes or when something happens that it has not been told about. For
example, an e-mail–filtering system might have problems when it receives
an e-mail that is entirely in Chinese. New rules can of course be written to
deal with such situations, but it might be more desirable to have an agent
that can learn to adapt to new situations.

A more complex reactive agent can be developed that combines inputs
from its environment with information about the state of the world and
information about how its actions affect the world.

548 CHAPTER 19 Intelligent Agents

Hence, a scheduling system might be based on the e-mail–filtering agent
system, which assigns tasks to employees based on the content of e-mails as
they arrive.

For example, when an e-mail arrives from a customer, reporting a bug in
the company’s software system, the agent might assign a task to the engi-
neering department to fix the bug. The agent would then wait for further
information from the engineering department. If it did not receive assur-
ance that the bug had been fixed within a reasonable amount of time, it
might contact the engineering department again. The agent’s ability to do
this derives from the fact that it is able to store information about the state
of the world (such as “engineering department working to fix bug number
36,234,120”) and about how its actions affect the state of the world (such as
“when I send this e-mail to engineering, they will start to work on fixing
the bug”).

If a subsequent e-mail arrives from a different customer, reporting the
same bug, the agent would not need to report the bug again because it
knows that it has already reported it. Instead, it might reply to the customer
saying something like

Thank you for your email—we are already aware of this problem, and
our engineers are working to fix it now.

19.4.1 Goal-based Agents

Goal-based agents are more complex than reactive agents. Rather than fol-
lowing a predetermined set of rules, a goal-based agent acts to try to
achieve a goal. This is often done by using search (see Part 2) or planning
(see Part 5).

A goal-based agent might, for example, be given the goal of finding pages
on the Internet that are of interest to an Artificial Intelligence researcher.
The agent will be designed so that it is capable of carrying out actions (such
as loading a web page, examining it, and following links from one web page
to another). It is also able to identify when it has reached a goal (for exam-
ple, by matching the pages it finds against a set of keywords whose presence
indicates relevance to Artificial Intelligence).

This goal based agent would search the Internet looking for pages that
matched its criteria and would presumably report those pages to its owner
or to a client. This kind of agent does not take into account how efficiently

19.4 Reactive Agents 549

it is searching or how relevant the pages are that it is finding. In other
words, its aim is simply to satisfy its goal; it does not take into account how
well it has satisfied the goal or how efficiently. Utility-based agents, which
are described in the next section, use these concepts to attempt to provide
better results and in a more efficient manner.

19.4.2 Utility-based Agents

A utility-based agent is similar to a goal-based agent, but in addition to
attempting to achieve a set of goals, the utility-based agent is also trying to
maximize some utility value. The utility value can be thought of as the
happiness of the agent, or how successful it is being. It may also take into
account how much work the agent needs to do to achieve its goals.

Let us return to our example from the previous section of an agent that
searches for pages on the Internet that are of interest to Artificial Intelli-
gence researchers.

The utility-based agent can use knowledge about the Internet to follow the
most worthwhile paths from one page to another. In other words, it can use
heuristic-based search techniques to minimize the amount of time it
spends examining pages that are not of interest and to maximize the likeli-
hood that if an interesting page exists, it will be found (this combines
search concepts from Chapters 4 and 5 with information retrieval tech-
niques, which are discussed in Chapter 20).

The techniques we saw in Chapter 6 for game-playing systems can also be
used as part of a utility-based agent. In this case, the agent’s utility function
is based on how successful it is at playing the game, and its goal is to maxi-
mize this utility function by winning the game.

19.4.3 Utility Functions

A utility function maps a set of states to the set of real numbers. In other
words, given a particular state of the world, an agent is able to use its utility
function to derive a score, or utility value, that tells it how “happy” it is in
that state or how successful it has been if it reaches that state.

The static board evaluators that we saw in Chapter 6 are an example of
a utility function that is used to evaluate a single position in a board
game.

550 CHAPTER 19 Intelligent Agents

By searching through a tree of possible future states, based on available
actions, and selecting a path that maximizes the utility function through-
out the tree, a utility-based agent is able to achieve its goals effectively and
efficiently.

For example, our Artificial Intelligence research agent might assign a high
utility value to pages that are written in English and that appear to be writ-
ten by a reliable source.

The idea of utility is closely related to the idea of rationality. An agent that
behaves rationally is one that attempts to maximize its utility function. This
utility function may not seem rational to all observers, although a rational
agent might be programmed to lose at chess as spectacularly as possible. By
losing a game, this agent maximizes its utility function and so, contrary to
appearance, it is behaving rationally.

This model of utility is based on economics theory. One utility function for
people is money. In general, people tend to prefer to have more money
rather than less money. It is not as simple as this though. We might assume
that the utility function for a human relating to money (ignoring other
aspects of life) is simply based on the amount of money that that person
had. This is contradicted by an experiment carried out in 1982 by psychol-
ogists, Tversky and Kahneman. In their experiment, they offered subjects
two consecutive choices:

1. A or B:

A = 80% chance of winning $4000

B = 100% chance of winning $3000

2. C or D:

C = 20% chance of winning $4000

D = 25% chance of winning $3000

Most subjects choose A, rather than B; and C, rather than D. Let us consider
the utility of these choices. In the choice between A and B, we have an 80%
chance of winning $4000 or a 100% chance of winning $3000. The
expected values of these two choices are

E(A) = 0.8 � 4000 = 3200

E(B) = 1.0 � 3000 = 3000

19.5 Interface Agents 551

Hence, the most rational choice, using a simple utility function, would be to
select A rather than B. For the choice between C and D, the expected values are

E(C) = 0.2 � 4000 = 800

E(D) = 0.25 � 3000 = 750

So in this choice, most people make the more rational decision on the basis
of the simple utility function. What this experiment tells us is that people
have much more complex utility functions than we might assume.

Similarly, utility-based intelligent agents usually need sophisticated utility
functions. In the case of a chess playing agent, for example, a utility func-
tion based solely on the number of pieces each player has would not be suf-
ficient. A utility function based on which player wins is fine, but as we saw
in Chapter 6, this does not help the agent to play the game because the
search tree is usually too large for the agent to reach a position where one
player has won.

19.5 Interface Agents

An interface agent can be thought of as a personal assistant. Interface
agents are typically autonomous agents, capable of learning in order to
carry out tasks on behalf of a human user. Typically, interface agents col-
laborate with the user, but do not need to collaborate with other agents;
although in some cases, interface agents can learn by seeking advice from
other agents.

A typical example of an interface agent is a tool that is used to help a user
learn to use a new software package. Such an agent has the ability to observe
what the user does and make suggestions for better ways to perform those
tasks. It is also able to assist the user in carrying out complex tasks, possibly
learning as it does so. Interface agents can thus take instructions from users
and can also learn from feedback from users about whether they are doing a
good job or not, in order to perform better in future.

It is often useful for repetitive tasks to be delegated to an interface agent.
The interface agent can learn how to carry out the task by observing the
user and then is able to repeat the task as required.

Kozierok and Maes (1993) describe an interface agent that is able to assist a
user with scheduling meetings on a calendar. The agent is able to arrange
meetings with other people and is also able to accept, reject, and rearrange

552 CHAPTER 19 Intelligent Agents

meetings on behalf of the user. By observing the user’s behavior, it is able to
learn, for example, that the user does not like to book meetings on Friday
afternoons and so is able to avoid such meetings.

A number of tools exist that filter Usenet postings and new articles for a
user. These tools can typically be trained by example: a user can show
examples of interesting articles, and examples of uninteresting articles and
the agent can learn to identify interesting articles and present those to the
user, while avoiding uninteresting ones.

19.6 Mobile Agents

Mobile agents are those capable of “moving” from one place to another. In
the case of mobile robots, this literally means moving in physical space. In
the case of mobile software agents, this mobility usually refers to the Inter-
net or other network. An agent that is not mobile is static.

Mobile agents travel from one computer to another, gathering information
and performing actions as needed on the basis of that information. A com-
puter virus can be thought of as a form of mobile agent, although most
viruses are not intelligent, merely autonomous. That is, they are able to act
without being given direct instruction from a human, but they do not
adapt intelligently to their surroundings—they simply follow a fixed set of
rules that tells them how to infect a computer and how to reproduce.

For mobile agents to run on remote computers, a suitable environment
must of course be provided that allows the agent to run on that machine.
An example of a system that provides such an environment is Telescript,
developed by General Magic. The Java programming language, developed
by Sun, can also be used for developing mobile agents.

The idea that a mobile agent can be sent from one computer across the
Internet to run on another computer raises many security questions.

The main advantages of mobile agents are in efficiency. An agent that has to
communicate with a number of remote servers and request large quantities
of information in order to make a decision uses a large amount of band-
width, which can be avoided if the agent is able to physically move to the
remote server and query it locally.

19.7 Information Agents 553

Similarly, the mobile agent may be able to take advantage of superior com-
puting power or the existence of particular functional abilities at the
remote machine that are not present locally.

In this way, mobile agents can be used to generate a distributed computing
architecture, where computation takes place on multiple computers at
arbitrary locations.

A further advantage of mobile agents is that they can carry out their tasks
asynchronously: the user can set a mobile agent off on a particular task and
can then get on with other work, or maybe even switch the computer off.
When the user is ready to receive the results, the agent can be recalled.

19.7 Information Agents

Information agents, also known as information-gathering agents, are
usually used on the Internet and so are also sometimes called Internet
agents. An information agent is used to help a user find, filter, and classify
information from the vast array of sources available on the Internet.

Information agents may be static or mobile. Some information agents are
capable of learning, whereas the behavior of others is fixed. Additionally,
information agents can be collaborative or can work independently of
other agents. The distinctive feature of an information agent is the function
that it provides, rather than the way it works.

There is an overlap between information agents and other kinds of agents
described in this chapter. The interface agents described in Section 19.5,
which monitor Usenet postings or online news articles, are examples of
information agents.

Information agents know how to search the Internet, usually using a num-
ber of search tools. In this way, they are able to cover as much content as
possible and thus maximize their recall (see Chapter 20). The real chal-
lenge is usually precision. This is heavily dependent on the ability of the
agent to receive input instructions from the user. Some agents learn by
example: the user shows the agent examples of pages that are relevant and
pages that are not relevant, and the system learns to differentiate the two
groups. Other agents are directed by keywords or more sophisticated infor-
mation retrieval techniques (see Chapter 20) to identify relevant material
for the user.

554 CHAPTER 19 Intelligent Agents

The Internet provides some unique challenges to these agents. Internet data
is very dirty: most of the information on the Internet is not organized in
any way; much of it includes misspellings, incorrect grammar, and incor-
rect facts. Additionally, the Internet is global in nature, and so material is
available in almost every language.

The sheer quantity of the data and the dirty nature of the data make it very
difficult for many information agent systems to provide adequate precision
in identifying relevant documents.

Of course, this is one of the reasons that information agents are so useful. It
is even harder for humans to locate the data they want than it is for the
agents. Agents have the advantage of speed and of being able to examine
pages asynchronously, delivering results to a user, perhaps by e-mail, once
they are available.

More sophisticated information agents are able to monitor the browsing
habits of users to identify the kinds of material they are interested in and to
use that information to improve the performance of future searches.

19.8 Multiagent Systems

In many situations, simple reactive agents are sufficient. The fact that they
do not have the ability to learn means that they are not suited to operating
in complex, dynamic environments. Also, because such an agent is based
on a set of rules, the number of tasks and situations that it can deal with is
limited by the number of rules it has. In fact, most agents do not exist in
isolation.

Multiagent systems are a common way of exploiting the potential power of
agents by combining many agents in one system. Each agent in a multiagent
system has incomplete information and is incapable of solving the entire
problem on its own, but combined together, the agents form a system that
has sufficient information and ability to solve the problem. The system does
not have a centralized control mechanism for solving the problem.

An example of how many simple agents can combine together to produce
complex behavior can be seen by examining the way that ant colonies func-
tion. Each ant has very little intelligence and very little ability to learn.
Taken as a whole, however, the ant colony is able to deal with complex situ-
ations and in some ways behaves as a single living entity.

19.8 Multiagent Systems 555

In much the same way, many “dumb” agents can be combined together to
produce a more intelligent system. For example, the legs of a robot might
be controlled by a set of agents. Each leg is controlled by a simple reactive
robot that has instructions for how to move the leg according to what the
leg encounters.

Communication and collaboration are desirable properties of multiagent
systems. Communication means, for example, that agents can inform each
other of changes in the environment or of new discoveries they have made.
Collaboration means that agents can work together to solve a common goal.

In fact, multiagent systems often involve relatively simple interactions
between agents, and as we have seen with systems like Reynolds’ Boids (Chap-
ter 13), the system as a whole is able to solve complex problems without the
individual agents necessarily knowing anything about the overall problem.
Such emergent behavior is a valuable property of multiagent systems.

Multiagent systems can be given the ability to learn to solve new problems
using genetic algorithms (see Chapter 14). In this way, robots have been
successfully developed whose limbs are controlled by individual agents,
each of which has been developed using a genetic algorithm. The robots are
able to walk in a way that mimics the locomotion of insects (Gary Parker
1997, 1998).

Agents in a multiagent system can be collaborative or competitive. Agents
designed to play chess against other agents would clearly be competitive,
whereas agents that traverse the Internet searching for specific material
may find it advantageous to cooperate with other similar agents.

An agent team is a group of agents that collaborate together to achieve
some common goal. It is often the case that an agent team consists of
agents that operate in different ways and have different goals to accomplish.
For example, a team of agents might be used to arrange travel for a busi-
nessman: one agent might book flights, another agent arranges hotel
accommodation, a third agent arranges meetings with business associates,
while a fourth agent arranges meals and entertainments.

In some situations, these agents will be competing with other agents, bid-
ding for purchases, but the agents within the team will cooperate with each
other (e.g., the meal-booking agent will inform the meeting booking agent
if it changes its restaurant bookings, which might affect a meeting that has
been arranged in that restaurant).

556 CHAPTER 19 Intelligent Agents

19.9 Collaborative Agents

Collaborative agent systems are multiagent systems in which the agents
collaborate with each other to accomplish goals. This property, of cooper-
ating to achieve a common goal, is known as benevolence.

Collaborative agents typically do not have the ability to learn, although
some have simple learning abilities. As with multiagent systems, the idea is
that a combination of many simple agents can solve a problem that each
agent individually would not be able to solve.

Collaborative agent systems are able to take advantage of their parallel
nature in order to solve problems faster than would otherwise be possible.
They are also more reliable than traditional systems because additional
agents can be added to provide redundancy: if one agent fails, or provides
incorrect information, this will not affect the overall performance of the
system because other agents will provide corrective information.

19.10 Agent Architectures

In this section, we will look at a number of architectures that can be used to
build intelligent agents. The architecture of an agent is the way in which its
various processing modules are connected together and the way in which
those modules are connected to the environment in which the agent operates.

19.10.1 Subsumption Architecture

There are a number of architectures suitable for reactive agents. One of the
most commonly used is Brooks’ subsumption architecture (Brooks 1985).
The subsumption architecture is a layered architecture that was designed
for implementing physical robots, which does not involve any centralized
intelligence or control mechanism.

The agent in this architecture has a set of inputs, a possible set of actions,
and a layered set of modules, each of which is designed to control some
aspect of the agent’s behavior. Each layer is able to inhibit the behavior of
layers below it.

The modules are augmented finite state machines (AFSMs), which are
similar to the finite state automata we saw in Chapter 13. AFSMs are often
based on production rules, as used by expert systems, which take the form

input → action

19.10 Agent Architectures 557

Inputs

Inputs

Inputs Actions

Actions

Actions
EXPLORE

WANDER

AVOID OBSTACLES
Figure 19.1
A three-layer subsumption
architecture

These rules are called situated action rules or situation action rules
because they map situations to actions. An agent that uses such rules is said
to be situated, in that it is affected by where it is in its environment.

An AFSM is triggered when its inputs exceed a threshold. Each AFSM also
has inhibitor inputs that can prevent it from triggering.

Rather than having a centralized representation, the subsumption architec-
ture relies on lower-level modules that combine together. From these com-
bined modules emerges intelligent behavior.

A simple subsumption architecture is shown in Figure 19.1.

This architecture was proposed by Brooks as a control mechanism for a
robot. Each layer in the architecture is designed to handle one type of behav-
ior: exploring, wandering, or avoiding obstacles. The modules act asynchro-
nously, but each module can affect the behavior of the other modules.

The WANDER module will take into account the instructions generated by
the AVOID OBSTACLES module, but it is also able to suppress the instruc-
tions generated by the AVOID OBSTACLES module, in order to ensure that
while avoiding collisions, the robot still wanders around. This is to ensure
that the robot does not simply focus on avoiding obstacles to the exclusion
of everything else.

More important than wandering, for this robot, is exploration. Hence, the
EXPLORE module is able to suppress instructions from the WANDER
module to ensure that the robot continues to explore new territory, rather
than simply wandering aimlessly.

Further layers can be added to the architecture to generate more sophisti-
cated behavior—for example, Brooks describes a system that is able to
wander around among desks in an office, looking for empty drink cans.
This system has an architecture with additional layers for identifying drink
cans, identifying desks, and so on (Brooks 1993).

558 CHAPTER 19 Intelligent Agents

19.10.2 BDI Architectures

BDI architectures, or Belief Desire Intention architectures, are based on
the three concepts of belief, desire, and intention. A belief is a statement
about the environment that the agent considers to be true. BDI agents have
a set of beliefs that are similar to the set of facts contained in a rule-based
production system. A desire is a goal state that the agent would like to
reach, and the agent’s intentions are the plans it has for how to behave in
order to achieve its desires.

An agent can have an intention to carry out a particular action, in which
case it will probably do so. Alternatively, an agent can have an intention to
bring about a particular state.

When an agent commits to carrying out a particular action, or achieving a
particular goal, it ‘promises’ that it will do so. Hence, a BDI agent has a set
of beliefs that lead it to establish a set of desires. To achieve its desires, the
BDI agent considers a number of options and commits to one or more of
them. These options now become the agent’s intentions.

Intentions persist until the goals are achieved, or until it becomes unrea-
sonable to continue to attempt to achieve them (e.g., if it becomes obvious
that the goals can never be achieved or if new beliefs are developed that
lead the agent to change its desires).

A bold agent is one that establishes a set of intentions and then aims to
carry them out without ever stopping to consider whether it should change
its intentions. A cautious agent is one that considers its intentions continu-
ally. Kinny and Georgeff (1991) found that bold agents perform better than
cautious agents in worlds where the environment does not change very fre-
quently and that cautious agents perform better than bold agents in worlds
that change quickly.

19.10.3 Other Architectures

A number of other agent architectures exist. Logic-based agents apply rules
of logical deduction to a symbolic representation of their environment.
The state of such an agent is usually represented using first-order predi-
cates, and its behavior is determined by a set of deduction rules, usually
expressed in first-order predicate logic.

19.10 Agent Architectures 559

Layer n

Layer 2

Layer 1

Inputs

Inputs

Outputs and
actions

Outputs and
actions

Horizontal Architecture Vertical Architecture

. . .

Layer n

Layer 2

Layer 1

. . .

Figure 19.2
Horizontal and vertical
agent architectures
compared

In contrast to logic-based architectures, purely reactive agents do not per-
form any symbol manipulation and rely on a simple mapping from inputs
to actions.

A number of layered architectures exist other than the subsumption archi-
tecture. The subsumption architecture is an example of a horizontal lay-
ered architecture, where each layer receives inputs and contributes to the
actions and outputs of the agent. In a vertical layered architecture, input is
passed to one layer, which then passes information on to a further layer.
Actions and outputs are eventually produced by the final layer. These two
architecture types are illustrated in Figure 19.2.

TouringMachines is an example of a horizontal architecture, which is
based on three layers:

■ Reactive layer: This layer uses situation rules to react to changes in
the agent’s environment.

■ Planning layer: This layer uses a library of plans (called schemas)
to determine the behavior of the agent, in order to achieve particu-
lar goals. In most situations, this is the layer that decides the main
behavior of the agent.

■ Modeling layer: This layer contains a model of the agent and any other
agents in the world, in order to avoid conflicts with other agents.

InteRRaP is an example of a vertical layered architecture, which has three
layers with very similar functions to the layers of the TouringMachines
architecture. Each layer in the InteRRap architecture has a database of rele-
vant knowledge: the reactive layer has a database of knowledge about the
world the agent inhabits; the planning layer has a database of planning

560 CHAPTER 19 Intelligent Agents

knowledge that contains information about the agent’s plans; the coopera-
tion layer (similar to the modeling layer in TouringMachines) has social
knowledge about the other agents and their interactions.

In the TouringMachines architecture, each layer interacts with the environ-
ment, directly receiving inputs and producing actions and outputs. In the
InteRRap architecture, only the bottom layer (the reactive, behavior layer)
interacts directly with the world. If it is unable to deal with a particular sit-
uation, it passes the information on to the next layer, the planning layer.
Similarly, if this layer cannot deal with the current situation, it passes the
information on to the final layer, the cooperation layer. Outputs are passed
back to the behavior layer, which turns them into actions or outputs.

19.11 Accessibility

When playing a game such as chess, each player knows what position he
will be in after making any given move. What he does not usually know is
what move his opponent will make and, thus, what position he will reach
after his opponent’s move.

In some cases an agent’s state after carrying out a particular action can be
deterministically predicted. In many situations, however, this is not the
case, and the outcome is unpredictable, or stochastic. Given that an agent
usually has a certain degree of knowledge about the world and the way its
actions affect its state, we can make certain predictions. For example, an
agent can say that if it is in state S1 and it takes action A, then it will move
into state S2 with probability p. These probabilities are contained within a
transition model, which enables the agent to make predictions about what
effect its actions will have on it and its environment.

If an agent is able to determine all relevant facts about the environment in
which it operates, then that environment is described as being accessible. If
it is inaccessible, then certain facts are hidden from the agent, although it
may be able to deduce them by maintaining internal information about the
state of the environment. For example, if an agent is in an environment in
which it is unable to determine the temperature, it may have a rule that says
“if you turn up the heating, the temperature will increase.”

We could consider two types of agents that play chess. One agent might have
the ability to examine the board at each move of the game and make deci-
sions about what move to make from that point. The agent does not have the

19.12 Learning Agents 561

ability to remember moves that have been made in the past, and thus the
only way it can determine the current position is by examining the board.

This agent acts in an accessible environment because, at any given point, it
has access to all the information it needs to be able to play the game. If we
imagine that this agent is playing a game where half of the board is covered
up, and it is unable to see what happens there, then we can see that the
agent would have great difficulties because it would have no way of deter-
mining what was happening on that side of the board apart from a few lim-
ited facts it could deduce, such as “my king is on this side of the board, so I
know I do not have a king on the other side of the board.”

A different type of agent might play the game without any direct access to
the board at all. This agent stores information about the moves that have
been made in the past and is able to use this information to determine the
current position of the board. This agent would play equally well whether
the board were entirely visible or entirely covered up.

This agent operates in an inaccessible environment, but, in fact, because the
environment it operates in is entirely deterministic, it is able to derive com-
plete knowledge about the board at all times.

An agent that played a game such as poker would need to be able to act in
an inaccessible, stochastic environment because the cards the opponent has
are neither visible nor deterministically allocated.

In an accessible, stochastic environment, agents use Markov decision
processes (MDPs) to determine the best course of action. In an inaccessi-
ble, stochastic environment, agents use partially observable Markov deci-
sion processes (POMDPs). Clearly, POMDPs must operate with far less
information and so tend to be more complex than MDPs.

19.12 Learning Agents

Machine learning is covered in more detail in Part 4 of this book. An agent
that is capable of learning (a learning agent) is able to acquire new knowl-
edge and skills and is able to use the new knowledge and skills to improve
its performance.

One common way to provide agents with the ability to learn is to use neu-
ral networks, which are covered in more detail in Chapter 11. A neural net-
work is designed to learn in a similar manner to the way a human brain

562 CHAPTER 19 Intelligent Agents

learns. Another method for enabling agents to learn is to use genetic algo-
rithms. One way to use genetic algorithms in this way is to have the genetic
algorithm breed populations of agents, with the aim of breeding a highly
successful agent. Another way is to have each agent use a genetic algorithm
to develop suitable strategies for dealing with particular problems.

19.12.1 Multiagent Learning

Multiagent systems are often required to solve problems in dynamic and
unpredictable environments. In these circumstances, a learning ability is
particularly important because the environment can change too quickly for
predetermined behaviors to be effective.

Multiagent learning can in many ways be more impressive than the learn-
ing carried out by individual agents. Each agent in a learning multiagent
system can learn independently of the other agents and can also learn from
the other agents.

In this way, the agents can explore multiple potential strategies in parallel,
and when one agent discovers a particularly effective strategy, it can pass
this knowledge on to other agents. For this reason, when the environment
changes, multiagent learning systems are able to adapt much more quickly
than nonlearning systems, or even individual learning agents.

In centralized learning, the agents learn on an individual and distinct
basis, whereas in decentralized learning, the actions of the individual
agents lead to the whole system learning. The classifier systems described in
Chapter 13 are an example of a decentralized multiagent learning system,
where each rule can be thought of as a separate agent, and where the whole
system learns by experience how best to solve a problem.

19.13 Robotic Agents

The agents described in this chapter so far have been software agents—they
exist only in a virtual world. Robotic agents, or robots, are artificial agents
that exist physically in the real world.

Mobile robotic agents controlled by Brooks’ subsumption architecture
have been briefly described in Section 19.10.1.

Robotic agents operate in an inaccessible, stochastic environment. The real
world has many properties that make the tasks of robotic agents much

19.14 Braitenberg Vehicles 563

harder than those of many software agents. An ability to deal with uncer-
tainty is clearly important, as is robustness in the face of extremely unpre-
dictable and potentially dangerous environments.

Robots have been designed that build cars, using robotic arms and con-
veyer belts.

More sophisticated are the robots that are designed to explore other planets
and collect samples for scientific analysis. Such robots, of course, require
autonomy: they cannot be controlled directly by human input because they
would be too far away from the earth. One important aspect of such robots
is their ability to walk: this involves not just knowing how to move legs in
such a way as to move forward, but also how to navigate over hills and
rocks, around pot-holes and through valleys. Agents such as Atilla and
Genghis, designed by the MIT Mobot Lab (Mobot means “mobile robot”),
have these abilities and are modeled on insects.

Genghis has six legs and a number of sensors that enable it to determine
certain facts about its inaccessible environment. The interesting thing
about Genghis is that nobody ever told it how to walk or steer around
obstacles. Its brain consists of 57 augmented finite state machines, each of
which is responsible for a simple piece of behavior, such as lifting a leg or
wandering. Using these AFSMs and feedback from its sensors, Genghis was
able to learn to walk from the experience of trying and failing to do so.

19.14 Braitenberg Vehicles

Braitenberg vehicles were invented by a neuroscientist, Valentino Braiten-
berg, in the 1980s. Braitenberg vehicles are imaginary robots used by Brait-
enberg in thought experiments on the nature of intelligence. There are 14
different classes of vehicles, ranging from extremely simple to fairly com-
plex. We will consider just the six simplest types.

Even the simplest of his vehicles can exhibit interesting behaviors and tell
us a great deal about our assumptions concerning intelligence and thought.

The simplest type of Braitenberg vehicle, known as vehicle 1, simply has
one motor and a sensor. The sensor is wired directly to the motor, such that
the more of whatever the sensor is designed to sense there is, the faster the
motor turns. For example, if the sensor were a light sensor, then the motor
would turn faster when the sensor could detect more light.

564 CHAPTER 19 Intelligent Agents

Figure 19.3
Two varieties of Braiten-
berg vehicles type 2, seen
from above

The behavior of this vehicle is very simple: the more light there is, the faster
it moves. It would normally move in a straight line, although imperfections
in its environment (such as friction and obstacles) might cause it to deviate.

The second type of Braitenberg vehicle has two sensors and two motors.
The motors and sensors are placed symmetrically around the vehicle, as
shown in Figure 19.3.

In the first vehicle shown in Figure 19.3, the left-hand sensor (the sensors
are on the front of the vehicle) is connected to the left-hand motor, and the
right-hand sensor to the right-hand motor. In the second vehicle shown,
the sensors and motors are connected the other way around. The first vehi-
cle will tend to move away from the source that its sensors detect, whereas
the second vehicle will move toward it.

These vehicles can be thought of as timid (the one that moves away from
the source) and bold (the one that moves toward the source).

Let us now consider a type of the timid vehicle, which has a sensor for
proximity and where its motors have a built-in tendency to move even
without any stimulation to the sensors. When placed in a simple maze, this
vehicle will navigate through the maze without bumping into the walls.
Clearly, apparently complex behavior can emerge from very simple con-
cepts. This timid vehicle was certainly not designed to traverse a maze, and
it does not have any knowledge of mazes or the world. An observer who did
not know how the vehicle worked might conclude that it relied on a very
sophisticated form of Artificial Intelligence.

It is interesting to note at this point some of the words that we have been
using to describe agents: timid, bold, cautious, and so on. There is a ten-
dency to anthropomorphize the behaviors of agents, which is at least partly
due to the impression that agents can give of having almost human-like
intelligence.

The third type of vehicle is similar to the second type except that the sen-
sors are wired in such a way that they inhibit the motors: the more stimula-

19.15 Chapter Summary 565

tion they receive, the slower the motors turn. These types of vehicles will
tend to move toward a source of stimulation but will end up near the
source, either facing it or turned away from it, depending on which way its
sensors are wired to the motors.

Braitenberg vehicles can have more than one type of sensor—for example,
a vehicle might have light sensors and proximity detectors for objects.
These sensors can be connected to motors in different ways, producing
more and more complex behaviors.

The fourth type of Braitenberg vehicle has a nonlinear relationship
between input to the sensors and the speed of the motors. For example,
one of these vehicles might move slowly toward a light source and
speed up as it gets closer, then slow down again as it gets very close to
the source.

The fifth type of vehicle has a primitive memory that can be used to store
information about events that happened in the past.

The sixth type of Braitenberg vehicle is evolved using artificial evolution, as
described in Chapters 13 and 14.

Braitenberg vehicles teach us the following principle, which Braitenberg
called the principle of “Uphill Analysis and Downhill Invention”: It is easier
to invent something than to analyze it. Fully functioning Braitenberg vehicles
can be built using easily available components, and yet their behavior can be
extremely complex and, in some cases, impossible to analyze or explain.

19.15 Chapter Summary

■ An agent is an entity that carries out a task on behalf of a human user.

■ A software agent is an agent that exists solely as a computer program.

■ Intelligent agents have more knowledge or understanding of their
environment than simple agents and are able to use this intelli-
gence to carry out their tasks more effectively.

■ Autonomous agents are able to carry out their tasks without direct
input from a human.

■ Some agents are able to learn from their user, from other agents,
from the environment, or by observing the consequences of their
own actions.

566 CHAPTER 19 Intelligent Agents

■ Reactive agents simply react to the environment they are in, using
situated action rules, which provide an action for each situation.

■ Goal-based agents seek to achieve some goal, whereas utility-based
agents seek to maximize some utility function.

■ Interface agents are automated personal assistants.

■ Mobile agents are able to travel over a network, such as the Internet.

■ An information agent collects information (often from the Inter-
net) on behalf of its owner.

■ Multiagent systems use a number of agents that usually collaborate
together to achieve some common goal.

■ The subsumption architecture is an example of a vertically layered
architecture for controlling robots.

■ BDI architectures use beliefs, desires, and intentions to control agents.

■ An accessible environment is one in which all necessary facts are
available to the agent. Many agents must be able to operate in inac-
cessible environments and often in stochastic ones, where the
changes in the environment are unpredictable.

■ Robotic agents operate in the real world.

19.16 Review Questions

19.1 “A computer virus is a kind of intelligent agent.” Discuss this state-
ment. Consider the various agent properties that have been dis-
cussed in this chapter. Which of these properties do computer
viruses have?

19.2 Explain what is meant by the following terms in the context of agents:

■ intelligence

■ autonomy

■ learning

■ collaboration

■ utility

19.3 Explain the idea behind the BDI architecture. Why do you think
this architecture is particularly appealing to human researchers?

19.18 Further Reading 567

19.4 Explain the nature of the first six types of Braitenberg vehicles.
Discuss how these vehicles can help us to understand the nature of
intelligence.

19.5 Think of a real-world interface agent. Discuss to what extent this
agent has autonomy, learning abilities, and intelligence.

19.6 What do Braitenberg vehicles teach us about intelligence? Do you
think the intelligence given to Braitenberg vehicles could be put to
some practical use?

19.7 In Michael Crichton’s novel, Prey, he postulates a multiagent system
consisting of millions of tiny robotic agents. The system evolves over
a period of days to develop human-like intelligence, and a belligerent
desire to destroy life. Discuss how plausible you think this idea is, in
the context of the subjects introduced in this chapter.

19.17 Exercises

19.1 Implement an intelligent agent system to carry out a simple task
for you in the programming language of your choice.

19.2 Investigate a software agent that comes with your computer, or
find one that you can download for free. Explore its limitations
and its capabilities. To what extent would you describe it as “intel-
ligent”? What simple improvements would you suggest for the
agent? Which of the following properties does the agent exhibit:

■ intelligence

■ autonomy

■ ability to learn

■ cooperation

■ benevolence

■ veracity

To what extent would it still be useful if it did not have the proper-
ties that it does have? Which of the above properties might be given
to the agent to improve it? How would it be improved?

19.18 Further Reading

Several texts cover the subject of Artificial Intelligence from the perspective
of Artificial Agents—in particular, Russell and Norvig (1995) and Pfeifer

568 CHAPTER 19 Intelligent Agents

and Scheier (1999). Weiss (1999) provides an excellent exploration of mul-
tiagent systems.

Brooks’ subsumption architecture was introduced in A Robust Layered
Control System For a Mobile Robot (from IEEE Journal of Robotics and
Automation, RA-2, April, pp. 14–23), and was also published as MIT AI
Memo 864 (1985).

Braitenberg (1986) provides a fascinating description of his vehicles, as well
as providing an absorbing philosophical argument. A good practical expla-
nation of Braitenberg’s vehicles is also found in Pfeifer and Scheier (2000)

Behavior-Based Robotics, by Ronald C. Arkin (1998 – MIT Press)

Software Agents, edited by Jeffrey M. Bradshaw (1997 – AAAI Press)

Vehicles: Experiments in Synthetic Psychology, by Valentino Braitenberg
(1986 – MIT Press)

Intelligent Agents for Mobile and Virtual Media, edited by Rae Earnshaw,
John Vince, and Margaret A. Arden (2002 – Springer Verlag)

Commitment and Effectiveness of Situated Agents, by D. Kinny and M.
Georgeff (1991 – in Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, pp. 82–88)

Braitenberg Creatures, by David W. Hogg, Fred Martin, and Mitchel Resnick
(1991 – originally published as Epistemology and Learning Memo #13)

A Learning Interface Agent for Scheduling Meetings, by R. Kozierok and P.
Maes (1993 – in Proceedings of the ACM-SIGCHI International Workshop on
Intelligent User Interfaces)

Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Orga-
nizing Machines, by Stefano Nolfi and Dario Floreano (2000 – MIT Press)

Evolving Hexapod Gaits Using a Cyclic Genetic Algorithm, by Gary Parker
(1997 – in Proceedings of the IASTED International Conference on Artificial
Intelligence and Soft Computing, pp. 141–144)

Generating Arachnid Robot Gaits with Cyclic Genetic Algorithms, by Gary
Parker (1998 - in Genetic Programming III, pp. 576–583)

Metachronal Wave Gait Generation for Hexapod Robots, by Gary Parker
(1998 – in Proceedings of the Seventh International Symposium on Robotics
with Applications)

19.18 Further Reading 569

Understanding Intelligence, by Rolf Pfeifer and Christian Scheier (2000 –
MIT Press)

Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer, by Peter Stone (2000 – MIT Press)

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
edited by Gerhard Weiss (1999 – MIT Press)

Introduction to MultiAgent Systems, by Michael Wooldridge (2002 – John
Wiley & Sons)

Strategic Negotiation in Multiagent Environments, by Sarit Kraus (2001 –
MIT Press)

Intelligent Information Agents: The Agentlink Perspective (Lecture Notes in
Computer Science, 2586), edited by Matthias Klusch, Sonia Bergamaschi,
and Pete Edwards (2003 – Springer Verlag)

An Introduction to AI Robotics, by Robin R. Murphy (2000 – MIT Press)

Real-Time and Multi-Agent Systems, by Ammar Attoui (2000 – SpringerVerlag)

Understanding Agent Systems, edited by Mark D’Inverno and Michael Luck
(2001 – Springer Verlag)

Agent Technology: Foundations, Applications, and Markets, edited by
Nicholas R. Jennings and Michael J. Wooldridge (1998 – Springer Verlag)

Socially Intelligent Agents - Creating Relationships with Computers and
Robots, edited by Kerstin Dautenhahn, Alan H. Bond, Lola Canamero, and
Bruce Edmonds (2002 – Kluwer Academic Publishers)

This page intentionally left blank

20CHAPTER
Understanding Language

Philosophy is a battle against the bewitchment of our intelligence by means
of language.

—Ludwig Wittgenstein, Philosophische Untersuchungen

Language is a form of human reason, and has its reasons which are
unknown to man.

—Claude Lévi-Strauss, La Pensée Sauvage

I linger yet with nature, for the night
Hath been to me a more familiar face
Than that of man; and in her starry shade
Of dim and solitary loveliness
I learned the language of another world.

—Lord Byron, Manfred

20.1 Introduction

This chapter explores several techniques that are used to enable humans to
interact with computers via natural human languages.

Natural languages are the languages used by humans for communication
(among other functions). They are distinctly different from formal lan-
guages, such as C++, Java, and PROLOG. One of the main differences,
which we will examine in some detail in this chapter, is that natural lan-
guages are ambiguous, meaning that a given sentence can have more than

572 CHAPTER 20 Understanding Language

one possible meaning, and in some cases the correct meaning can be very
hard to determine. Formal languages are almost always designed to ensure
that ambiguity cannot occur. Hence, a given program written in C++ can
have only one interpretation. This is clearly desirable because otherwise the
computer would have to make an arbitrary decision as to which interpreta-
tion to work with.

It is becoming increasingly important for computers to be able to under-
stand natural languages. Telephone systems are now widespread that are
able to understand a narrow range of commands and questions to assist
callers to large call centers, without needing to use human resources.

Additionally, the quantity of unstructured textual data that exists in the
world (and in particular, on the Internet) has reached unmanageable pro-
portions. For humans to search through these data using traditional tech-
niques such as Boolean queries or the database query language SQL is
impractical. The idea that people should be able to pose questions in their
own language, or something similar to it, is an increasingly popular one.

Of course, English is not the only natural language. A great deal of research
in natural language processing and information retrieval is carried out in
English, but many human languages differ enormously from English. Lan-
guages such as Chinese, Finnish, and Navajo have almost nothing in com-
mon with English (although of course Finnish uses the same alphabet).
Hence, a system that can work with one human language cannot necessar-
ily deal with any other human language.

In this section we will explore two main topics. First, we will examine natu-
ral language processing, which is a collection of techniques used to enable
computers to “understand” human language. In general, they are con-
cerned with extracting grammatical information as well as meaning from
human utterances but they are also concerned with understanding those
utterances, and performing useful tasks as a result.

Two of the earliest goals of natural language processing were automated trans-
lation (which is explored in this chapter) and database access. The idea here
was that if a user wanted to find some information from a database, it would
make much more sense if he or she could query the database in her language,
rather than needing to learn a new formal language such as SQL.

Information retrieval is a collection of techniques used to try to match a
query (or a command) to a set of documents from an existing corpus of

20.2 Natural Language Processing 573

documents. Systems such as the search engines that we use to find data on
the Internet use information retrieval (albeit of a fairly simple nature).

20.2 Natural Language Processing

In dealing with natural language, a computer system needs to be able to
process and manipulate language at a number of levels.

1. Phonology. This is needed only if the computer is required to
understand spoken language. Phonology is the study of the sounds
that make up words and is used to identify words from sounds. We
will explore this in a little more detail later, when we look at the
ways in which computers can understand speech.

2. Morphology. This is the first stage of analysis that is applied to
words, once they have been identified from speech, or input into
the system. Morphology looks at the ways in which words break
down into components and how that affects their grammatical sta-
tus. For example, the letter “s” on the end of a word can often either
indicate that it is a plural noun or a third-person present-tense
verb.

3. Syntax. This stage involves applying the rules of the grammar from
the language being used. Syntax determines the role of each word in
a sentence and, thus, enables a computer system to convert sen-
tences into a structure that can be more easily manipulated.

4. Semantics. This involves the examination of the meaning of words and
sentences. As we will see, it is possible for a sentence to be syntactically
correct but to be semantically meaningless. Conversely, it is desirable
that a computer system be able to understand sentences with incorrect
syntax but that still convey useful information semantically.

5. Pragmatics. This is the application of human-like understanding to
sentences and discourse to determine meanings that are not imme-
diately clear from the semantics. For example, if someone says,
“Can you tell me the time?”, most people know that “yes” is not a
suitable answer. Pragmatics enables a computer system to give a
sensible answer to questions like this.

In addition to these levels of analysis, natural language processing systems
must apply some kind of world knowledge. In most real-world systems, this

574 CHAPTER 20 Understanding Language

world knowledge is limited to a specific domain (e.g., a system might have
detailed knowledge about the Blocks World and be able to answer questions
about this world). The ultimate goal of natural language processing would
be to have a system with enough world knowledge to be able to engage a
human in discussion on any subject. This goal is still a long way off.

We will now look at the individual stages of analysis that are involved in
natural language processing.

20.2.1 Morphological Analysis

In studying the English language, morphology is relatively simple. We have
endings such as -ing, -s, and -ed, which are applied to verbs; endings such as
-s and -es, which are applied to nouns; we also have the ending -ly, which
usually indicates that a word is an adverb. We also have prefixes such as
anti-, non-, un-, and in-, which tend to indicate negation, or opposition. We
also have a number of other prefixes and suffixes that provide a variety of
semantic and syntactic information.

In practice, however, morphologic analysis for the English language is not
terribly complex, particularly when compared with agglutinative languages
such as German, which tend to combine words together into single words
to indicate combinations of meaning.

Morphologic analysis is mainly useful in natural language processing for
identifying parts of speech (nouns, verbs, etc.) and for identifying which
words belong together. In English, word order tends to provide more of this
information than morphology, however. In languages such as Latin, word
order was almost entirely superficial, and the morphology was extremely
important. Languages such as French, Italian, and Spanish lie somewhere
between these two extremes.

As we will see in the following sections, being able to identify the part of
speech for each word is essential to understanding a sentence. This can
partly be achieved by simply looking up each word in a dictionary, which
might contain for example the following entries:

(swims, verb, present, singular, third person)

(swimmer, noun, singular)

(swim, verb, present, singular, first and second persons)

20.2 Natural Language Processing 575

(swim, verb, present plural, first, second, and third persons)

(swimming, participle)

(swimmingly, adverb)

(swam, verb, past)

Clearly, a complete dictionary of this kind would be unfeasibly large. A more
practical approach is to include information about standard endings, such as:

(-ly, adverb)

(-ed, verb, past)

(-s, noun, plural)

This works fine for regular verbs, such as walk, but for all natural languages
(except Esperanto, the human-invented language) there are large numbers
of irregular verbs, which do not follow these rules. Verbs such as to be and
to do are particularly difficult in English as they do not seem to follow any
morphologic rules.

The most sensible approach to morphologic analysis is thus to include a set
of rules that work for most regular words and then a list of irregular words.
For a system that was designed to converse on any subject, this second list
would be extremely long. Most natural language systems currently are
designed to discuss fairly limited domains and so do not need to include
over-large look-up tables.

In most natural languages, as well as the problem posed by the fact that
word order tends to have more importance than morphology, there is also
the difficulty of ambiguity at a word level. This kind of ambiguity can be
seen in particular in words such as trains, which could be a plural noun or
a singular verb, and set, which can be a noun, verb, or adjective. We will see
later how parsers are designed to overcome these difficulties.

20.2.2 BNF

In Section 20.2.4, we look at the methods that are available for parsing a piece
of text. Parsing involves mapping a linear piece of text onto a hierarchy that
represents the way the various words interact with each other syntactically.

First, we will look at grammars, which are used to represent the rules that
define how a specific language is built up.

576 CHAPTER 20 Understanding Language

Most natural languages are made up of a number of parts of speech, mainly
the following:

■ verb

■ noun

■ adjective

■ adverb

■ conjunction

■ pronoun

■ article

In fact it is useful when parsing to combine words together to form syntac-
tic groups. Hence, the words, a dog, which consist of an article and a noun,
can also be described as a noun phrase. A noun phrase is one or more
words that combine together to represent an object or thing (material or
otherwise) that can be described by a noun. Hence, the following are valid
noun phrases:

■ Christmas

■ the dog

■ that packet of chips

■ the boy who had measles last year and nearly died

■ my favorite color

Note that a noun phrase is not a sentence—it is part of a sentence.

Similarly, we have verb phrases. A verb phrase is one or more words that
represent an action. The following are valid verb phrases:

■ swim

■ eat that packet of chips

■ walking

A simple way to describe a sentence is to say that it consists of a noun
phrase and a verb phrase. Hence, for example:

That dog is eating my packet of chips.

In this sentence, that dog is a noun phrase, and is eating my packet of chips is
a verb phrase. Note that the verb phrase is in fact made up of a verb phrase,

20.2 Natural Language Processing 577

is eating, and a noun phrase, my packet of chips. In the next section, we will
explore this idea in more detail and see how it enables us to build a parse
tree to identify the syntactic structure of a sentence.

A language is defined partly by its grammar. The rules of grammar for a
language such as English can be written out in full, although it would be a
complex process to do so. To allow a natural language processing system to
parse sentences, it needs to have knowledge of the rules that describe how a
valid sentence can be constructed.

These rules are often written in what is known as Backus–Naur form (also
known as Backus normal form—both names are abbreviated as BNF).

BNF is widely used by computer scientists to define formal languages such as
C++ and Java. We can also use it to define the grammar of a natural language.

A grammar specified in BNF consists of the following components:

1. Terminal symbols. Each terminal symbol is a symbol or word that
appears in the language itself. In English, for example, the terminal
symbols are our dictionary words such as the, cat, dog, and so on.
In formal languages, the terminal symbols include variable names
such as x, y, and so on, but for our purposes we will consider the
terminal symbols to be the words in the language.

2. Nonterminal symbols. These are the symbols such as noun, verb
phrase, and conjunction that are used to define words and phrases
of the language. A nonterminal symbol is so-named because it is
used to represent one or more terminal symbols.

3. The start symbol. The start symbol is used to represent a complete
sentence in the language. In our case, the start symbol is simply
sentence, but in first-order predicate logic, for example, the start
symbol would be expression.

4. Rewrite rules. The rewrite rules define the structure of the gram-
mar. Each rewrite rule details what symbols (terminal or nonter-
minal) can be used to make up each nonterminal symbol.

Let us now look at rewrite rules in more detail.

We saw above that a sentence could take the following form:

noun phrase verb phrase

578 CHAPTER 20 Understanding Language

We thus write the following rewrite rule:

Sentence → NounPhrase VerbPhrase

This does not mean that every sentence must be of this form, but simply
that a string of symbols that takes on the form of the right-hand side can be
rewritten in the form of the left-hand side. Hence, if we see the words

The cat sat on the mat

we might identify that the cat is a noun phrase and that sat on the mat is a
verb phrase. We can thus conclude that this string forms a sentence.

We can also use BNF to define a number of possible noun phrases. Note
how we use the “|” symbol to separate the possible right-hand sides in BNF:

NounPhrase → Noun

| Article Noun

| Adjective Noun

| Article Adjective Noun

Similarly, we can define a verb phrase:

VerbPhrase → Verb

| Verb NounPhrase

| Adverb Verb NounPhrase

The structure of human languages varies considerably. Hence, a set of rules
like this will be valid for one language, but not necessarily for any other lan-
guage. For example, in English it is usual to place the adjective before the
noun (black cat, stale bread), whereas in French, it is often the case that the
adjective comes after the noun (moulin rouge).

Thus far, the rewrite rules we have written consist solely of nonterminal
symbols. Rewrite rules are also used to describe the parts of speech of indi-
vidual words (or terminal symbols):

Noun → cat

| dog

| Mount Rushmore

| chickens

20.2 Natural Language Processing 579

Verb → swims

| eats

| climbs

Article → the

| a

Adjective → black

| brown

| green

| stale

These rules form a lexicon of the language, which details which words are
available and which parts of speech they are.

20.2.3 Grammars

We have briefly looked at the ways in which grammars can be described.
Let us now examine the types of grammars that exist.

Noam Chomsky invented a hierarchy of grammars. The hierarchy consists
of four main types of grammars.

The simplest grammars are used to define regular languages. A regular
language is one that can be described or understood by a finite state
automaton. Such languages are very simplistic and allow sentences such as
“aaaaabbbbbb.” Recall that a finite state automaton consists of a finite
number of states, and rules that define how the automaton can transition
from one state to another.

A finite state automaton could be designed that defined the language that
consisted of a string of one or more occurrences of the letter a. Hence, the
following strings would be valid strings in this language:

aaa

a

aaaaaaaaaaaaaaaaa

Regular languages are of interest to computer scientists, but are not of great
interest to the field of natural language processing because they are not
powerful enough to represent even simple formal languages, let alone the

580 CHAPTER 20 Understanding Language

more complex natural languages. Sentences defined by a regular grammar
are often known as regular expressions.

The grammar that we defined above using rewrite rules is a context-free
grammar. It is context free because it defines the grammar simply in terms
of which word types can go together—it does not specify the way that
words should agree with each. For example, the grammar defined in Sec-
tion 20.2.2 allows the following sentence, which is grammatically correct
(although not necessarily semantically):

A stale dog climbs Mount Rushmore.

It also, however, allows the following sentence, which is not grammati-
cally correct:

Chickens eats.

A context-free grammar can have only at most one terminal symbol on the
right-hand side of its rewrite rules. Rewrite rules for a context-sensitive
grammar, in contrast, can have more than one terminal symbol on the
right-hand side. This enables the grammar to specify number, case, tense,
and gender agreement. Each context-sensitive rewrite rule must have at least
as many symbols on the right-hand side as it does on the left-hand side.

Rewrite rules for context-sensitive grammars have the following form:

A X B → A Y B

which means that in the context of A and B, X can be rewritten as Y. Each
of A, B, X, and Y can be either a terminal or a nonterminal symbol.

Context-sensitive grammars are most usually used for natural language
processing because they are powerful enough to define the kinds of gram-
mars that natural languages use. Unfortunately, they tend to involve a
much larger number of rules and are a much less natural way to describe
language, making them harder for human developers to design than con-
text-free grammars.

The final class of grammars in Chomsky’s hierarchy consists of recursively
enumerable grammars (also known as unrestricted grammars). A recur-
sively enumerable grammar can define any language and has no restric-
tions on the structure of its rewrite rules. Such grammars are of interest to
computer scientists but are not of great use in the study of natural language
processing.

20.2 Natural Language Processing 581

Sentence

adjective nounarticle verb article noun

Noun phrase

Verb phraseNoun phrase

The black cat the roadcrossed

Figure 20.1
Parse tree for the sentence
“the black cat crossed the
road”

20.2.4 Parsing: Syntactic Analysis

As we have seen, morphologic analysis can be used to determine to which
part of speech each word in a sentence belongs. We will now examine how
this information is used to determine the syntactic structure of a sentence.
This process, in which we convert a sentence into a tree that represents the
sentence’s syntactic structure, is known as parsing.

Parsing a sentence tells us whether it is a valid sentence, as defined by our
grammar (for this section, we will assume that we are working with the
English language and that the grammar we are using is English grammar).
If a sentence is not a valid sentence, then it cannot be parsed.

Parsing a sentence involves producing a tree, such as that shown in Figure
20.1, which shows the parse tree for the following sentence:

The black cat crossed the road.

This tree shows how the sentence is made up of a noun phrase and a verb
phrase. The noun phrase consists of an article, an adjective, and a noun.
The verb phrase consists of a verb and a further noun phrase, which in turn
consists of an article and a noun.

Parse trees can be built in a bottom-up fashion or in a top-down fashion.
Building a parse tree from the top down involves starting from a sentence
and determining which of the possible rewrites for Sentence can be applied
to the sentence that is being parsed. Hence, in this case, Sentence would be
rewritten using the following rule:

Sentence → NounPhrase VerbPhrase

582 CHAPTER 20 Understanding Language

Then the verb phrase and noun phrase would be broken down recursively
in the same way, until only terminal symbols were left.

When a parse tree is built from the top down, it is known as a derivation tree.

To build a parse tree from the bottom up, the terminal symbols of the sen-
tence are first replaced by their corresponding nonterminals (e.g., cat is
replaced by noun), and then these nonterminals are combined to match the
right-hand sides of rewrite rules. For example, the and road would be com-
bined using the following rewrite rule:

NounPhrase → Article Noun

In the next section we examine a practical example of a parser and see
how it works.

20.2.5 Transition Networks

A transition network is a finite state automaton that is used to represent a
part of a grammar. A transition network parser uses a number of these
transition networks to represent its entire grammar. Each network repre-
sents one nonterminal symbol in the grammar. Hence, in the grammar for
the English language, we would have one transition network for Sentence,
one for Noun Phrase, one for Verb Phrase, one for Verb, and so on.

Figure 20.2 shows the transition network equivalents for three produc-
tion rules.

In each transition network, S1 is the start state, and the accepting state, or
final state, is denoted by a heavy border. When a phrase is applied to a tran-
sition network, the first word is compared against one of the arcs leading
from the first state. If this word matches one of those arcs, the network
moves into the state to which that arc points. Hence, the first network
shown in Figure 20.2, when presented with a Noun Phrase, will move from
state S1 to state S2.

If a phrase is presented to a transition network and no match is found from
the current state, then that network cannot be used and another network
must be tried. Hence, when starting with the phrase the cat sat on the mat,
none of the networks shown in Figure 20.2 will be used because they all
have only nonterminal symbols, whereas all the symbols in the cat sat on the
mat are terminal. Hence, we need further networks, such as the ones shown
in Figure 20.3, which deal with terminal symbols.

20.2 Natural Language Processing 583

Verb

Verb

Noun

Noun

Noun

Noun

NounPhrase

Sentence → NounPhrase VerbPhrase

VerbPhrase → Verb

 | Verb Noun

NounPhrase → Noun

| Article Noun

| Article Adjective Noun

VerbPhrase

S2

S2

S3

S1

S2S1 S3

S3

S4

S1

VerbPhrase

NounPhrase

Sentence

Transition NetworkProduction Rule

Article

Adjective
Figure 20.2
Transition network equiva-
lents for three rewrite
rules

cat

mat

the

a

sat

Noun → cat

 | mat

Article → the

Verb → sat

 | a
S1

S2S1

S2

S2

S1

Noun

Article

Verb

Transition NetworkProduction Rule

Figure 20.3
Transition network equiva-
lents for three rewrite
rules that represent termi-
nal symbols

584 CHAPTER 20 Understanding Language

Transition networks can be used to determine whether a sentence is gram-
matically correct, at least according to the rules of the grammar the net-
works represent.

Parsing using transition networks involves exploring a search space of pos-
sible parses in a depth-first fashion.

Let us examine the parse of the following simple sentence:

A cat sat.

We begin in state S1 in the Sentence transition network. To proceed, we
must follow the arc that is labeled NounPhrase. We thus move out of the
Sentence network and into the NounPhrase network.

The first arc of the NounPhrase network is labeled Noun. We thus move
into the Noun network. We now follow each of the arcs in the Noun net-
work and discover that our first word, A, does not match any of them.
Hence, we backtrack to the next arc in the NounPhrase network. This arc is
labeled Article, so we move on to the Article transition network. Here, on
examining the second label, we find that the first word is matched by the
terminal symbol on this arc. We therefore consume the word, A, and move
on to state S2 in the Article network. Because this is a success node, we are
able to return to the NounPhrase network and move on to state S2 in this
network. We now have an arc labeled Noun.

As before, we move into the Noun network and find that our next word, cat,
matches. We thus move to state S4 in the NounPhrase network. This is a
success node, and so we move back to the Sentence network and repeat the
process for the VerbPhrase arc.

It is possible for a system to use transition networks to generate a deriva-
tion tree for a sentence, so that as well as determining whether the sentence
is grammatically valid, it parses it fully to obtain further information by
semantic analysis from the sentence. This can be done by simply having the
system build up the tree by noting which arcs it successfully followed.

When, for example, it successfully follows the NounPhrase arc in the Sen-
tence network, the system generates a root node labeled Sentence and an arc
leading from that node to a new node labeled NounPhrase. When the sys-
tem follows the NounPhrase network and identifies an article and a noun,
these are similarly added to the tree. In this way, the full parse tree for the
sentence can be generated using transition networks.

20.2 Natural Language Processing 585

Parsing using transition networks is simple to understand, but is not neces-
sarily as efficient or as effective as we might hope for. In particular, it does
not pay any attention to potential ambiguities or the need for words to
agree with each other in case, gender, or number. In the next section, we
examine augmented transition networks, which are a more sophisticated
parsing tool.

20.2.6 Augmented Transition Networks

An augmented transition network, or ATN, is an extended version of a
transition network. ATNs have the ability to apply tests to arcs, for example,
to ensure agreement with number. Thus, an ATN for Sentence would be as
shown in Figure 20.2, but the arc from node S2 to S3 would be conditional
on the number of the verb being the same as the number for the noun.
Hence, if the noun phrase were three dogs and the verb phrase were is blue,
the ATN would not be able to follow the arc from node S2 to S3 because the
number of the noun phrase (plural) does not match the number of the
verb phrase (singular). In languages such as French, checks for gender
would also be necessary.

The conditions on the arcs are calculated by procedures that are attached to
the arcs. The procedure attached to an arc is called when the network
reaches that arc. These procedures, as well as carrying out checks on agree-
ment, are able to form a parse tree from the sentence that is being analyzed.

20.2.7 Chart Parsing

Parsing using transition networks is effective, but not the most efficient
way to parse natural language. One problem can be seen in examining the
following two sentences:

1. Have all the fish been fed?

2. Have all the fish.

Clearly these are very different sentences—the first is a question, and the sec-
ond is an instruction. In spite of this, the first three words of each sentence are
the same. When a parser is examining one of these sentences, it is quite likely
to have to backtrack to the beginning if it makes the wrong choice in the first
case for the structure of the sentence. In longer sentences, this can be a much
greater problem, particularly as it involves examining the same words more
than once, without using the fact that the words have already been analyzed.

586 CHAPTER 20 Understanding Language

0 1 2 3 4The cat eats big 5 6fisha

Figure 20.4
The initial chart for the
sentence The cat eats a big
fish

Another method that is sometimes used for parsing natural language is
chart parsing. In the worst case, chart parsing will parse a sentence of n
words in O(n3) time. In many cases it will perform better than this and will
parse most sentences in O(n2) or even O(n) time.

In examining sentence 1 above, the chart parser would note that the words two
children form a noun phrase. It would note this on its first pass through the
sentence and would store this information in a chart, meaning it would not
need to examine those words again on a subsequent pass, after backtracking.

The initial chart for the sentence The cat eats a big fish is shown in Figure 20.4.

Figure 20.4 shows the chart that the chart parse algorithm would start with
for parsing the sentence. The chart consists of seven vertices, which will
become connected to each other by edges. The edges will show how the
constituents of the sentence combine together.

The chart parser starts by adding the following edge to the chart:

[0, 0, Target → • Sentence]

This notation means that the edge connects vertex 0 to itself (the first two
numbers in the square brackets show which vertices the edge connects).
Target is the target that we want to find, which is really just a placeholder to
enable us to have an edge that requires us to find a whole sentence. The
arrow indicates that in order to make what is on its left-hand side (Target)
we need to find what is on its right-hand side (Sentence). The dot (•) shows
what has been found already, on its left-hand side, and what is yet to be
found, on its right-hand side. This is perhaps best explained by examining
an example.

Consider the following edge, which is shown in the chart in Figure 20.5:

[0, 2, Sentence → NounPhrase • VerbPhrase]

This means that an edge exists connecting nodes 0 and 2. The dot shows us
that we have already found a NounPhrase (the cat) and that we are looking

20.2 Natural Language Processing 587

0 1 2 3 4The cat eats big 5 6fisha

[0, 2, Sentence → NounPhrase • VerbPhrase]

Figure 20.5
Partial chart for the sen-
tence The cat eats a big
fish, showing the edge [0,
2, Sentence → NounPhrase
• VerbPhrase]

for a VerbPhrase. Once we have found the VerbPhrase, we will have what is
on the left-hand side of the arrow—that is, a Sentence.

The chart parser can add edges to the chart using the following three rules:

1. If we have an edge [x, y, A → B • C], which needs to find a C, then
an edge can be added that supplies that C (i.e., the edge [x, y, C →
• E]), where E is some sequence of terminals or nonterminals
which can be replaced by a C).

2. If we have two edges, [x, y, A → B • C D] and [y, z, C → E •}, then
these two edges can be combined together to form a new edge: [x,
z, A → B C • D].

3. If we have an edge [x, y, A → B • C], and the word at vertex y is of
type C, then we have found a suitable word for this edge, and so we
extend the edge along to the next vertex by adding the following
edge: [y, y + 1, A → B C •].

Let us now see how this works, by examining the example of the sentence
shown in Figure 20.4: The cat eats a big fish.

We start with the edge [0, 0, Target → • Sentence], which means that to find
our target, we must first find a sentence.

Using rule 1 above, we can add the following edge to the chart:

[0, 0, Sentence → • NounPhrase VerbPhrase]

This means we must now find a NounPhrase and a VerbPhrase.

We now apply rule 1 again, to try to find a suitable NounPhrase, which
involves adding the following edge:

[0, 0, NounPhrase → • Article NounPhrase]

588 CHAPTER 20 Understanding Language

black

cat matSat on

Figure 20.6
A semantic net representa-
tion for the sentence The
black cat sat on the mat

Now we are able to apply rule 3 because the word at the end of this edge
(from vertex 0 to vertex 0) is the, which is an Article. (This would be deter-
mined by looking the word up in a lexicon.) Hence, we can now add the
following edge:

[0, 1, NounPhrase → Article • NounPhrase]

Now we are looking for another NounPhrase, so we use rule 1 again to add
the following edge:

[0, 1, Noun Phrase → • Noun]

We can now use rule 3 again because the next word is indeed a Noun, to add
the following edge to the chart:

[0, 2, NounPhrase → Noun •}

This process now continues, until we have reached an edge in which we
have found everything we need. In this example, the final edge will be

[0, 6, Sentence → NounPhrase VerbPhrase •}

To build a parse tree from the chart, we modify rule 2 so that when it com-
bines two edges together, it stores in the new edge information about the
two edges that were combined to form it (the children edges). Then when
the parse has completed, we can obtain the parse tree directly from the
edges of the tree by starting from the first edge and recursively examining
the children edges of each node.

20.2.8 Semantic Analysis

Having determined the syntactic structure of a sentence, the next task of
natural language processing is to determine the meaning of the sentence.
Semantics is the study of the meaning of words, and semantic analysis is
the analysis we use to extract meaning from utterances.

Semantic analysis involves building up a representation of the objects and
actions that a sentence is describing, including details provided by adjectives,
adverbs, and prepositions. Hence, after analyzing the sentence The black cat
sat on the mat, the system would use a semantic net such as the one shown in
Figure 20.6 to represent the objects and the relationships between them.

20.2 Natural Language Processing 589

A more sophisticated semantic network is likely to be formed, which
includes information about the nature of a cat (a cat is an object, an ani-
mal, a quadruped, etc.) that can be used to deduce facts about the cat (e.g.,
that it likes to drink milk).

In fact, semantic analysis is most useful in disambiguating sentences, as we
see in the next section.

20.2.9 Ambiguity and Pragmatic Analysis

One of the main differences between natural languages and formal lan-
guages like C++ is that a sentence in a natural language can have more than
one meaning. This is ambiguity—the fact that a sentence can be inter-
preted in different ways depending on who is speaking, the context in
which it is spoken, and a number of other factors.

We will briefly examine some of the more common forms of ambiguity
and look at ways in which a natural language processing system can make
sensible decisions about how to disambiguate them.

Lexical ambiguity occurs when a word has more than one possible mean-
ing. For example, a bat can be a flying mammal or a piece of sporting
equipment. The word set is an interesting example of this because it can be
used as a verb, a noun, an adjective, or an adverb. Determining which part
of speech is intended can often be achieved by a parser in cases where only
one analysis is possible, but in other cases semantic disambiguation is
needed to determine which meaning is intended.

Syntactic ambiguity occurs when there is more than one possible parse of a
sentence. The sentence Jane carried the girl with the spade could be inter-
preted in two different ways, as is shown in the two parse trees in Figure 20.7.

In the first of the two parse trees in Figure 20.7, the prepositional phrase
with the spade is applied to the noun phrase the girl, indicating that it was
the girl who had a spade that Jane carried. In the second sentence, the
prepositional phrase has been attached to the verb phrase carried the girl,
indicating that Jane somehow used the spade to carry the girl.

Semantic ambiguity occurs when a sentence has more than one possible
meaning—often as a result of a syntactic ambiguity. In the example shown in
Figure 20.7 for example, the sentence Jane carried the girl with the spade, the
sentence has two different parses, which correspond to two possible mean-
ings for the sentence. The significance of this becomes clearer for practical
systems if we imagine a robot that receives vocal instructions from a human.

590 CHAPTER 20 Understanding Language

Sentence

VerbNoun

NounPhrase NounPhrase

Noun
Phrase

Prepositional
Phrase

VerbPhrase

carried the girlJane with the spade

Sentence

VerbNoun

NounPhrase VerbPhrase

Noun
Phrase

Prepositional
Phrase

VerbPhrase

carried the girlJane with the spade

Figure 20.7
Two possible parse trees for the sentence Jane carried the girl with the spade

Referential ambiguity occurs when we use anaphoric expressions, or pro-
nouns to refer to objects that have already been discussed. An anaphora
occurs when a word or phrase is used to refer to something without naming
it. The problem of ambiguity occurs where it is not immediately clear which
object is being referred to. For example, consider the following sentences:

John gave Bob the sandwich. He smiled.

It is not at all clear from this who smiled—it could have been John or Bob.
In general, English speakers or writers avoid constructions such as this to
avoid humans becoming confused by the ambiguity. In spite of this, ambi-
guity can also occur in a similar way where a human would not have a
problem, such as

John gave the dog the sandwich. It wagged its tail.

In this case, a human listener would know very well that it was the dog that
wagged its tail, and not the sandwich. Without specific world knowledge,
the natural language processing system might not find it so obvious.

A local ambiguity occurs when a part of a sentence is ambiguous; however,
when the whole sentence is examined, the ambiguity is resolved. For exam-
ple, in the sentence There are longer rivers than the Thames, the phrase longer
rivers is ambiguous until we read the rest of the sentence, than the Thames.

Another cause of ambiguity in human language is vagueness. As we saw in
Chapter 18, when we examined fuzzy logic, words such as tall, high, and fast

20.2 Natural Language Processing 591

are vague and do not have precise numeric meanings. A natural language
processing system may have no problem syntactically analyzing the sen-
tence The car is very fast, but it needs a good deal of world knowledge to
understand exactly what this sentence means. Of course, it will have differ-
ent meanings to different people and in different circumstances: a normal
American driver might interpret it as meaning that the car is traveling (or
can travel) faster than 70 miles per hour. A German, used to traveling on
the Autobahn, might consider 70 miles per hour to be very slow and might
interpret the sentence as meaning that the car could travel over 130 mph.

Humans use a number of other constructions, such as metaphor (as in he
ran like the wind) and metonymy (using a part of an object to describe the
whole, as in the suit sat next to me). We tend to take these forms of speech
for granted and do not need to carry out much additional thought to
understand what is meant by them. Clearly, for a computer system this is
not so easy.

The process by which a natural language processing system determines which
meaning is intended by an ambiguous utterance is known as disambigua-
tion. Disambiguation can be done in a number of ways. One of the most
effective ways to overcome many forms of ambiguity is to use probability.
This can be done using prior probabilities or conditional probabilities. Prior
probability might be used to tell the system that the word bat nearly always
means a piece of sporting equipment. Conditional probability would tell it
that when the word bat is used by a sports fan, this is likely to be the case, but
that when it is spoken by a naturalist it is more likely to be a winged mammal.

Context is also an extremely important tool in disambiguation. Consider
the following sentences:

I went into the cave. It was full of bats.

I looked in the locker. It was full of bats.

In each case, the second sentence is the same, but the context provided by
the first sentence helps us to choose the correct meaning of the word “bat”
in each case.

Disambiguation thus requires a good world model, which contains knowl-
edge about the world that can be used to determine the most likely meaning
of a given word or sentence. The world model would help the system to
understand that the sentence Jane carried the girl with the spade is unlikely to

592 CHAPTER 20 Understanding Language

mean that Jane used the spade to carry the girl because spades are usually used
to carry smaller things than girls. The challenge, of course, is to encode this
knowledge in a way that can be used effectively and efficiently by the system.

The world model needs to be as broad as the sentences the system is likely
to hear. For example, a natural language processing system devoted to
answering sports questions might not need to know how to disambiguate
the sporting bat from the winged mammal, but a system designed to
answer any type of question would.

20.3 Machine Translation

One of the early goals of natural language processing was to build a system
that could translate text from one human language to another. Behind this
attempt is an implicit assumption that human languages are like codes: in
other words, a word in one language is simply a code for a real-world
object, emotion, action, place, etc., and can therefore be exchanged for the
code in another language for the same thing. Clearly this works to some
extent: translating the world cheval from French into English can be
achieved by simply looking it up in a dictionary.

It is much harder to translate entire sentences, for many of the reasons that
have been given above for the difficulty of natural language processing in
general. In particular, machine translation is not possible simply using syn-
tactic and lexical analysis: a knowledge of the world that is being discussed
is also essential, in order to disambiguate the text that is being translated. It
may be, in some cases, that the text can be translated directly, ignoring the
ambiguity, and creating a similarly ambiguous sentence in the target lan-
guage. This does not always work, however: the word bat in English has (at
least) two meanings, but there is no single word in French that has both of
those meanings. Hence, for a system to translate that word from English to
French, it must first determine which of the meanings is intended.

Machine translation systems have been developed, but at present the best
results they can achieve are inadequate for most uses. One way in which they
can be used is in combination with a human translator. The machine is able
to provide a rough translation, and the human then tidies up the resultant
text, ensuring that ambiguities have been handled correctly and that the
translated text sounds natural, as well as being grammatically correct.

20.3 Machine Translation 593

20.3.1 Language Identification

A similar, but easier problem to machine translation is that of language
identification. There are many thousands of human languages in the world,
and several hundred that are widely used today. Many of these are related to
each other, and so can be easily confused. For an English speaker who
knows no Italian or Spanish, those two languages can sometimes appear
similar, for example. A system that can identify which language is being
used in a piece of text is thus very useful. It is also particularly useful in
applying textual analysis of all kinds to documents that appear on the Inter-
net. Because pages on the Internet often have no indication of which lan-
guage is being used, an automated system that is analyzing such documents
needs to have the ability first to determine which language is being used.

One way to determine the language of a piece of text would be to have a
complete lexicon of all words in all languages. This would clearly provide
accurate results, but is likely to be impractical to develop for a number of
reasons. The lexicon would be enormous, of course, and it would be very
difficult to ensure that all words were really included.

The acquaintance algorithm is a commonly used method for language
identification that uses n-grams. An n-gram is simply a collection of n let-
ters, but detailed statistics exist that indicate the likelihood of a particular
set of letters occurring in any given language. Hence, for example, the tri-
grams ing, and, the, ent, and ant probably indicate that a document is in
English. When the acquaintance algorithm is presented with sufficient text
(usually a few hundred to a thousand words is sufficient), it is able to iden-
tify the language with a surprisingly high degree of accuracy.

The acquaintance algorithm is trained by being presented with text in each
language that it is expected to identify. The system then calculates a vector
for each language based on the training data. This vector stores informa-
tion about how many times each n-gram occurs in that language. When a
document in an unknown language is presented to the algorithm, it calcu-
lates a similar vector for this document and compares it with the vectors it
has calculated for the training data. The vector that is closest indicates
which language is being used in the document.

One advantage of this approach is that it is easy to tell how certain the algo-
rithm is about a particular document. A score is calculated for a document

594 CHAPTER 20 Understanding Language

for each possible language, and the language with the highest score is
selected. If the highest score is very much higher than the second highest
score, this indicates a high degree of certainty. Conversely, if the top two or
three scores are similar, then the algorithm is less certain, and there are one
or more other possibilities that might need to be examined.

20.4 Information Retrieval

Information retrieval involves matching the text contained in a query or a
document to a set of other documents. Often, the task involves finding the
documents from a corpus of documents that are relevant to a user’s query.
Information retrieval was briefly introduced in Chapter 12, where we saw
how Bayes’ theorem can be used to produce a system that is effective at
matching documents to a query and thus retrieving relevant documents
from a corpus in response to a user request.

The idea behind information retrieval is that if a user enters a query such as
what is the capital of Sri Lanka?, then a good approach to finding the answer
is to find a document that contains all (or some) of the words contained in
the query. In fact, words such as what, is, the, and of would normally be
stripped from the query (using a stop list, which contains words that are to
be stripped from all queries) before processing, and the information
retrieval system would locate the documents that contained the words cap-
ital, Sri, and Lanka.

The corpus of documents is clearly very important. As has already been dis-
cussed, ambiguities in the query text can be avoided if the corpus is a very
specific one. Information retrieval systems tend not to deal well with ambi-
guity because they are usually not given any world knowledge but are sim-
ply designed to perform statistical analysis of words in order to pick out
suitable responses to a query.

As well as providing responses to a query, information retrieval can be used
to find other documents that are similar to a given document. This provides
a “more like this” function that many search engines use, which enables a
user to say “I like this web site—find me other ones that are similar.”

The main concept used in information retrieval is known as TF-IDF,
(Term Frequency – Inverse Document Frequency).

20.4 Information Retrieval 595

Usually, a TF-IDF value is calculated for each of a set of words, and the
resultant values are placed in a vector, which represents a document or
piece of text (such as a query).

The inverse document frequency (IDF) of a word W is calculated as follows:

Where |D| is the number of documents in the corpus; DF (W) is the docu-
ment frequency of W, which is the number of documents in the corpus
that contain the word W.

The term frequency of word W in document D is written TF (W, D) and
represents the number of times the word W occurs in document D.

The TF-IDF vector is the product of the TF and IDF values for a set of
words for a particular document:

TF-IDF (D, Wi) = TF(Wi, D) � IDF (Wi)

Let us now consider why this calculation makes sense. The inverse docu-
ment frequency is designed to give a large value for infrequent words and a
low value for frequent words. It is important that this calculation is done
using the number of occurrences in the appropriate corpus. In some cases,
the corpus can be representative of the English language as a whole, in
which case no assumptions are being made about the nature of the subjects
being searched for.

In many other cases, however, the corpus should be representative of a par-
ticular subject area. Hence, if the corpus were a set of documents about
New York City, then the word elephant would be relatively infrequent and
would thus produce a relatively high IDF value. Conversely, words such as
taxi, building, New York, and streets would be relatively common and so
would receive relatively low IDF values.

Let us consider the following query that is put to an information retrieval
system using a corpus of documents about New York City:

When did an elephant walk through the streets of New York?

First, the stop words would be stripped, leaving the following words:

Elephant walk through streets New York

IDF W
D

DF W
() = ()log

596 CHAPTER 20 Understanding Language

An IDF value would now be calculated for each word in the query. The
word elephant would certainly receive the highest score, and the words
through, streets, New, and York would all obtain very low scores.

Now, an index of the corpus of documents is consulted to obtain all docu-
ments that contain all (or some) of the words contained in the query. One
technique here would be to require the least common word (elephant) to be
in all documents, but to allow documents to have some combination of one
or more of the other query words. Hence, the user would effectively be
making the following Boolean query:

“Elephant” and (“walk” or “through” or “streets” or “New” or “York”)

At this point, the TF part of TF-TDF comes into play. For each document
that is retrieved, a TF-IDF value is calculated for the words in the query,
producing a vector of six values for each document.

The idea behind the TF calculation is that if a document mentions the
word elephant 10 times, then it is much more likely to be relevant to this
query than a document that mentions it just once. On the other hand, a
document that mentions the word elephant just once is still more likely to
be relevant than a document that does not mention the word elephant at
all, even if it has all the other words in the query several times.

The most common behavior for an information retrieval system in response
to a query such as this is to return one or more of the most relevant docu-
ments that were obtained from the corpus. The relevance of a document can
be obtained by obtaining the magnitude of its TF-IDF vector.

It is also possible to show a document to a corpus and ask it to find the most
similar documents in the corpus. In some cases, queries are considered to
be documents and are treated in this way. In this case, a TF-IDF vector is
calculated for the query document and is also calculated for each document
in the corpus. The most relevant documents are deemed to be those whose
TF-IDF vectors are closest to the vector of the query document.

20.4.1 Stemming

If a user enters the query “where are elephants?”, it would clearly be foolish
for the system to reject a document that contains several occurrences of the

20.4 Information Retrieval 597

word elephant simply because it does not contain the word elephants
exactly as used in the query.

Stemming is often applied in information retrieval systems to avoid this
problem. Stemming simply involves removing common stems such as -ing,
-s, and -ed from words. In this way, the word swimming will be stemmed to
swim and will match swims, swimmers, and so on. It will not usually be able
to match swam or swum because these are irregular forms.

The most commonly used stemmer is Porter’s stemmer, which is an
extremely simple algorithm that has in some cases been shown to improve
the performance of information retrieval systems.

Porter’s stemmer is explained in detail in Spärck Jones and Willett (1997).
The following is a brief description of the algorithm. Each step is carried
out in turn on each word. The algorithm also includes conditions relating
to word length so that words such as sing are not stemmed, whereas words
such as hissing are. The algorithm is also careful to differentiate between
single and double letters, ensuring that hopping is stemmed to hop, and
hissing is stemmed to hiss.

1. -s is removed, and -sses is converted to ss (hence, caresses is
stemmed to caress).

2. -ed, -ing are removed. After -ed is removed, an -e is added if the
word now ends in -at, -bl, or -iz, ensuring that grated, disabled, and
realized are correctly stemmed to grate, disable, and realize rather
than grat, disabl, and realiz.

3. -y is converted to -i. This seems like a strange step, but ensures that
fly and flies are considered to be the same word because they are
both stemmed to fli.

4. A number of specific rules are now applied such as:

-ATIONAL → ATE

-IVENESS → IVE

-BILITI → BLE

5. Endings such as -ative, -ful, -ness, -able, and -er are removed, and
endings such as -icative, -iciti, and -ical are converted to -ic.

6. -e is removed.

598 CHAPTER 20 Understanding Language

7. Double letters at the end of some words (based on length) are con-
verted to single letters—for example, controll is converted to con-
trol. This ensures that the following words are all considered to be
the same: controlling, control, controlled, controllable.

The aim of stemming is to ensure that a query word will match other words
with the same meaning that differ only in endings in the corpus. Hence, it
is desirable not necessarily that the stemmed words are real words, but that
when two words are stemmed they become the same if they really are the
same word. Hence, the words flying, fly, and flies all stem to the nonword fli.
The fact that fli is not a word does not matter because the aim is to match
these words together in query and documents, not to show the stemmed
words to the user.

20.4.2 Precision and Recall

The success of an information retrieval system can be measured using two
metrics: precision and recall. If a system has 100% precision, it means that
when it says that a particular document is relevant, then it is guaranteed to
be correct. Lower precision means that it will wrongly classify some docu-
ments as being relevant (false positives).

For a system to have 100% recall, it must be guaranteed to find all relevant
documents within a corpus in response to a particular query. Lower recall
means that the system will fail to identify some documents as being rele-
vant (false negatives).

In general, for most information retrieval techniques, precision and recall
are in opposition to each other, meaning that when the system’s precision
increases it does so at the expense of recall, and vice-versa. This is intuitive:
the only way to get 100% recall in most real-world situations is to be very
relaxed about which documents are classified. In other words, a great deal
of documents must be classified as being relevant to ensure that all relevant
documents are found. Inevitably, this will mean that some irrelevant docu-
ments will be found as well.

Similarly, to obtain 100% precision it is necessary to return very few doc-
uments, meaning that some documents that are in fact relevant will not
be returned.

A perfect information retrieval system would be one that achieved 100%
recall and 100% precision over a given corpus and a given set of queries.

20.5 Chapter Summary 599

Such an information retrieval system is highly unlikely to ever be devel-
oped for most reasonable problems. One of the main causes of this diffi-
culty is the complexity of human language, and the ambiguities it presents,
as discussed above.

Information retrieval systems, unlike natural language processing systems,
do not tend to take into account grammatical structures and thus are poor
at, for example, noticing that “the city that used to be the capital of Sri
Lanka” is no longer the capital of Sri Lanka.

20.5 Chapter Summary

■ Morphologic analysis involves examining the structure of individ-
ual words.

■ BNF (Backus–Naur form or Backus normal form) is used to define
the rules that make up a grammar for a language.

■ Grammars define the syntactic rules and structures of a language.

■ Parsing (or syntactic analysis) uses the grammar of a language to
determine the structure of a sentence or utterance, in order to
derive further information (such as meaning) from the words.

■ Semantic analysis involves examining the meaning of words
and phrases.

■ Ambiguity is a common problem with natural language processing
systems. It can be dealt with to some extent by pragmatic analysis.

■ Machine translation involves presenting a piece of text in one
human language, which a computer program is then expected to
translate into another human language. Although a great deal of
work has been carried out in this field, the success predicted in the
1950s has yet to be achieved.

■ Determining the language of a piece of text can be done by exam-
ining the occurrence of particular trigrams within the text.

■ Information retrieval (IR) involves producing a response to a user
query by selecting relevant documents from a corpus of docu-
ments (such as the Internet).

■ An IR system that achieves 100% precision can guarantee that any
document it returns is relevant to the query.

600 CHAPTER 20 Understanding Language

■ An IR system that achieves 100% recall can guarantee that if a rele-
vant document exists for a query, then it will find it.

■ Achieving 100% recall and 100% precision is the goal of most infor-
mation retrieval systems and one that has not yet been achieved.

20.6 Review Questions

20.1 Explain what is meant by Natural Language Processing. Why is it
such a difficult subject?

20.2 Explain the role of each of the following in Natural Language Pro-
cessing:

morphology

syntax

semantics

pragmatics

grammars

20.3 What is BNF? Why is it used to describe grammars?

20.4 How are transition networks used to represent a grammar?

20.5 Explain the difficulties involved in machine translation.

20.6 What is information retrieval? How does it differ from natural lan-
guage processing?

20.7 What are precision and recall? How are they related? Explain why it
is not usually possible to have 100% precision and 100% recall in
the same system. Can you imagine a scenario in which it would be
possible to achieve 100% precision and 100% recall?

20.7 Exercises

20.1 Examine the BNF definition of the syntax of a programming lan-
guage such as C++, BASIC, or Java. What differences are immedi-
ately obvious compared with the BNF for a human language
grammar? Are there any similarities?

20.2 Implement Porter’s stemming algorithm in the programming lan-
guage of your choice. You will need to find a full description of the
algorithm. You can find this in Porter (1980), Spärck Jones (1997),

20.8 Further Reading 601

or online. Apply the algorithm to a dictionary of words, such as the
one that comes with most UNIX implementations. Then allow a
user to enter a word, and have the system look this word up and say
“yes” if it is present in its stemmed form in the dictionary or “no” if
it is not. For example, if the dictionary contains swim, fish, and
cheese, then it should say “yes” to swimming, fishing, and cheeses but
no to chocolate and swam.

20.3 Find a book or web site that defines a set of rules for English gram-
mar or the grammar of another human language. Express all of the
rules in BNF and as transition networks. What problems do you
encounter? Are there any rules that you cannot represent in either
system or in both systems?

20.4 Find a machine translation service online. Have it translate a piece
of text in a language with which you are not familiar into English.
What errors does the translator introduce? Can you determine any
sophisticated features based on the translation it produces?

20.5 Implement a language identification system in the programming
language of your choice. You should start by selecting a number of
languages (four or five should do). You should have a suitable
quantity of typical material in each language—about 1000 words
in each language would be plenty. First, write an algorithm that
determines the most common 100 trigrams in each language. Now
build these data into a program that uses it to determine the lan-
guage of unseen text. Produce an alternative version of the soft-
ware that calculates a frequency vector using all (26 * 26 * 26)
trigrams. How does this system perform compared with the first
one you produced in terms of accuracy and efficiency?

20.8 Further Reading

Natural language processing is briefly covered by most of the standard
texts; information retrieval is less well covered. Spärck Jones and Willett
(1997) provide an excellent coverage of the topics of information retrieval,
with papers from a number of researchers in the field.

Natural Language Understanding, by James Allen (1995 – Addison Wesley)

Modern Information Retrieval, by Ricardo Baeza-Yates and Berthier
Ribeiro-Neto (1999 – Addison Wesley)

602 CHAPTER 20 Understanding Language

Plan Recognition in Natural Language Dialogue, by Sandra Carberry (1990
– MIT Press)

Cross-Language Information Retrieval, edited by Gregory Grefenstette
(1998 – Kluwer Academic Publishing)

Foundations of Computational Linguistics: Human-Computer Communica-
tion in Natural Language, by Roland R. Hausser (2001 – Springer Verlag)

Information Retrieval, by William R. Hersh (2002 – Springer Verlag)

Spoken Language Processing: A Guide to Theory, Algorithm and System
Development, by Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj
Reddy (2001 – Prentice Hall)

Natural Language Processing and Knowledge Representation: Language for
Knowledge and Knowledge for Language, edited by Lucja M. Iwanska and
Stuart C. Shapiro (2000 – AAAI Press)

Text-Based Intelligent Systems: Current Research and Practice in Information
Extraction and Retrieval, edited by Paul Schafran Jacobs (1992 – Lawrence
Erlbaum Assoc.)

Speech and Language Processing: An Introduction to Natural Language Process-
ing, Computational Linguistics and Speech Recognition, by Dan Jurafsky, James
H. Martin, Keith Vander Linden, and Nigel Ward (2000 – Prentice Hall)

Intelligent Multimedia Information Retrieval, edited by Mark T. Maybury
(1997 – AAAI Press)

Computational Linguistics, by Tony McEnery (1992 – Coronet Books –
out of print)

Text Information Retrieval Systems, by Charles T. Meadow, Bert R. Boyce,
and Donald H. Kraft (2000 – Academic Press)

Natural Language Processing for Online Applications: Text Retrieval, Extrac-
tion, and Categorization, by Peter Jackson and Isabelle Moulinier (2002 –
John Benjamins Publishing Company)

Spotting and Discovering Terms through Natural Language Processing, by
Christian Jacquemin (2001 – MIT Press)

Foundations of Statistical Natural Language Processing, by Christopher D.
Manning and Hinrich Schütze (1999 – MIT Press)

Readings in Machine Translation, edited by Sergei Nirenburg, Harold L.
Somers, and Yorick A. Wilks (2002 – MIT Press)

20.8 Further Reading 603

Natural Language Processing, by Fernando C. N. Pereira and Barbara J.
Grosz (1994 – MIT Press)

An Algorithm for Suffix Stripping, by M. F. Porter (1980 – in Spärck Jones
and Willett 1997)

Fundamentals of Speech Recognition, by Lawrence Rabiner and Biing-
Hwang Juang (1993 – Pearson Education)

Evolutionary Language Understanding, by Geoffrey Sampson (1996 –
Continuum)

Evaluating Natural Language Processing Systems: An Analysis and Review, by
Karen Spärck Jones, Julia R. Galliers (1996 – Springer Verlag)

Readings in Information Retrieval, edited by Karen Spärck Jones and Peter
Willett (1997 – Morgan Kaufmann)

Translation Engines: Techniques for Machine Translation, by Arturo Trujillo
(1999 – Springer Verlag)

This page intentionally left blank

21CHAPTER
Machine Vision

The Lord looseth men out of prison: the Lord giveth sight to the blind.

—Psalm 146, Verse 7

You see, but you do not observe.

—Sir Arthur Conan Doyle, The Adventures of Sherlock Holmes

All the mighty world
Of eye and ear, both what they half create,
And what they perceive.

—Sir William Wordsworth

21.1 Introduction

The vision system in mammals (such as human beings) is one of the most
remarkable systems in the natural world. Without vision, it can be argued
that human beings would not have reached their current levels of technical
achievement, and indeed that none of the creatures alive today would have
been able to evolve successfully without vision.

Providing the ability for computer systems, agents, or robots to perceive the
world visually is clearly highly desirable.

In this chapter, we look at the techniques that are used to enable computers
to “see” the real world, in much the same way that we do.

606 CHAPTER 21 Machine Vision

This chapter explains how the Canny method uses convolution to detect
edges in images. It also explains how an image recognition system can then go
on to segment the image and thus determine what objects are being viewed.
This chapter presents a popular method that is used for face recognition and
also discusses the importance of textures in computer vision systems.

21.2 Human Vision

In this section, we briefly describe the structure and function of the compo-
nents that make up the mammalian visual system and, in particular, the
human visual system. Understanding how humans see is vital to understand-
ing how it can be possible to enable computers to perceive in a similar way.

Figure 21.1 shows a simplified diagram of the human vision system.

The most important parts of the human visual system are the eyes and the
brain—in particular, the part of the brain that is associated with vision is
the visual cortex.

The eye is the device that captures light that has bounced off nearby
objects. This is achieved by a lens that focuses the light onto the retina,
which is a screen at the back of the eye containing millions of photorecep-
tors. Photoreceptors are cells that are sensitive to light. There are two types
of photoreceptors: rods and cones.

Rod cells are highly sensitive and so respond well in situations where there
is little light, but they have a low level of acuity, meaning that the images
they transmit to the brain are less detailed and “fuzzier” than those trans-
mitted by the cones. Additionally, rods do not have the ability to recognize
differences in color.

Cones, on the other hand, are relatively insensitive and so only respond well
when presented with high levels of light, but they have a high level of acu-
ity and are able to recognize differences in colors. The cone cells are mainly
situated in the center of the retina, whereas the cones are mainly situated
around the edges. This explains why most of our vision in normal, well-lit
circumstances takes place in the center of our field of vision (the corre-
sponding area of the retina is called the fovea), whereas at night, our
peripheral vision is more important. You will notice, for example, that on a
dark night, you can often see stars out of the corner of your eye, but if you
turn your eye to look at those stars, they seem to disappear.

21.2 Human Vision 607

RIGHT EYE

OPTIC NERVE

RETINA

OPTIC CHIASM

OPTIC TRACT

LATERAL
GENICULATE
NUCLEUS

OPTIC RADIATIONS

VISUAL CORTEX

LEFT EYE

LEFT OF
VISUAL FIELD

RIGHT OF
VISUAL FIELD

CENTER OF
VISUAL FIELD

Figure 21.1
A diagram of the human
brain, showing the mam-
malian system

Signals from the photoreceptors in the retina are passed via the optic nerve
to the lateral geniculate nucleus (LGN) and also to the superior collicu-
lus. The main pathway is the one to the LGN.

The nerves that travel from the right eye go to the left-hand side of the
brain, and the nerves from the left eye go to the right-hand side of the brain.
The point where the optic nerves cross over each other is the optic chiasm.

From the LGN, the signals are carried to the visual cortex by the optic radi-
ations. This is done in such a way that if both eyes can see a point in the
field of view, then the signals corresponding to this point from the two eyes
will arrive at the same part of the brain. It is as a result of this that we are
able to perceive a three-dimensional depth to the world that we see. If you

608 CHAPTER 21 Machine Vision

Figure 21.2
A picture of a plant and a
magnified view of a rec-
tangular region of this
same photograph. The
magnified region has been
taken from the area high-
lighted in the lower right-
hand side of the
photograph.

shut one eye you will find that it is much harder to accurately perceive
depth. For example, if you hold out a pen in one hand, shut one eye, and
then try to place the cap on the pen with the other hand, you will find it
much harder to do than if you have both eyes open. This is due to the fact
that we have binocular (“two eyes”), stereoscopic vision.

21.3 Image Processing

In this section, we introduce the main techniques that are used in computer
vision systems to process images. The process of image recognition can be
broken down into the following main stages:

■ image capture

■ edge detection

■ segmentation

■ three-dimensional segmentation

■ recognition and analysis

Image capture can be performed by a simple camera (or pair of cameras, to
give stereoscopic vision), which converts light signals from a scene to elec-
trical signals, much as the human visual system does.

Having obtained these light signals, which are simply a set of 1s and 0s
(assuming a black and white system—if color is being used then each pixel,
or picture element, would be represented by a number indicating that
pixel’s color).

For example, look at the images shown in Figure 21.2.

21.3 Image Processing 609

Figure 21.3
A photograph of a hand

In the second image in Figure 21.2, you can see the individual grey-scale
pixels that made up a portion of the original photograph. Each pixel takes
on one of a number of possible grey-scale values, often from 0 to 255. Color
images are broken down in the same way, but with varying colors instead of
grey scales. When a computer receives an image from an image sensor
(such as a camera), this is the form it receives—a set of pixels. We see in this
chapter how these pixels can be interpreted to give the computer an under-
standing of what it is perceiving.

21.3.1 Edge Detection

The first stage of analysis, once an image has been obtained, is to determine
where the edges are in the image. This idea has a sound biological basis, and
there is evidence that edge detection is an important part of the mam-
malian visual system. Because objects in the real world almost all have solid
edges of one kind or another, detecting those images is the first stage in the
process of determining which objects are present in a scene.

Consider the photograph shown in Figure 21.3 and the image shown in
Figure 21.4, which shows the edges detected from this photograph.

Note that in Figure 21.4, the edges of the hand have been clearly picked out
because these are the highest contrast edges in the photograph. Less clear are
the edges of the fencing from the background, although these are also visible.

The reason that edge detection is useful in mammalian vision is that in
most situations a predator (or prey) can be seen to be contrasted sharply
with its background. Hence, noting the edges in the field of vision will
enable an animal to quickly recognize other important animals near it.
This, of course, explains why camouflage is such a popular technique in the
animal kingdom. A photo of a brown moth sitting on the brown bark of a

610 CHAPTER 21 Machine Vision

Figure 21.5
An object illustrating sur-
face orientation disconti-
nuities (edges between
faces of an object) (These
edges are shown in bold.)

Figure 21.4
The edges from the photo-
graph in Figure 21.2

tree will have very few edges, and they will not be easy to detect, compared
with the edges in an image such as the photograph in Figure 21.3.

There are a number of types of edges that can appear in a visual scene. The
edges we can see in Figure 21.4 are mostly depth discontinuities, which are
edges that represent the differences in depths between parts of the image.
In this case, most of the edges represent the difference in depth between the
hand and the fencing behind it.

When viewing a three-dimension object such as a block on a table (as
shown in Figure 21.5) there are surface orientation discontinuities
(marked in bold lines in Figure 21.5), which represent edges between faces
of the same object—in other words, such an edge appears because the
objects on either side of the edge are facing different directions.

There are two other types of edges, which are caused by differences in color
(or texture) on a single surface (surface reflectance discontinuities) and
by shadows cast by objects (illumination discontinuities).

All of these types of edges can be (and are) used in image recognition sys-
tems to determine the position and nature of objects within a visual field.

21.3 Image Processing 611

21.3.2 Convolution and the Canny Edge Detector

The simplest way to find edges in an image is to differentiate the image.
Areas of consistent color will produce low differentials, and edges that are
areas of greatest change will produce greater differentials.

Unfortunately, because real images contain a great deal of noise, differenti-
ation does not work well as an edge detection method because the noise
produces extremely high differentials in areas where there is really no edge.

A more effective method of edge detection is to use convolution.

The convolution of two discrete functions f(a, b) and g(a, b) is defined
as follows:

The convolution of continuous functions f(a, b) and g(a, b) is defined
as follows:

The idea of using convolution is to eliminate the effects of noise by
smoothing the image. One way to smooth an image is to convolve it with
the following Gaussian function:

After convolving the image with the Gaussian function, the resultant can be
differentiated to determine where the edges are. In fact, it is possible to
eliminate a step from this process because it can be shown that convolution
with G�(x) and then differentiating the result is the same as convolution
with the differential of G�(x), which is defined as follows:

Hence, to detect edges in an image, we can convolve the image with G��(x)
and obtain the peaks in the resultant. The peaks will correspond to the

′ () = − −

G x
x

e
x

σ
πσ

σ

2
3

2

2 2

G x e
x

σ πσ
σ() =

−1

2

2

2 2

f a b g a b f a b g a u b v du dv, , , ,() ∗ () = () − −()
−∞

∞

−∞

∞

∫∫

f a b g a b f a b g a u b v
vu

, , , ,() ∗ () = () − −()
=−∞

∞

=−∞

∞
∑∑

612 CHAPTER 21 Machine Vision

edges in the image. In doing so, we are using G��(x) as a filter because we
are filtering out everything except the edges in the image.

Unfortunately, this method only works for one-dimensional strips of an
image. It will detect an edge in a single line of pixels taken from an image,
which is useful, but not enough for detecting edges in real images.

To detect edges that might be at any angle in an image, we need to convolve
the image with two filters:

Filter 1: G��(x) G�(y)

Filter 2: G��(y) G�(x)

The image is convolved with each of these filters, and the results are
squared and added together:

(I(x, y) * G��(x) G�(y))2 + (I(x, y) * G��(y) G�(x))2

where I(x, y) is the value of the pixel at location (x, y) in the image.

Peaks in the resultant then correspond to edges in the image. Pixels that are
considered to be edges are joined with adjacent pixels that are also edges in
order to determine the shape and location of the entire edge. This method,
known as the Canny edge detector, produces edges such as the ones shown
in Figure 21.4.

21.3.3 Segmentation

Once the edges have been detected in an image, this information can be
used to segment the image into homogeneous areas. In this case, when we
say that an area of an image is homogeneous, we mean that its color or
intensity of shading does not vary dramatically—in other words, there are
no edges within the area.

There are other methods available for segmenting an image, apart from
using edge detection. One simple method is thresholding. Thresholding
involves finding the color of each pixel in an image and then considering
adjacent pixels to be in the same area as long as their color is similar
enough. This is very similar to edge detection but is used to segment the
image, rather than just to find the edges in the image. This is different
because edge detection will not necessarily produce continuous edges and
will, therefore, not necessarily divide the image into more than one area. In
the photograph shown in Figure 21.3, there are clearly a number of distinct

21.3 Image Processing 613

Figure 21.6
A line drawing of a simple
blocks world

segments, but the edges detected in Figure 21.4 divide the image into only
one or two segments.

A similar method for segmenting images is splitting and merging. Split-
ting involves taking an area that is not homogeneous and splitting it into
two or more smaller areas, each of which is homogeneous. Merging
involves taking two areas (e.g., two individual pixels) that are the same as
each other, and adjacent to each other, and combining them together into a
larger area. This provides a sophisticated iterative approach to segmenting
an image that is often far more reliable than simple thresholding.

21.3.4 Classifying Edges in Line Drawings

Once a computer vision system has extracted the edges from an image, it
has something that is rather similar to a line drawing. The line drawings in
Figure 21.6 are illustrative of the kind of representations a system might
have in observing a simple blocks world.

Such illustrations are easy for us to interpret. For a computer system to
understand what it is observing, it needs to first classify the edges in the
diagram it has produced.

There are three types of edges:

■ A convex edge is an edge between two faces that are at an angle of
more than 180� from each other.

■ A concave edge is an edge between two faces that are at an angle of
less than 180� from each other.

■ Where only one of the two faces that are joined by an edge is visible
in the image, the edge is an occluding edge. (An occluding edge is
a depth discontinuity.)

In Figure 21.7, the edges have been labeled as convex, concave, or occluding
using the traditional notation of + for a convex edge, � for a concave edge,
and an arrow for an occluding edge. The direction of the arrow on an

614 CHAPTER 21 Machine Vision

+
+ +

+
+

+
+

+

–
–

–

–
–

–

+
+

–

–

Figure 21.7
Simple blocks world line
drawing with edges
labeled as convex (+),
concave (�), and
occluding (arrow)

occluding edge is such that the visible surface is on the right of the direc-
tion of the arrow.

Having determined which type each edge in the image is, the system can
make further assessments about the nature, shape, and relative position of
the objects in the picture. Now we need a method for determining which
type each edge is.

First, if we assume that all objects in our image are polyhedral (i.e., all the
edges are straight and all surfaces are flat), then we can make the following
assumption: A single line will have the same type (convex, concave, or
occluding) for its entire length. If you look carefully at Figure 21.7, you will
see that this is the case. No line starts out as concave and ends up convex, or
any other combination. This is because the type of an edge is determined
by the angle of the faces that the edge joins, and if all lines are straight and
all faces flat, then this angle cannot change. (To see that this is true, try to
imagine a polyhedral object where the angle between two faces varies over
the edge that joins them).

In the 1970s, Huffman (1971) showed that further assumptions could be
made that would help in the analysis of line drawings of polyhedral shapes.
If one considers a vertex at which a number of edges meet, it can be shown
that there are only a few possible combinations of edges that can make up
that vertex.

Most vertices form a point of connection for three flat faces. Such vertices
are called trihedral vertices. There are only 16 possible arrangements of
edges that can make up trihedral vertices in the real world, and these are
shown in Figure 21.8.

As you can see from Figure 21.8, there are a number of labelings of a trihe-
dral vertex that are simply not possible.

21.4 Using Texture 615

+

+ +

+

+

+ +

+ +

–

– –
–

–

– –

–+

– –

Figure 21.8
The 16 possible ways to
label trihedral vertices

As a result, in analyzing a scene such as the one shown in Figure 21.6, a
computer vision system can use Huffman’s 16 trihedral vertices as con-
straints to limit the possible labelings for the diagram.

The Waltz algorithm does so by selecting a possible label for one junction,
from the list shown in Figure 21.8, and then moving onto an adjacent junc-
tion and attempting to apply a labeling to this junction. If none is possible,
the algorithm backtracks and tries a different labeling for a previous junc-
tion. Hence, the method applies depth-first search to the structure until a
labeling is found that ensures that all junctions have valid labelings.

In some cases, there will be more than one possible labeling. In other words,
the image is ambiguous. In such cases, additional information must be used.
Often shading information can be used to provide additional constraints.

21.4 Using Texture

Texture is a vital aspect of the visual world. It helps us to identify a wide
range of facets of what we see—it does not just tell us the materials that
things are made of; it also gives us information about movement and shapes.

616 CHAPTER 21 Machine Vision

Figure 21.9
Four different textures

Texture, in the visual sense, can be defined as the pattern that we perceive
on the surface of an object or in an area. The photos in Figure 21.9 show a
variety of textures.

Clearly, the textures of the images in Figure 21.9 show us that we are look-
ing at grass, pebbles, clouds, and roofing tiles. As we will see, the textures
also tell us a great deal more than this.

21.4.1 Identifying Textures

To make use of texture information from an image, a computer system must
first analyze the image and determine the nature of its texture or textures.

The simplest type of texture is the texture we usually expect to find on
blocks in the simple blocks world—this is a completely plain, vanilla tex-
ture, which could be described as textureless, or smooth. In dealing with
the blocks world, we tend to assume that our blocks are textureless and
therefore pay no attention to texture. In fact, of course, in a real blocks

21.4 Using Texture 617

world, the blocks must be made of something (wood, metal, plastic) and
must therefore have a texture.

In examining a blocks world scene, texture usually is not terribly important
because the shapes are so simple that determining their position, orienta-
tion, and so on can be done using edge detection and simple mathematical
algorithms. In more complex environments, a system must make use of
texture to make these kinds of analyses.

There are a number of statistical methods that can be used to categorize a
particular texture in an image. We will now examine one such method,
based on the use of cooccurrence matrices.

The idea of this method is to determine the relationships between pixels in
the image of particular intensities. We will represent our image as a matrix
of pixel values, which for this example will range from 0 to 4. Let us define
a matrix P, which we will use for this example as the matrix representing
the intensity values of the grey pixels in our image:

Clearly, P defines a rather uninteresting image, but for a real image the matrix
would be significantly larger and would have a greater range of values. P will
suffice for us to illustrate this statistical method for analyzing textures.

Each pixel in P is defined as P(x, y), so that for example:

P(0, 0) = 1

P(1, 1) = 3

P(3, 2) = 3

We will now define a new matrix, D, which is defined as follows:

D(m, n) is the number of pairs of pixels in P for which

P(i, j) = m

P(i + �i, j + �j) = n

where i and j are any pixels in P, and �i and �j are small increments defined
for this particular matrix D.

P =

1 0 3 2

2 3 0 1

1 4 1 3

3 2 2 4

618 CHAPTER 21 Machine Vision

In other words, D defines how likely it is that any two pixels a particular
distance apart (�i and �j) will have a particular pair of values.

We will see how this works for our matrix.

Let us first define (�i, �j) = (1, 1). In other words, we are interested in pairs
of pixels that are diagonally one pixel apart.

We can now define the matrix D.

D(0, 0) is equal to the number of pairs of pixels in P that are (1, 1) apart, and
which are both valued 0. Looking at P, we can see that there is one such pair:

P(1, 0) = 0

P(2, 1) = 0

Hence, D(0, 0) = 1.

D(1, 0) is equal to the number of pairs of pixels in P that are (1, 1) apart
and which are values 1 and 0, respectively. You should be able to see that no
such pairs exist in P. Hence, D(1, 0) = 0.

We can define the whole of matrix D in the same way. D is a 5 � 5 matrix
because there are five possible pixel values in P:

Let us see now the difference when we apply this method to a different matrix:

Clearly this matrix represents an image where the texture is far more
noticeable than in the previous matrix, P. We should expect to see this rep-
resented in the corresponding matrix D1, which is defined as follows:

P1

1 0 4 3

2 1 0 4

3 2 1 0

4 3 2 1

=

D =

1 0 0 1 0

0 0 1 1 1

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

21.4 Using Texture 619

Finally, let us examine the following matrix:

This matrix, P2, is clearly similar to P1, but reflected about the Y-axis. Let us
see how D2 turns out:

The difference between D2 and D1 is as we would expect. The values in D1

are on the main diagonal, whereas in D2 they are on two minor diagonals.
This reflects the relationship between the vector (�i, �j) = (1, 1) and the tex-
tures in the images.

One extension to this method is to assume that we should not distinguish
between D(m, n) and D(n, m). Hence, we produce the cooccurrence
matrix, C, which is defined as follows:

C = D + DT

Where DT is the transposition of matrix D.

C has the property that C(m, n) = C(n, m) because

C(m, n) = D(m, n) + D(n, m)

= D(n, m) + D(m, n)

= C(n, m)

D2

0 0 3 0 0

0 0 0 2 0

0 0 0 0 1

1 0 0 0 0

0 2 0 0 0

=

P2

3 4 0 1

4 0 1 2

0 1 2 3

1 2 3 4

=

D1

2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

=

620 CHAPTER 21 Machine Vision

This matrix, C, gives us a useful statistical analysis of the texture contained
within the image, relative to the vector (�i, �j) that we have chosen. By
using a number of different (�i, �j) vectors, we can determine more infor-
mation about the texture.

21.4.2 Structural Texture Analysis

An alternative to the statistical approach is to analyze textures using a
structural approach, based on units of texture called texels. A texel is a sin-
gle texture element or a piece of image that is repeated throughout the
image to produce the texture. Looking at the final photo in Figure 21.9, of
roofing tiles, we can see that this texture is made up of a single tile, repeated
over the image. This tile is the texel. Note that in fact, due to perspective
and other distortions, the texels will not all be identical (e.g., perspective
will cause them to have different shapes and sizes, and distortions will also
be caused by mapping the texture onto a curved surface).

Texel analysis thus involves searching for repeated components within an
image, taking into account distortions such as elongation, rotation, com-
pression, and so on. As we see in the next sections, once the texture has
been determined in this way, this information can be used to determine a
number of useful properties about the object whose texture we are
looking at.

21.4.3 Determining Shape and Orientation from Texture

Usually, when examining a texture, we are able to use information gained
from the texture to determine the shape of the surface. This assumes, of
course, that the picture involves a surface. This is certainly the case for three
of the images in Figure 21.9 (the pebbles, the grass, and the tiles are all
placed on some surface). For the fourth image, of clouds, the texture tells us
something about the “surface” of the clouds, although this is somewhat
illusory because the clouds are not solid. Still, the techniques used by com-
puter vision systems will draw mostly the same conclusions about the shape
and the “surface” of the clouds that we would when examining that picture.

Notice how the variation of the shape of the bricks in the photo in Figure
21.10 enables us to see, without any external help, that the wall in the pic-
ture is curved. The main reason that we can tell that the wall is curved is the
foreshortening of the bricks on the right-hand side of the picture, suggest-

21.4 Using Texture 621

Figure 21.10
A section of curved wall,
showing how surface
shape can be determined,
to some extent, from the
texture

Figure 21.11
An illustration showing
how the texture on the
surface of a golf ball helps
us to understand the
shape of the ball

ing that they are further away, and seen from a sharper angle, than those on
the left-hand side of the picture.

In a similar way, a photograph of a golf ball can be used to determine the
shape of the golf ball, by examining the way in which the small circular
indentations on the surface of the ball vary in apparent shape. See the illus-
tration in Figure 21.11, for example.

These circles on the surface of the ball, and the bricks in Figure 21.10, are
the texels that make up the texture, which we use to determine the shape of
the object in the picture.

Although the image in Figure 21.11 is flat, it is translated in our minds into
a sphere because that is the simplest explanation for the way the circles dis-
tort as they get farther from the center of the image.

622 CHAPTER 21 Machine Vision

Figure 21.12
A photograph of a section
of wall. The angle between
the perpendicular to this
wall and the camera can
be determined by examin-
ing the distortion of the
texels (in this case, the
individual bricks).

Y-axis

X-axis

Z-axis

P

Image plane

Surface Normal (n)

σ
τ

Figure 21.13
Showing how slant (�) and
tilt (�) are measured.

A simple way to extract shape from a texture of this kind is to assume that
each texel is flat (which with a curved surface is probably not true but is a rea-
sonable approximation). By determining the extent and direction of distor-
tion of a given texel, the slant of the texel can be determined and a
perpendicular line projected from it. Once perpendiculars have been deter-
mined for all the texels in an image, the surface shape has been determined.

In the same way, the orientation of a flat surface, such as the section of wall
shown in Figure 21.12, can be determined.

A similar, though less obviously intuitive, method can be applied to tex-
tures such as those shown in Figure 21.9. In these cases, the orientation of
the surfaces beneath the grass, pebbles, and roofing tiles would be deter-
mined, as would the apparent shape of the clouds.

When determining orientation, we are interested in two factors: slant and
tilt. Slant and tilt are measured between a vector perpendicular to the sur-
face of an object and the z- and x-axes. This is illustrated in Figure 21.13.

21.5 Interpreting Motion 623

Slant, which is usually written as the Greek letter sigma—�, is measured
between the surface normal (the vector n, in Figure 21.13), which is per-
pendicular to the object we are observing at the point we are interested in,
and the z-axis. This is shown in Figure 21.13.

We measure tilt (often written as the Greek letter tau—�) as the angle
between the x-axis and the projection, p, of the normal vector n onto the
plane of the image. In other words, the tilt is an apparent angle, determined
by the position and orientation of the viewer.

In the diagram in Figure 21.13, we are measuring slant and tilt of a specific
point on the surface of a sphere. This point is the point on the surface from
which the normal vector, n, has been measured.

21.5 Interpreting Motion

One of the most important aspects of mammalian vision is the ability to
detect (and thus react to) motion. For hunters, it is important to be able to
spot prey and follow it as it attempts to flee, and for the prey, it is important
to detect the hunter as quickly as possible. In a world full of confusing
visual information, most animals (including humans) use motion to pro-
vide additional information about what is being seen.

Similarly, for an agent that has the ability of vision, it is important to be
able to detect motion.

There are two main types of motion that an observer is interested in—
motion of other objects and the apparent motion of the environment
caused by the observer’s own motion.

We will start with the latter type of motion—the apparent motion caused
by the movement of the camera or other image capture device.

The photograph in Figure 21.14, for example, was taken using a camera on
a moving train. A subsequent photo, taken a second later, would show that
the buildings, trees, and other objects in the photograph had apparently
moved. Of course, this is in fact due to the fact that the train, and therefore
the camera, has moved. This apparent motion in an image is known as
optical flow, and the vectors that define the apparent motion make up
what is known as the motion field. Some of these vectors have been drawn
onto the photograph in Figure 21.14. The photograph was taken from the

624 CHAPTER 21 Machine Vision

Figure 21.14
A photograph taken from a
train, illustrating the idea
of the motion field. Some
of the motion field vectors
have been drawn in as
arrows, moving away from
the camera.

back of the train, so the vectors show that the objects are apparently mov-
ing away from the camera.

The direction of the motion field will clearly depend on the direction in
which the camera is moving. If the photograph in Figure 21.14 had been
taken from a car crossing a level crossing, the arrows would have gone hor-
izontally across the image, for example, instead of heading toward the van-
ishing point, the point toward which perspective causes all parallel lines in
the image to converge.

Hence, by examining a sequence of images taken from a moving camera, if
the direction and speed of the optical flow can be determined, then this can
provide information about the direction and speed of travel of the camera,
relative to the background.

It is possible to estimate the nature of the motion field, and thus the optical
flow, in a sequence of images by comparing the features of the images. First,
we assume that the objects in a sequence of images will not themselves
change, and so any changes that occur to them are caused by the movement
of the camera. This will clearly not apply if there are moving objects (e.g.,

21.6 Making Use of Vision 625

cars, people, animals) in the image, but it will still apply to the majority of the
features within most images, and the anomalies can be dealt with separately.

By computing common points in a sequence of images, we can thus calcu-
late the optical flow vectors and thus determine the speed of motion of the
camera. This technique can also be applied in cases where the camera is still
and is capturing a sequence of images of a moving or rotating object.

21.6 Making Use of Vision

We have thus far described techniques that can enable a computer system
to extract information from a visual scene that has been recorded on a
device such as a camera. We will now look at ways in which this informa-
tion can be used for practical purposes.

Images such as the one shown in Figure 21.14 might be used to control the
motion of a vehicle. In this case, the visual information could be used to
control the speed of travel of the train. If another train or other obstacle
appeared on the tracks in front of the train, the brakes could be applied, for
example. A more complex system could control the motion of a car, which
could be designed to negotiate traffic, stop at traffic lights, and avoid pedes-
trians, other vehicles, and the sidewalk.

One of the most common uses of machine vision in robotic agents is to
identify objects in the agent’s path. In simple cases, these objects will be
limited to blocks of various shapes and sizes, but in real-world systems, the
objects could be almost anything.

The main task is therefore to map the image that has been received to an
internal representation of an object. The method that is usually used
depends on the principle that there are some properties of any object that
are invariant. In other words, whatever angle you view the object from,
whatever lighting conditions it is in, whatever changes occur to its shape,
the invariant properties will remain constant.

In the case of a sphere, this is fairly simple: the sphere will appear in a two-
dimensional image as a circle under almost any conditions. This is of course
complicated by the possibility of other objects obscuring the object we are
looking at and also by the complications of texture. A sphere with a checker-
board pattern on it might look rather different when placed against a
checkerboard background than if it were placed against a plain background.

626 CHAPTER 21 Machine Vision

The method that is usually used to identify objects is known as the parts
decomposition method, which involves breaking an object into its constituent
parts and then attempting to identify those parts in the image. For example, a
cat could be broken down into a head, eyes, mouth, tail, legs, fur, etc.

Another method, which does not work so well with cats, but works well
with more rigid objects, is to assume that an object will look the same once
a set of transformations (e.g., rotation, translation, and increase or decrease
in size) are applied. Hence, if an image is found that looks somewhat like a
cube, but not exactly the same as the image of a cube that the system has
been trained with, the image can be transformed using rotation, transla-
tion, and resizing, until it matches more closely the training image. This
method is known as the alignment method. This method thus involves
finding an object whose internal representation matches that being seen in
the image after applying one or more allowable transformations.

Having identified an object, the agent can use its behavior model (defined
perhaps using the subsumption architecture—see Chapter 19) to deter-
mine what to do—it may need to move toward the object to examine it in
more detail, it may want to avoid the object, or it may want to pick it up. If
the agent cannot detect objects using vision, then it can be very difficult for
it to decide what to do. Hence, agents that need to interact with objects in
the real world in any way more complex than simply moving past them
need to be able to receive some kind of visual input from the world and
then to analyze that visual information.

21.7 Face Recognition

One very popular area of computer vision at present is the study of automatic
face recognition. This problem is an excellent example of the kinds of prob-
lems that Artificial Intelligence techniques are usually applied to: it is a prob-
lem that humans find so simple that we take it for granted, yet it is a problem
that traditional computer science has found almost impossible to solve.

The difficulties with automatic face recognition are numerous. First of all,
the conditions in which a face can be seen, such as lighting, distance from
camera to face, and angle, can dramatically alter the appearance of the face.
This problem is faced with most object recognition systems. Face recogni-
tion is further complicated by the fact that human faces are so flexible and
so capable of being altered. Facial expressions are one complexity, but peo-

21.7 Face Recognition 627

ple also are able to grow beards; cut or grow their hair; wear glasses, sun-
glasses, hats, and earrings; and grow older, all of which can significantly
affect the appearance of a face.

As a result, identifying invariant properties of a given face is an important
first step in automating the process of face recognition. These properties
need to be invariant regardless of distance, angle, orientation, and lighting,
but also regardless of what has happened to the face—whether it is wearing
glasses, whether it has its eyes shut or open, and so on.

One early approach to face recognition was to identify particular facial fea-
tures, such as eyes, nose, mouth, eyebrows, and so on, and to store informa-
tion about the relative positions of those features. These features could be
compared in a new face to determine if it is one that has been seen before.
This method works in some circumstances, but is not particularly robust.
One problem with this method is that it assumes that the best way to tell
the difference between two faces is to note the locations of the features such
as eyes, mouth, and so on. This might not be the case.

This observation led to another face recognition method that uses eigen-
faces. Eigenfaces are based on the idea of principle component analysis.
Principle component analysis is an important idea in computer science.
The idea is that to learn to recognize any type of items of data, the best way
is to determine the features of the data that vary most from one item to
another. This idea was applied, for example, in Chapter 20, when we saw
that the way in which a system could search for responses to a query from a
corpus of text was to treat the words that are most infrequent within the
corpus as being the most important in queries. In the same way, if we look
at a selection of ten faces and note that the position of the tip of the nose
relative to the end of the chin is the feature that varies the most, then this is
a principle component and should be treated as an important feature for
identifying faces. This is the idea behind eigenfaces.

The eigenfaces are the components chosen to represent the faces in the
training set. These features are chosen as being the features that provide the
greatest differentiation between the faces in the training set and thus pro-
vide the greatest likelihood of giving a correct match when presented with
a new face.

The eigenfaces can be viewed graphically and tend to look like morphed
images of several faces, which is indeed what they are. When attempting to

628 CHAPTER 21 Machine Vision

match a single face, a number of these eigenfaces are combined together,
and it is the manner in which these faces are combined together that is used
to identify which face is being viewed.

This method can also be thought of in terms of vectors. The eigenfaces are
the vectors (or eigenvectors) that form the principle components of the
training data, and thus define the face space. When a new face is examined,
it is constructed as a sum of some combination of the eigenvectors, and this
vector is compared with the vectors that were already calculated for the
faces in the training data. The face with the closest vector is the match.

Usually a number of faces are used for each person in the training set, with
a variety of expressions and with different additional elements such as hats,
glasses, and so on. In this way, the eigenfaces method provides a very robust
way of recognizing faces. In experimentation, this method has given an
accuracy of over 90% at matching faces from a small database of training
images (around 50 images).

21.8 Chapter Summary

■ The mammalian vision system is a remarkably sophisticated system,
and most computer vision systems are based to some extent on it.

■ Edge detection is often the first stage in image-processing systems.
Edge detection involves determining the location of high-fre-
quency areas of an image, which usually correspond to edges or
changes in depth in the image.

■ Convolution is used by the Canny edge detector to find edges in
images.

■ Once edges have been detected in an image, the image is usually
segmented into homogeneous areas, which correspond roughly to
particular objects or textures.

■ Edges in a three-dimensional line drawing can be classified using
the Waltz algorithm.

■ Texture can be used to provide a great deal of information about a
scene, such as shape and orientation.

■ Detecting and interpreting motion is an important part of the
mammalian vision system and is also useful in many computer

21.10 Exercises 629

image recognition systems (particularly in robotic agents that need
to navigate in the real world).

■ Face recognition is one of the hardest problems of image recogni-
tion, but one in which a great deal of success has already been
achieved. One popular method is to use eigenfaces, which are
based on the idea of principle component analysis.

21.9 Review Questions

21.1 Why does it make sense to model computer vision systems on the
human vision system? Can you think of any suitable alternative
models?

21.2 Why is edge detection used as an early stage of computer vision?
Can you think of any situations in which edge detection methods
would fail completely?

21.3 Explain how convolution is used to detect edges in images.

21.4 What is the purpose of segmentation?

21.5 Explain the purpose of the Waltz algorithm. Describe in detail how
it works.

21.6 Why is texture so important for computer vision systems? What dif-
ferences would there be if the world had no texture and all objects
were smooth and uniformly colored? Would this make it easier or
harder for machine vision systems? What if there were no shadows
and everything was uniformly illuminated from all sides as well?

21.7 How do computer vision systems make use of motion?

21.8 Explain the way that eigenfaces are used in face recognition systems.

21.10 Exercises

21.1 Apply the Waltz algorithm using pen and paper to the three-
dimensional scene shown in Figure 21.6. Is it possible that you will
end up with a different labeling from that shown in Figure 21.7? If
your answer was yes, how could this happen? If your answer was
no, why not, and can you imagine any situation in which there is
more than one possible labeling for such an image?

630 CHAPTER 21 Machine Vision

21.2 Implement an edge detection system in the programming language
of your choice. You will need first to find a way to obtain pixel data
from an image and convert this into a two-dimensional array of
pixels. Your edge detection system should be capable of outputting
an image showing the edges.

21.11 Further Reading

There are many books available on the subject of image recognition, com-
puter vision, face recognition, and other related subjects. Shapiro (2001)
and Forsyth (2002) both provide excellent coverage of the subject. Nalwa
(1993) provides a very readable introduction. Hoffman (1998) provides a
different perspective, with a cognitive scientist’s view of human vision.

2D Object Detection and Recognition: Models, Algorithms, and Networks, by
Yali Amit (2002 – MIT Press)

Intelligent Machine Vision: Techniques, Implementations and Applications,
by Bruce G. Batchelor and Frederick M. Waltz (2001 – Springer Verlag)

Advances in Image Understanding: A Festschrift for Azriel Rosenfeld, edited
by Kevin W. Bowyer and Narendra Ahuja (1996 – Wiley IEEE Press)

Neural Networks for Vision and Image Processing, edited by Gail A. Carpen-
ter and Stephen Grossberg (1992 – MIT Press)

Machine Vision: Theory, Algorithms, Practicalities, by E. R. Davies (1996 –
Academic Press)

Three-Dimensional Computer Vision, by Olivier Faugeras (1993 – MIT Press)

Computer Vision: A Modern Approach, by David A. Forsyth and Jean Ponce
(2002 – Prentice Hall)

Dynamic Vision: From Images to Face Recognition, by Shaogang Gong and
Stephen J. McKenna (2000 – Imperial College Press)

Computer and Robot Vision (Volume II), by Robert M. Haralick and Linda
G. Shapiro (2002 – Pearson Education)

Visual Intelligence: How We Create What We See, by Donald D. Hoffman
(1998 – W. W. Norton & Company)

Robot Vision, by Berthold K. Horn (1986 – McGraw Hill Higher Education)

Machine Vision, by Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck
(1995 –McGraw Hill)

21.11 Further Reading 631

Computer Vision and Fuzzy Neural Systems, by Arun D. Kulkarni (2001 –
Prentice Hall)

A Guided Tour of Computer Vision, by Vishvjit S. Nalwa (1993 – Addison
Wesley)

Feature Extraction in Computer Vision and Image Processing, by Mark S.
Nixon and Alberto Aguado (2002 – Butterworth-Heinemann)

Algorithms for Image Processing and Computer Vision, by J. R. Parker (1996 –
John Wiley & Sons)

Learning-Based Robot Vision, edited by Josef Pauli (2001 – Springer Verlag)

Computer Vision, by Linda G. Shapiro and George C. Stockman (2001 –
Prentice Hall)

Image Processing: Analysis and Machine Vision, by Milan Sonka, Vaclav
Hlavac, and Roger Boyle (1998 – Brooks Cole)

Introductory Techniques for 3-D Computer Vision, by Emanuele Trucco and
Alessandro Verri (1998 – Prentice Hall)

Human Face Recognition Using Third-Order Synthetic Neural Networks, by
Okechukwu A. Uwechue and Abhijit S. Pandya (1997 – Kluwer Academic
Publishers)

Face Recognition: From Theory to Applications, by Harry Wechsler (1998 –
Springer Verlag)

This page intentionally left blank

Glossary

This glossary includes definitions and descriptions of the most important
terms used in this book.

A
Abduction

A *nonmonotonic form of reasoning that helps us to find plausible expla-
nations for observed phenomena.

Accepting state

A *state in a *finite state machine that represents a “yes” response.

Acquaintance algorithm

A vector-based approach to identifying languages using *n-grams.

Action description language (ADL)

A more expressive variation of the *STRIPS planning language.

Activation function

The function applied to the inputs of a *neuron in a *neural network. The
output of this function is compared with the *activation level to determine
if the neuron fires.

Activation level

The level of output that a *neuron must reach in order to fire.

634 Glossary

Activity product rule

The rule used in *neural networks that use *Hebbian learning to determine
how the *weights between *neurons change.

Admissibility

A *heuristic method is defined as admissible if it never overestimates the
cost of getting from a given *state to a *goal state.

Adversarial methods

Methods used by game-playing systems to search a *game tree for a *path
that will lead to a win over an opponent.

Agent

An entity (usually a software entity) that exists to assist humans in carrying
out some task or solving some problem. Types of agents include *software
agents, *interface agents, *mobile agents, and *information agents.

Agent team

A group of *agents that collaborate together to reach a common goal.

Alphabet

The set of symbols available for a logical system.

Alpha–beta pruning

A method used to make searching a *game tree more efficient. It relies on
the principle that if a part of a game tree is going to give a bad result, it is
not worth further examining that part of the tree.

Ambiguity

The problem that an *utterance in a *human language can have more than
one possible meaning. Types of ambiguity include lexical, semantic, syntac-
tic, referential, and local.

Ancestor

An ancestor, a, of a *node, n, in a *tree is a node that is further up a *path in
the tree than n. n is a *descendant of a.

And-goal

And-goals are *subgoals in a *goal tree that must all be satisfied in order to
satisfy the goal tree.

Glossary 635

And-node

A *node that represents an *and-goal.

And–or tree

See *goal tree.

Antecedent

The part of the *rule that comes before the *implication. In the rule A → B,
A is the antecedent. See *consequent.

Artificial Intelligence

The subject of this book. See Chapters 1 to 21 for more information. See
also *weak AI, *strong AI.

Artificial Life

Methods modeled on life that often use *emergent behavior to find better
solutions to problems than can be found using traditional methods.

Artificial neural network

See *neural network.

Associativity

A property of mathematical and logical operators. Operator o is associative
if A o (B o C) ≡ (A o B) o C.

Atomic action

Individual actions used by *planning systems. An atomic action can consist
of a number of smaller actions, but it is treated as one indivisible action for
the purpose of constructing a plan.

Atomic formula

A *well-formed formula of the form P(x1, x2, x3, . . . , xn).

Attractor network

See *recurrent network.

Augmented finite state machine (AFSM)

A type of *finite state machine that uses *situated action rules. AFSMs are
used in Brooks’s *subsumption architecture.

636 Glossary

Augmented transition network (ATN)

A type of *transition network that is used for *parsing sentences. An ATN
has *procedures and tests that are attached to its arcs.

Autoassociative memory

A type of memory that can recognize an object but cannot associate one
object or piece of data with another. A *Hopfield network is an autoasso-
ciative memory. See *heteroassociative memory.

Autonomy

A property of *agents. An autonomous agent has the ability to act inde-
pendently to some extent of its owner or programmer. This is often a
desired property for *intelligent agents.

Axon

The part of a *neuron in the human brain that provides output to other
neurons via a *synapse.

B
Backpropagation

A method used to modify the *weights in a multilayer *neural network.
Errors at the output layer are fed back through the network, correcting the
weights. Over a number of iterations, this usually leads to a network that
gives mostly correct responses to the *training data.

Backus–Naur form (BNF)

A language used to define the grammar of *formal and *informal lan-
guages. BNF uses *terminal and *nonterminal symbols, and *rewrite rules
that express how sentences can be legally built up out of terminal symbols.

Backward chaining

See *goal-driven search.

Bayesian belief network

An acyclic directed *graph, where the *nodes in the graph represent evi-
dence or hypotheses, and where an edge that connects two nodes represents
a dependence between those two nodes. Each node is labeled with a set of
probabilities that express how that node depends on other nodes.

Glossary 637

Bayes’ optimal classifier

A system that uses *Bayes’ theorem to learn to classify data. It can be shown
that this classifier is optimal, which means that it provides the best possible
mechanism for classifying data.

Bayes’ theorem

Bayes’ theorem can be used to calculate the probability that a certain event
will occur or that a certain proposition is true, given that we already know
a related piece of information. It is written as follows:

Belief desire intention architecture (BDI)

An architecture used by *agents that uses beliefs about the world and
desires to develop intentions about how the agent should behave.

Bidirectional associative memory (BAM)

A *neural network used to associate items from one set with items in
another set.

Binary operator

A logical or mathematical operator that takes two arguments, such as logi-
cal and (∧) and logical or (∨). See *unary operator.

Bivalent logic

A logical system that has two *truth values. Classical logic is bivalent
because a logical expression can either be true or false. See *multivalent
logic and *fuzzy logic.

Blackboard architecture

A method for structure knowledge representation that combines informa-
tion from a number of knowledge sources (such as human experts) in
order to solve a problem.

Blind search method

A *search method that does not use *heuristics. Also known as *uninformed
search. *Depth-first search and *breadth-first search are blind search methods.

P B A
P A B P B

P A
() =

() ⋅ ()
()

638 Glossary

Blocks world

A scenario that is used to explain planning techniques. The blocks world
consists of a table with a number of blocks, which are usually cubes. The
blocks world has very simple properties, and there are usually a limited set
of actions that can be taken to interact with the world, such as “pick up”
and “put on.”

Bottom up

An approach to solving problems that involves first solving the smaller sub-
problems, and repeatedly combining these solutions together until a com-
plete solution is found. See *top down.

Bounded lookahead

A method used when searching *game trees that involves cutting off
*search when a specified depth in the tree is reached. This is particularly
useful in games such as chess or Go that have very deep search trees.

Bound variable

A bound variable in a logical expression is one that has been quantified
within the same scope. For example, in the expression ∀x(x → y), x is
bound because it is quantified by the ∀ *quantifier. See *free variable.

Braitenberg vehicle

A type of *robotic vehicle that is used in thought experiments to study the
nature of intelligence. Braitenberg vehicles range from very simple robots
that follow or avoid light to more complex systems. None of them have any
real intelligence, but they often display behavior that appears intelligent.

Branch

A connection between two *nodes within a *tree.

Branching factor

A node within a tree has a branching factor of n if that node has n *chil-
dren. In a tree that has a branching factor of n, all nodes (apart from *leaf
nodes) have n children.

Breadth-first search

A *blind, *exhaustive search method that visits all *nodes at a given depth
before moving on to the next depth in the *tree.

Glossary 639

Brute-force search

A *search method that examines every *path in a *search tree until it finds
a goal. See *exhaustive search.

Bucket-brigade algorithm

A method used by *classifier systems that assigns blame and credit to indi-
vidual components within the system.

Building-block hypothesis

A consequence of the *schema theorem, which can be stated as: “*Genetic
algorithms manipulate short, low-order, high-fitness *schemata in order to
find optimal solutions to problems.”

C
Candidate elimination

A *learning method that uses *version spaces to learn to classify data. The
method uses two sets of hypotheses, which start out as the most general
possible hypothesis and the most specific hypothesis. On successive itera-
tions these hypotheses converge until a match is found.

Canny edge detector

An *edge detection method based on *convolution.

Case-based planning

A case-based planning system stores the *plans it formulates for solving
problems and is able to reuse whole plans or parts of plans to solve similar
problems in the future. Case-based planners use *case-based reasoning to
solve problems.

Case-based reasoning

See *case-based planning.

Causal link

In *partial order planning, a causal link is a link between an action and one
or more conditions, which shows that that action causes the conditions to
become true. See *protected link.

Cellular automaton

A set of cells that live or die according to a set of rules. A cellular automaton
of sufficient complexity can reproduce itself. See *Conway’s Life.

640 Glossary

Center of gravity

See *centroid.

Centroid

The point in a two-dimensional shape that has equal area on all sides of it.
This is the *center of gravity of the shape.

Certainty factor

A representation of the degree of belief in a hypothesis. Used by *MYCIN.

Chart parser

An efficient method of *parsing natural language sentences that uses a
chart to store information about the sentence being parsed.

Chinese room

A thought experiment that is used to claim that a computer is not capable
of thought in the same way that a human is. The experiment consists of a
room with a person inside it who does not speak or understand any Chi-
nese. This person has a set of symbols and a set of rules for how to manip-
ulate the symbols. A question in Chinese is passed into the room, and the
human uses the rules to construct an answer in Chinese. Although the
human clearly does not understand Chinese, the room as a whole appears
to have understood the question and given a sensible answer, thus display-
ing the kinds of behavior that a computer might display when answering
questions using Artificial Intelligence.

Chomsky’s hierarchy

A hierarchy of *grammars invented by Noam Chomsky, which includes
*regular grammars, *context-free grammars, *context-sensitive grammars,
and *recursively enumerable grammars.

Chromosome

A representation of a single solution to a problem as used by a *genetic
algorithm. A chromosome is also a structure contained in biological cells
that contains genetic information.

Chronological backtracking

A method of backtracking (used by depth-first search) that backtracks to
the next available *path that has not yet been taken. This contrasts with
*nonchronological backtracking, which can often be more efficient.

Glossary 641

Circumscription

A form of *nonmonotonic reasoning that is designed to deal with situa-
tions in which not all facts are either stated or denied. See *closed-world
assumption.

Class

A group of objects that is defined by some shared property. For example,
we might consider the class of humans or the class of things with three
sides. An *object is an instantiation of a class.

Class frame

A *frame within a *frame system that represents a *class.

Classical logic

The logical system based on that proposed by Aristotle. This system contrasts
with nonclassical logics such as *nonmonotonic logics and *modal logics.

Classifier system

An *expert system that uses *genetic algorithms and a *bucket-brigade
algorithm to improve its ability to solve problems.

Clause

A *sentence in *conjunctive normal form consists of a *conjunction of
clauses, where each clause is of the following form:

B1 ∨ B2 ∨ B3 ∨ . . . ∨ Bn

CLIPS (C Language Integrated Production System)

An *expert system shell.

Cloning

A reproductive method in *genetic algorithms that does not use
*crossover. A cloned offspring is an exact replica of its parent, apart from
any effects of *mutation.

Closed-world assumption

The assumption that any fact not specifically known to be true must be
false. Also known as *negation by failure. The closed-world assumption is
used by *PROLOG.

642 Glossary

Coevolution

The process whereby the evolution of two species is tightly connected. Usu-
ally this applies to a predator species and a prey species. As the predator
species becomes better at catching the prey, the prey must evolve tech-
niques to enable it to escape. In turn this causes the predator to evolve new
abilities. Coevolution can often cause species to evolve much faster than
they otherwise would and to reach levels of sophistication that would not
otherwise be possible. This was used successfully by Danny Hillis in devel-
oping his ramps to solve problems.

Cognitive psychology

A branch of psychology that studies the way in which the human brain
processes knowledge or data to solve problems.

Collaborative agent

An *agent that is part of a *multiagent system and that cooperates with
other agents to achieve a common goal.

Collaborative filtering

A method used to determine an individual’s likes or dislikes by comparing
his or her past behavior with that of other individuals.

Combinatorial explosion

The problem encountered when computers attempt to solve problems
whose complexity grows *exponentially.

Combinatorial problem

A problem that involves assigning values to a number of variables in order
to find some optimal solution. The eight-queens problem is an example of
a combinatorial problem.

Commutativity

A property of mathematical and logical operators. Operator o is commuta-
tive if a o b ≡ b o a.

Competitive learning

A form of *unsupervised learning used by *Kohonen maps.

Glossary 643

Completeness

A property of *search methods. A search method is complete if it guaran-
tees that it will find a solution if one exists. Completeness is also a property
of logical systems: A logical system is complete if every *valid statement in
the logic can be proved by applying the rules of deduction to the axioms.
Both *propositional logic and *first-order predicate logic are complete. See
*soundness.

Complete path

A *path in a *tree that leads from the *root node to a *goal node.

Composition

An operator that can be combined to two *substitutions to produce a new
*substitution that is the same as applying the two original substitutions
consecutively.

Computation tree logic (CTL)

A form of *temporal logic that uses a *tree to represent time.

Concave edge

An edge in a two-dimensional line drawing that is between two faces that
are at an angle of less than 180� from each other.

Concept learning

Concept learning involves learning to map from a set of input variables to a
Boolean value. Concept-learning systems can thus learn to determine
whether or not an object meets a particular criterion based on a number of
that object’s attributes.

Conditional planning

A *planning method that does not start with complete information about
the problem, so it allows for several possible results of each action.

Conditional probability

The *probability that one fact will be true given that another fact is known
to be true. This is written P(A|B), which is read “the probability of A given
B”. See *posterior probability, *prior probability.

644 Glossary

Conditional probability table

A table that shows the probabilities that one variable will be true given the
possible values of other variables on which it depends.

Conflict

A situation that arises in multiple inheritance or in *rule-based systems in
which two contradictory pieces of data arise. For example, two *rules in a
rule-based system fire that recommend contradictory actions.

Conflict resolution

The methods used in a *rule-based system to decide which *rule to use
when a *conflict occurs. See *expert system, *metarule.

Conjunction

The conjunction of two logical variables is the logical and (∧) of those two
variables, written A ∧ B. A ∧ B is true if and only if A and B are both true.
See *disjunction.

Conjunctive normal form

An expression is in conjunctive normal form if it consists of a *conjunction
of a set of *clauses. See *disjunctive normal form.

Consequent

The part of a rule that comes after the implication. The consequent of a
rule in an *expert system represents the diagnosis or recommended action
that is the consequence of the *antecedent.

Constant

A symbol in *first-order predicate calculus that names a specific object. A
constant cannot be quantified as a variable can.

Constraint

A rule that dictates limitations on the possible values variables can take in
solving a problem.

Constraint satisfaction problem

A problem in which a set of *constraints dictate possible values for vari-
ables. The eight-queens problem is an example of a constraint satisfaction
problem. In this case, the constraint is that no two queens can be on the
same row, column, or diagonal.

Glossary 645

Context-free grammar

A *grammar with *rewrite rules that can have at most one *terminal sym-
bol on the right-hand side. This type of grammar does not specify how
words should agree with each other in case, number, or gender. See *con-
text-sensitive grammar, *Chomsky’s hierarchy.

Context-sensitive grammar

A *grammar with *rewrite rules that can have more than one *terminal
symbol on the right-hand side, and which can therefore specify rules con-
cerning the agreement of case, number, and gender. Context-sensitive
grammars are often used for *natural language processing. See *context-
free grammar, *Chomsky’s hierarchy.

Contingent

A logical statement whose *truth value is not fixed, but varies depending
on circumstances, is contingent. For example, A ∧ B is true if and only if
both A and B are true. See *noncontingent, *interpretation.

Contradiction

If a logical system has two facts that disagree with each other, there is a con-
tradiction. For example, it would be a contradiction, in *classical logic, to
believe both A and ¬A.

Convex edge

An edge between two faces that are at an angle of more than 180� from
each other.

Convolution

A mathematical operator used in *edge detection. The convolution of two
discrete functions f(a, b) and g(a, b) is defined as follows:

The convolution of continuous functions f(a, b) and g(a, b) is defined as fol-
lows:

Applying convolution to an image is one way to *smooth an image.

f a b g a b f a b g a u b v du dv, , , ,() ∗ () = () − −()
−∞

∞

−∞

∞

∫∫

f a b g a b f a b g a u b v
vu

, , , ,() ∗ () = () − −()
=−∞

∞

=−∞

∞
∑∑

646 Glossary

Conway’s Life

A two-dimensional *cellular automaton that consists of a grid of cells. Each
cell can be either alive or dead, and rules are used to determine from one
generation to the next which cells will live, which will die, and which will
come to life.

Co-occurrence matrix

A matrix used in *image recognition. The co-occurrence matrix, C, is
defined as follows:

C = D + DT

Where DT is the transposition of the matrix D.

Copycat architecture

A system designed to solve analogy problems such as “ABC is to CBA as
DEF is to ???.”

Corpus

A body of text, usually used in *information retrieval problems.

Credit assignment

The technique used to decide which parts of a system contributed to its
success. This method is used by *classifier systems and other systems that
use a *bucket-brigade algorithm. See *reinforcement learning, *winner
takes all algorithm.

Crisp set

An ordinary, nonfuzzy set. Each item in the world either is or is not a mem-
ber of a given crisp set. There is no idea of “degree of membership” of a
crisp set. See *fuzzy set.

Crossover

An operator used in *genetic algorithms that combines genetic informa-
tion from two *chromosomes to produce one or two offspring.

CYC

A *frame-based knowledge representation system that uses a database of mil-
lions of facts and *rules to make common-sense deductions about the world.

Glossary 647

Cycle

A *path through a *semantic net or other *graph that visits the same *node
twice. A *tree is a net that does not have any cycles.

D
Data-driven search

A *search method that works from a start *state toward a goal state. See
*goal-driven search.

Deception

A problem that arises in *genetic algorithms, due to the use of building blocks.
Deception can be avoided by using *inversion or *messy genetic algorithms.

Decidability

A logical system is decidable if it is possible to produce an algorithm that
will determine whether any *well-formed formula is a *theorem. In other
words, if a logical system is decidable, then a computer can be used to
determine whether logical expressions in that system are *valid or not.

Decision tree

A *tree in which each *node represents a question and the answers to the
question determine which *path is to be followed from that *node. *Leaf
nodes represent classifications determined by the decision tree. See *ID3,
*decision-tree induction.

Decision-tree induction

A method that learns to classify data by building a *decision tree based on
the *training data.

Deduction

A process that applies a set of inference rules to a set of assumptions to lead
logically to a conclusion. We write

{A1, A2, . . . , An} � C

where A1, A2, . . . , An are the assumptions, and C is the conclusion that can
be deduced from them.

Default reasoning

A form of *nonmonotonic reasoning that uses default rules to assume that
certain facts are true unless there is evidence to contradict them. See
*closed-world assumption.

648 Glossary

Default value

The value that is assigned to a *slot in a *frame-based system unless it is
overridden.

Defining length

The defining length of a *genetic algorithm *schema is defined as the dis-
tance between the first and last defined bits (bits that are not) in the schema.

Defuzzification

The process whereby a crisp value can be obtained from the *fuzzy sets
derived by a *fuzzy system.

Demon

A *procedure in a *frame-based system that is run automatically when the
value in a particular *slot is changed.

DeMorgan’s laws

A pair of complementary logical rules that can be expressed as follows:

A ∧ B ≡ ¬(¬A ∨ ¬B)

A ∨ B ≡ ¬(¬A ∧ ¬B)

Dempster–Shafer theory

A method that is used to reason about degrees of belief in a theory.

Depth-first search

A *blind search method that follows one *path to its first *leaf node before
*backtracking chronologically to the next deepest choice. See *breadth-
first search.

Depth threshold

A limit that is applied in *depth-first search that cuts search off at a speci-
fied depth. This avoids the problem that occurs when a *tree has a *path
that is of infinite length, meaning that the search might never find a *goal.

Derivation tree

A *parse tree that is built from the *top down.

Descendant

A descendant, d, of a *node, n, in a *tree is a node that is further down a
*path in the tree than n. n is an *ancestor of a.

Glossary 649

Describe and match

A method that uses a *decision tree to identify an object, by asking ques-
tions about the object.

Diagnosis

A process of explaining the cause of some observed phenomenon. Often
used in medicine to explain the cause of a patient’s symptoms.

Directed graph

A graph in which directions are attached to the edges between *nodes,
meaning that if one edge exists between two nodes, it is only possible to
travel in one direction between those nodes, but if two edges exist between
two nodes, it is possible to travel in both directions between those nodes.

Discontinuity

A line in a two-dimensional line drawing that has one plane on one side
and another plane on its other side. Discontinuities can be caused by two
faces meeting, by perception of depth, by lighting, shadows, or *texture.

Disjunction

The disjunction of two logical variables is the logical or (∨) of those two vari-
ables, written A ∨ B. A ∨ B is true if either A or B is true. See *conjunction.

Disjunctive normal form

An expression is in disjunctive normal form if it consists of a *disjunction
of a set of *clauses. See *conjunctive normal form.

Diversity

A measure of the difference between chromosomes in a population.

Domain expert

A human expert who provides domain knowledge to an *expert system.
For example, a medical expert system would have input from a number of
domain experts, most of whom would probably be doctors.

Dualism

The philosophical idea that mind and matter are the two distinct con-
stituents of the universe.

650 Glossary

Dynamic planning

*Planning methods that take account of unforeseen circumstances by
allowing the execution of the plan to change in reaction to events and
changes in the environment.

E
Edge

A line in a *graph that directly connects two *nodes. In *image recognition,
an edge is a perceived line that exists between two areas of different depth,
*texture, orientation, or color.

Edge detection

A method in *image recognition that locates the *edges in an image,
often by looking for areas of high frequency, which indicate a change in
color or *texture.

Effect axiom

In *situation calculus, a rule that describes the effect of an action.

Effective branching factor

If a search method expands n *nodes of a *search tree when solving a par-
ticular problem, then the effective *branching factor (b) of the *search is
the branching factor of a *uniform tree that contains n nodes.

Emergent behavior

Complex behavior that emerges from an apparently simple system. Emer-
gent behavior usually involves a system developing some useful behavior
that was not built in by its designer.

Entropy

The extent to which a system is disordered. See *information gain, *ID3.

Epoch

A complete iteration of the training cycle of a *perceptron.

Equivalence

Two logical expressions that must always have the same *truth value for all
interpretations are equivalent. This is written A ≡ B. For example, A ∧ B ≡
B ∧ A because whatever truth values are assigned to A and B, A ∧ B must
have the same truth value as B ∧ A.

Glossary 651

Error gradient

A measure that *neural networks employ in *backpropagation. The error
gradient for an output node k is defined as the *error value for this node
multiplied by the derivative of the *activation function:

xk is the weighted sum of the input values to the node k.

Error value

The difference between the expected output of a *node in a *neural net-
work and the actual output.

Event calculus

A method for reasoning about entities that vary over time. See *situa-
tion calculus.

Evolution

The biologic process by which species change over a number of genera-
tions. Evolution is modeled in many *Artificial Life methods, particularly
in *genetic algorithms.

Evolutionary programming

A method that evolves *finite state automata to find a solution to the prob-
lem of determining the next symbol in a finite sequence of symbols, a1, a2,
a3, a4, a5, . . . , an. See *genetic algorithm, *Artificial Life.

Excluded middle, law of

A law from Aristotelian logic that says that it is not possible to assert both A
and ¬A. Similarly, it states that either A must be true, or ¬A is true. These
can be written as the two logically *equivalent statements:

¬(A ∧ ¬A)

A ∨ ¬A

See *fuzzy logic, *classical logic.

Execution

The process of carrying out the steps determined by a *planner for solving
a problem.

δk
k

k
k

y
x

e= ∂
∂

⋅

652 Glossary

Execution monitoring

A method that is used during the *execution of a *plan to ensure that the
plan is still a sensible solution to the problem, by checking that the *pre-
conditions of the planned actions still hold.

Exhaustive search

See *brute-force search.

Existential quantifier

The existential quantifier ∃ is read as “there exists,” and is used to refer to
some variable of which at least one must exist, but which is not explicitly
defined. For example, we can write ∃x (P(x)), which can be read as “there
exists an x for which P(x) is true.” See *universal quantifier, *first-order
predicate calculus.

Expectiminimax

A version of the *minimax algorithm that works with games of chance, by
taking into account the *probability that each *path through the game tree
will be taken.

Expert system

A system, usually built using a set of *rules, that uses expert knowledge to
solve problems and explain phenomena such as symptoms. See *expert sys-
tem shell, *production system.

Expert system shell

A toolkit that can be used to build *expert systems. *CLIPS is an example of
an expert system shell.

Exponential growth

A function grows exponentially if its output grows as a function of some
value raised to the power of its input. For example, f(x) = 2x is an exponen-
tial function. A problem whose complexity grows exponentially as the
problem grows is usually very hard to solve. See *NP-Complete, *combina-
torial explosion.

F
Face recognition

Methods used to identify an individual by examining his or her face.

Glossary 653

Fact

A *clause in *PROLOG that has no negative *literals and thus has nothing
on the right-hand side of the implication, as in the following example:

A :-

Failure node

An *or-node in a *goal tree that is also a *leaf node and is thus impossi-
ble to solve.

False negative

In *information retrieval, a result that is classified as not being of interest
but which in fact is interesting is a false negative. The fewer false negatives
an information retrieval system gives, the higher its *recall. See *false posi-
tive, *precision.

False positive

In *information retrieval, a result that is classified as being of interest but
which in fact is not interesting is a false positive. The fewer false positives an
information retrieval system gives, the higher its *precision. See *false neg-
ative, *recall.

Falsum

The symbol ⊥ is called falsum, which is used to indicate an absurdity, or a
*contradiction.

Feasible region

The part of a *search space that contains possible solutions to the problem.

Feed-forward network

A *multilayer neural network with an input layer, an output layer, and one
or more hidden layers.

Filter

A function that, when applied to an image, removes all undesired parts of the
image. For example, a filter might remove all non-edge regions from an image.

Finite state automaton (FSA)

A finite state automaton is a simple device that has a finite set of states and
an input string (often thought of as being on a tape, running through a
device that can read one symbol at a time). Each symbol that the finite state

654 Glossary

automaton reads in is compared with a rule that dictates to which state to
move from that state, with that input. After reading the entire input, the
finite state machine is either in an accepting state, which means its answer
is “yes” to some question, or it is in some other state, in which case the
answer is “no.”

First-order predicate logic

A logical system in which *quantifiers can be applied to terms but not to
functions or predicates. See *propositional calculus, *propositional logic,
*classical logic, *monotonic logic, *nonmonotonic logic.

Fitness

A *metric that is used to measure how successful a given *chromosome is at
solving the *genetic algorithm’s problem. It is usually the case that a chro-
mosome with higher fitness will produce more offspring or have a greater
chance of reproducing than a chromosome with lower fitness.

Fluent

A function that varies with time.

Foothill

A *local maximum.

Forgetting factor

A value used in *Hebbian learning systems to reduce the *weights of *nodes.

Formal language

A language such as PROLOG or C++, as compared with a *natural language.

Forward chaining

See *data-driven search.

Forward pruning

A method used by game-playing systems that involves cutting off examina-
tion of the *game tree at a point where the position has become unaccept-
ably poor for the computer.

Frame

In a *frame system, a frame defines either a *class or an *instance of a class
and contains one or more *slots that hold values for attributes of that class
or instance.

Glossary 655

Frame axiom

A rule that states what aspects of the world do not change when an action
takes place. See *effect axiom, *frame problem.

Frame problem

The problem that it is usually easy to determine the effects of an action but
often very difficult to work out what does not change as a result of the
action. See *frame axiom, *ramification problem.

Frame system

A *semantic network that consists of a set of *frames, connected together
by relations.

Free variable

A free variable in a logical expression is one that has not been quantified
within the same scope. For example, in the expression ∀x(x → y), y is free
because it is not quantified by the ∀ *quantifier. See *bound variable.

Fundamental memory

One of the stable values of a *recurrent network.

Fuzzification

The process of converting a crisp input value into a fuzzy value.

Fuzzy expert system

An *expert system that uses *fuzzy logic rules.

Fuzzy inference

The process by which a fuzzy system applies fuzzy rules to a set of crisp
input values to derive a single crisp value. See *Mamdani inference.

Fuzzy logic

An alternative to *classical logic in which the *law of the excluded middle
does not apply and in which logical variables can take on any real number
value between 0 and 1. See *multivalent logic.

Fuzzy reasoning

The process of reasoning using fuzzy logic.

656 Glossary

Fuzzy rule

A rule used by a *fuzzy expert system that takes the form

IF A op x then B = y

where op is some mathematical operator (such as “=,”“>,” or “<”).

Fuzzy set

A set with a membership function that determines the extent to which any
item is a member. See *crisp set.

G
Game tree

A *tree that represents the moves in a game. The *root node represents the
state before any moves have been made, the *nodes in the tree represent
possible states of the game (or positions), and *edges in the tree represent
moves in the game.

Gene

A single unit of *genetic algorithm contained within a *chromosome.

General problem solver (GPS)

A computer program invented in the 1950s that uses *means–ends analysis
to solve logical problems.

Generalization

The act of moving from an *instance of a *class to the class itself. Also
known as the “is–a” relationship. For example, one can generalize from
Ronald Reagan to the class of presidents of the United States.

Generate and test

A *search method that involves examining every *node in the *search space
until one is found that matches some criteria that describe the *goal state.

Genetic algorithm

A system that uses methods modeled on natural *evolution to solve com-
plex problems. See *chromosome, *gene.

Genetic programming

A method that evolves *LISP programs or *S-expressions. The method
searches through the *search space of possible S-expressions until it finds
one that best solves the current problem.

Glossary 657

Genotype

The genetic information represented by a set of *genes that make up an
individual person or other biologic creature. See *phenotype.

Geometric progression

A sequence of numbers where each number in the progression is obtained
by multiplying the previous number by some constant.

Global maximum

The best possible solution in a *search space. When the search space is rep-
resented as a curved surface, the global maximum is the highest peak in the
surface. See *foothill, *plateau, *ridge.

Goal

The solution to a problem. See *goal node.

Goal-based agent

An *agent that uses *search or *planning to achieve some *goal.

Goal-driven search

A search method that works from a goal state toward the start state. See
*data-driven search.

Goal node

The *node (of which there may be more than one) in a *search tree that
represents the solution of the problem that is being solved. The aim of all
*search methods is to find a goal node. See *goal.

Goal reduction

See *problem reduction, *goal tree.

Goal tree

A *tree that is used to represent the way in which a problem can be broken
down into subgoals. Each *node in the tree represents a subgoal. See
*and–or tree, *and-node, *or-node, *success node, *failure node.

Gödel implication

A form of logical *implication that is used in *fuzzy logic. It is defined
as follows:

A → B ≡ (A ≤ B) ∨ B

658 Glossary

Gradient descent

A method used in training *backpropagation neural networks, which
involves descending the steepest part of the *error gradient.

Grammar

A set of rules that define the syntax and structure of a language. See
*Backus–Naur form, *context-sensitive grammar, *context-free grammar.

Graph

A data structure that consists of *nodes connected by *edges. See *tree,
*semantic net, *cycle.

GraphPlan

A *planning method that uses *planning graphs to solve problems that are
expressed in *STRIPS notation.

Ground instance

A ground instance of a *clause is a version of that clause in which any variables
it contains have been replaced by *ground terms from the *Herbrand universe.

Ground term

A *constant or *function that does not contain any *variables.

H
Halting Problem

The problem of determining whether a given computer program will ever halt.
It can be proved that no computer program can ever be written that can solve
the Halting problem. The proof is as follows: Imagine a program H, which
when given an argument P, which is another program, determines whether P
halts or not. If H determines that P does halt, then H enters an infinite loop and
therefore never halts. If H determines that P does not halt, then it reports a pos-
itive response and exits. Now further imagine that H is applied to itself. Let us
suppose that H determines that H does halt. In that case, it will enter an infinite
loop and never halt. Hence, its assessment was wrong. Similarly, if it decides
that H does not halt, then it halts, disproving its own assessment again.

Hamming distance

The Hamming distance measures the number of elements of two vectors
that differ. The Hamming distance between two vectors, X and Y, is written

||X, Y||. For example, ||(1,0,0,1),(1,0,1,1)|| = 1 because there is only one ele-
ment of the vectors that differs.

Glossary 659

HEARSAY II

A system that used a *blackboard architecture and an index of computer
science papers to answer spoken questions on the subject.

Hebbian learning

A method of *unsupervised learning used in *neural networks. Hebbian
learning is based on the idea that if two *neurons in a neural network are
connected together, and they fire at the same time when a particular input
is given to the network, then the connection between those two neurons
should be strengthened.

Hedge

A fuzzy set qualifier, such as very, quite, extremely, or somewhat.

Herbrand base

The Herbrand base of a set of *clauses, S, is defined as the set of
*ground atoms that can be obtained by replacing variables in S by
members of the *Herbrand universe for S. The Herbrand base of S is
written HS(S).

Herbrand interpretation

A Herbrand Interpretation for a set of *clauses, S, is defined as a set of
assignments of true and false to the elements of the *Herbrand base, HS(S).

Herbrand universe

For a set of *clauses, S, the Herbrand universe, HS, is defined as being the
set of constants that are contained within S and the set of functions in S
applied to those constants. See *ground term.

Heteroassociative memory

A type of memory that can associate one object or piece of data with another.

Heuristic

A rule or piece of information that is used to make *search or another
problem-solving method more effective or more efficient.

Heuristic evaluation function

A function that when applied to a *node gives a value that represents a
good estimate of the distance of the node from the *goal.

660 Glossary

Heuristic repair

A method of solving *combinatorial problems that involves generating a
random solution to the problem and iterating toward a better solution by
making simple changes that reduce the number of errors.

Hidden layer

A layer of *neurons within a *neural network that is between an input layer
and an output layer. The hidden layer usually carries out the calculations of
the network.

Hill climbing

An *informed search method that acts by always moving toward a better
solution one step at a time, ensuring that every step improves the current
state. Hill climbing is very susceptible to problems such as *ridges,
*foothills, and *plateaus.

Hopfield network

A *recurrent neural network that usually uses the sign activation function:

Horizon problem

This problem involves an extremely long sequence of moves in a game that
clearly lead to a strong advantage for one player, but where the sequence of
moves, although potentially obvious to a human player, takes more moves
than can be examined by a computer using *bounded lookahead. Hence,
the significant end of the sequence has been pushed over the horizon.

Horn clause

A *clause that has at most one positive *literal.

Human language

One of the many hundreds of languages spoken and written by human
beings around the world, such as English, Japanese, Russian, Swahili, and
French. See *formal language, *natural language.

Hybrid agent

An *agent that exhibits properties of more than one agent type.

Sign X
for x

for x
() =

+ >
− <

1 0

1 0

Glossary 661

Hypothesis

A possible explanation for a set of observed phenomena.

I
ID3

A *decision tree induction algorithm that builds a decision tree from the
top down. The nodes in the decision tree are selected by choosing features
of the *training data set that provide the most information about the data
and turning those features into questions.

Image capture

The process of obtaining an image from a real-world scene so that some
kind of image processing can be carried out on the image.

Image recognition

The process of identifying features and making informed decisions about a
scene by examining an image of the scene. See *edge detection, *segmentation.

Implication

A logical operator that is defined by the following *truth table:

A B A → B

false false true

false true true

true false false

true true true

Independence

If the value of one variable does not in any way affect the value of another,
then the two variables are said to be independent. Hence, for example, the
color of the sky is independent of my name, but the color of the sky is not
independent of the time of day.

Inductive bias

Restrictions imposed on a *learning method by its assumptions.

662 Glossary

Inductive reasoning

Reasoning about what will happen in the future based on evidence from
the past. See *deduction, *abduction.

Inference engine

The part of an *expert system that controls the process of deriving conclu-
sions and recommended actions from a set of rules and facts.

Inference rule

A rule that is used in the process of logical *deduction.

Information agent

An *agent that gathers information on behalf of a human user. Usually
information agents are used to gather information from the Internet and so
are also called *internet agents.

Information gain

The reduction in *entropy caused by some change in a system.

Information retrieval

Information retrieval involves matching the text contained in a query or a
document to a set of other documents. Often, the task involves finding the
documents from a *corpus of documents that are relevant to a user’s query.

Informed search method

A *search method that uses a *heuristic to ensure that it searches the
*search space as efficiently as it can.

Inheritance

The way in which one *class or *object can derive features from a *super-
class from which it is itself derived.

Initial state

The *state in which a problem-solving system starts to solve its problem.

Instance

An instance of a *class is an *object that has properties of that class.

Instance constructor

A *procedure that creates an *instance of a *class.

Glossary 663

Instance frame

A *frame within a *frame system that represents an *instance of a *class.

Intelligent agent

*Software agents are often referred to as intelligent agents, but an intelli-
gent agent is really an agent that has the particular property of intelligence.
This means, for example, that it has the ability to reason independently
about data. Many intelligent agents have the ability to learn. Another
important property of most intelligent agents is *autonomy.

Interface agent

An *autonomous *intelligent agent that acts as a personal assistant for a user.

Internet agent

See *information agent.

Interpretation

An interpretation is a specific choice of assignment of values to a set of
variables. A logical expression can be true under one interpretation and
false under another.

Inversion

A *unary operator that reverses the order of a subset of the bits within a
*chromosome. Inversion is used to avoid the problem of *deception.

Irrevocability

A *search method is irrevocable if it does not employ *backtracking—in
other words, it explores just one *path through a *search tree. *Hill climb-
ing is an example of an irrevocable search method.

Iterated local search

A *local search method that is repeated iteratively using different starting
points in order to avoid the problem of *local maxima.

J
Joint probability distribution (joint)

The distribution of *probabilities of a combination of two logical variables.
For example, we could refer to the joint probability distribution of A ∧ B,
which would be represented by a table such as the following:

664 Glossary

A ¬A

B 0.11 0.09

¬B 0.63 0.17

K
Knowledge base

The database of *rules used by an *expert system. The knowledge base con-
tains the data that represent the system’s knowledge about the domain.

Knowledge engineer

The human being who is responsible for a large part of the creation of an
*expert system. Specifically the knowledge engineer is responsible for
inputting *metaknowledge into the system.

Kohonen map

An *unsupervised learning *neural network. A Kohonen map is capable of
classifying data into a set of classifications without being given the specific
classifications in advance. This kind of classification is also known as auto-
matic clustering.

L
Leaf node

A *node in a *tree that has no *successors. All *goal nodes are leaf nodes,
but not all leaf nodes are goal nodes. In other words, it is possible to reach
a leaf node at the end of a path in a tree without successfully finding a
goal node.

Learning agent

An *agent that is capable of *learning and is therefore able to acquire new
knowledge and skills and is able to use the new knowledge and skills to improve
its performance. This learning is often carried out using a *neural network.

Lexicon

A dictionary of words and other linguistic units that make up a language.

Life, game of

See *Conway’s life.

Glossary 665

Likelihood

The *probability that a given piece of evidence (E) would occur, given that
a particular hypothesis (H) were true:

P (E | H)

This is the likelihood of E, given H, as compared with the probability of H
given E, which would be written P(H | E).

Linear threshold function

A step function used as an *activation function by artificial *neurons. The
linear threshold function gives a value of 0 for inputs below a threshold (t)
and a value of 1 for inputs above t.

Linearly separable function

A function that can be drawn in a two-dimensional graph such that a
straight line can be drawn between the values so that inputs that are classi-
fied into one classification are on one side of the line, and inputs that are
classified into the other are on the other side of the line. Logical-OR is a lin-
early separable function, but exclusive-OR is not. *Perceptrons can only be
used to learn linearly separable functions.

Linguistic variable

A fuzzy variable such as height or age that is defined not in objective numer-
ical terms but in terms of fuzzy values such as tall, short, old, and young.

LISP

(LISt Programming). A programming language widely used in Artificial
Intelligence research.

Literal

One of the basic symbols of *propositional logic. For example, in the fol-
lowing expression

¬A ∧ (B ∨ C)

the literals are ¬A, B, and C.

Local maximum

A peak within a *search space that is higher than all the points immediately
around it but is lower than the global maximum, which is the highest point
in the entire search space and the most desirable goal. Many search meth-
ods are prone to identifying local maxima rather than *global maxima.

666 Glossary

Techniques such as *simulated annealing and *iterated local search are
designed to avoid this problem. See *local optimization.

Local optimization

A method of solving *combinatorial problems that involves finding a *local
maximum by moving toward a better solution in the *search space. See
*hill climbing.

Local search

Local search methods work by starting from some initial configuration
(usually random) and making small changes to the configuration until a
state is reached from which no better state can be achieved. See *meta-
heuristic, *local optimization, *hill climbing, *simulated annealing.

L-systems

A system that describes the way a set of artificial “trees” grow using a set of
simple rules:

Rule 1: a → ab

Rule 2: b → a

M
Machine translation

The use of computer software to translate text from one *human language
to another.

Mamdani inference

A form of *fuzzy inference that allows a system to take in a set of *crisp
input values (from a set of sensors or inputs from a human operator, for
example) and apply a set of *fuzzy rules to those values in order to derive a
single, crisp, output value or action recommendation.

Map coloring

The problem of finding a way to color the countries in a map so that no
two adjoining countries are the same color. It can be shown that any nor-
mal two-dimensional map can be colored using at most 5 colors.

Maximum a posteriori hypothesis (MAP)

The *hypothesis that has the greatest *posterior probability for explaining
an observed piece of evidence. The MAP classification for a piece of data is
the classification that is the most likely one for the data.

Glossary 667

Means–ends analysis

An approach to *planning that involves identifying the differences between
the goal state and the current state, and selecting actions that aim to lessen
those differences.

Membership function

A function that defines the membership of a *fuzzy set. Membership of
fuzzy sets is defined as a value between 0 and 1, where 1 means complete
membership of the fuzzy set, and 0 means nonmembership. For example,
the following membership function:

defines a membership function for a fuzzy set, B. Input values above 2 are
not members of B at all. The number 0 is completely a member of B, with a
membership value of 1.

Memory

A property of *recurrent neural networks that enables it to change its
*weights as new inputs are presented to it.

Mental situation calculus

A form of *situation calculus that allows an agent to reason about the
effects that events have on an its beliefs about the world.

Messy genetic algorithm (MGA)

An alternative to a standard *genetic algorithm. Each bit in a messy genetic
algorithm *chromosome is represented by a pair of numbers: the first
number represents the position within the chromosome, and the second
number is the bit value (0 or 1). A chromosome in a messy genetic algo-
rithm can be *overspecified (a bit is defined more than once) or *under-
specified (a bit is not defined at all). See *schema.

Metaheuristic

A *heuristic used by a *local search method. See *simulated annealing,
*tabu search, *local optimization.

Metaknowledge

Knowledge about knowledge. See *metarule.

M x
x

for x

for x
B() = − ≤

>

1
2

2

0 2

668 Glossary

Metarule

Rules that define how *conflict resolution and other aspects of an *expert
system work.

Metric

A measure that is used to quantify the performance of a system. See *fitness.

Minimax

An algorithm that is used by game-playing software to determine the best
move to make. The algorithm assumes that it is playing against a *rational
opponent and uses a *static evaluator at *leaf nodes. See *alpha–beta prun-
ing, *expectiminimax.

Mobile agent

An *agent that is capable of moving, either in the physical world or across
networks such as the Internet.

Modal logic

An extended version of a *classical logic that allows reasoning about cer-
tainty and possibility.

Modal operator, M

A logical operator that indicates that an expression is consistent with an
agent’s beliefs. See *modal logic, *nonmonotonic logic.

Modus ponens

A logical rule that is used in *deduction, which states that if A implies B,
and we know that A is true, then we can deduce that B is true:

Monotonicity

1. A search method is described as monotone if it always reaches a
given node by the shortest possible path.

2. A function that increases monotonically is one that never decreases
if its argument increases.

3. A logical system is described as being monotonic if a valid proof in
the system cannot be made invalid by adding additional premises

A A B
B

→

Glossary 669

or assumptions. In other words, if we find that we can prove a con-
clusion C by applying rules of deduction to a premise B with
assumptions A, then adding additional assumptions A� and B� will
not stop us from being able to deduce C.

See *nonmonotonic.

Morphologic analysis

Analysis of the structure of individual words within an *utterance in a
*human language. See *natural language processing, *semantic analysis,
*syntactic analysis, *pragmatic analysis.

Most general hypothesis

The most general hypothesis is defined as a vector such as <?, ?, ?, ?, ?, ?>,
which allows for any set of data values. See *most specific hypothesis,
*hypothesis.

Most general unifier (mgu)

A *unifier, u1, is called a most general unifier if any other unifier, u2, can
be expressed as the composition of u1 with some other substitution (i.e.,
u2 = u1 o u3).

A most general unifier is a unique unifier that provides the most general set
of *substitutions to unify a set of *clauses.

Most specific hypothesis

The most specific hypothesis is defined as a vector such as <∅, ∅, ∅, ∅, ∅,
∅>, which does not allow for any set of data values. See *most general
hypothesis, *hypothesis.

Motion field

The vectors that define the apparent motion in a still photograph. See
*optical flow.

Multiagent system

A system that uses a number of *agents to solve a single problem. See
*agent team, *collaboration, *intelligent agent.

Multilayer neural network

An artificial *neural network that has more than one layer of *neurons. See
*perceptron, *Hebbian learning, *Kohonen map, *Hopfield network.

670 Glossary

Multiple inheritance

The *inheritance of properties from more than one *frame or *class.

Multivalent logic

A logical system that has more than two logical values. See *bivalent logic,
*fuzzy logic.

Mutation

A *unary operator that flips a single bit within a *chromosome from zero
to one or from one to zero. See *crossover, *genetic algorithm.

Mutual exclusion (mutex)

In a *planning graph, a mutex exists between two actions or effects that are
mutually exclusive—in other words, they cannot both exist at the same
time. Hence, if a mutex exists between two actions and one action is taken,
then the other action cannot be taken.

MYCIN

A medical *expert system that uses *certainty factors to diagnose symptoms.

N
N-gram

A grouping of n letters (Some examples of trigrams that occur commonly
in English are ing, the, ant, and ize). N-grams are used to identify a language
from a piece of text, using the *acquaintance algorithm.

Naïve Bayes classifier

A system that uses *Bayes’ theorem to learn to classify data.

Natural language

See *human language.

Natural language processing (NLP)

The analysis of the *syntax, *semantics, *morphology, *phonology, and
*pragmatics of *utterances in *human languages. Natural language pro-
cessing is used to enable a computer system to “hear” spoken human lan-
guage, interpret the words, and carry out some action (such as a database
query) on the basis of the words.

Glossary 671

Nearest neighbor algorithm

An instance-based learning method. See *Shepard’s method.

Nearest neighbor heuristic

A *heuristic used to solve problems such as the traveling salesman
problem, which functions by extending the *path to the nearest unvis-
ited city.

Negation by failure

See *closed-world assumption, *PROLOG.

Neural network

A network of simple processing *nodes (*neurons), which is roughly mod-
eled on the human brain. See also *backpropagation, *bidirectional asso-
ciative memory, *Hebbian learning, *activation function, *hidden layer,
*Hopfield network, *linear threshold function, *multilayer neural network.

Neuro-fuzzy system

A *neural network that learns to classify data using *fuzzy rules and *fuzzy sets.

Neuron

The individual computation devices that make up the human brain. Neu-
rons are also the building blocks of artificial *neural networks. A neuron
generally takes in one or more inputs to which an *activation function is
applied. The result of this function is compared with the *activation level
to determine if the neuron should fire.

Node

1. A *neuron within an artificial *neural network.

2. The building block of *graphs, *nets, and *trees. A graph consists
of a set of nodes, which are connected by *edges. Each node repre-
sents a decision or a piece of data within the graph. See *leaf node,
*goal node, *and-node, *or-node.

Nonchronological backtracking

A form of *backtracking that involves using additional information about
the search problem to backtrack to a more helpful *node than the last one
in the *tree. See *chronological backtracking.

672 Glossary

Noncontingent

A logical statement whose *truth value is fixed and does not vary with cir-
cumstances is noncontingent. For example, A ∧ ¬A is always false, regard-
less of the value of A. See *contingent, *interpretation.

Nondirected graph

A *graph in which an *edge between two *nodes goes in both directions.
See *directed graph.

Nonmonotonic

In a nonmonotonic logical system, a valid proof can be made invalid by
adding additional premises or assumptions. See *monotonic, *abduction,
*circumscription, *classical logic, *default reasoning, *modal operator M,
*truth maintenance system.

Nonterminal symbol

A symbol in a *grammar that is used to represent a number of *terminal
symbols or nonterminal symbols.

Normal distribution

Also known as the Gaussian distribution or bell curve, the normal distribu-
tion is defined as follows:

Normalization

Normalization is the process whereby the *posterior probabilities of a pair
of variables are divided by the normalizing constant to ensure that they
sum to 1. The normalizing constant is defined as follows:

Noun

A word in a *human language that is used to define a thing, a person, a
place, or an abstract thing such as “happiness.” See *noun phrase, *verb.

α = () ⋅ () + ¬() ⋅ ¬()
1

P A B P B P A B P B

P x e dt
t

−∞() =
−

−∞

∞

∫,
1

2

2
2

π

Glossary 673

Noun phrase

A phrase that has the same properties within a *grammar as a noun and can
thus be used interchangeably with a noun, at least as far as the syntactic rules
of the grammar are concerned. For example, the following are all noun
phrases: America, a big green dog, the house that I lived in when I was younger.

NP-complete

A problem that is NP can be solved nondeterministically in polynomial time.
This means that if a possible solution to the problem is presented to the com-
puter, it will be able to determine whether it is a solution or not in polynomial
time. The hardest NP problems are termed NP-complete. All NP-complete
problems can be mapped directly onto the satisfiability problem.

O
Occam’s razor

The assertion that the simplest possible solution to a problem should
always be selected. See *inductive bias.

Occluding edge

A depth *discontinuity within a two-dimensional line drawing.

Opening book

A database of opening moves for use in playing games such as chess and
checkers.

Operator schema

A template that defines a number of operators within a *planning system.

Optical flow

The apparent motion within a still photograph. See *motion field.

Optimality

An optimal *search method is one that will find the solution that involves
taking the least number of steps to a *goal node, if such a solution exists.

Optimal path

The shortest *path from the *root node in a *search tree to a *goal node.

674 Glossary

Or-goal

A *goal that can be solved by solving any one of its *subgoals. Represented
in a *goal tree by an *or-node. See *problem reduction.

Or-node

A *node in a *goal tree that represents an *or-goal.

Overfitting

A problem that affects *learning systems, whereby the system performs well
at classifying the *training data but, due to fitting its model of the data too
closely to inaccurate training data, does not perform well at classifying
unseen data.

Overriding

The act of assigning a new value to an inherited default value.

Overspecified chromosome

A *chromosome where one or more bits have more than one value assigned
to them. See *messy genetic algorithm, *underspecified chromosome.

P
Parallel search

*Search methods that are designed to take advantage of multiple processor
computers by running parts of the search in parallel with each other.

Parser

A tool that breaks down a *sentence in a *human language to its compo-
nent parts by matching the sentence with the structure imposed by the lan-
guage’s *grammar.

Partial order

A relation on a set that is reflexive, transitive, and antisymmetric. For
example, ≤ defines a partial order on the set of integers. This can be proved
as follows:

a ≤ a for all integers. Hence, ≤ is reflexive.

a ≤ b ∧ b ≤ c → a ≤ c. Hence, ≤ is transitive.

a ≤ b ∧ b ≤ a ⇔ a = b. Hence, ≤ is antisymmetric.

Glossary 675

Partial order planning

A *planning method in which the order of actions that are not dependent
on each other is not necessarily defined.

Partial path

A *path in a *tree that leads from the *root node to a *leaf node that is not
a *goal node.

Path

A route through a *tree or *graph. The shortest path consists of just one
*node. Normally, a path consists of more than one node, connected
together by one or more edges.

Pattern matching

The identification of patterns in images, text, or other data by comparing
the data with a set of templates or regular expressions.

Perceptron

A simple *neuron that is used to classify input data into one of two cate-
gories. See *linearly separable function.

Phenotype

The physical characteristics of a creature, as determined by the creature’s
*genotype and its environment.

Pixel

A picture element. A single unit of light and color as displayed on a com-
puter screen.

Plan

A sequence of actions that has been determined by the act of *planning to
be a way to solve a particular problem.

Planning

The act of taking a starting state and a goal state and building a *plan that
consists of a sequence of actions that when carried out should lead from
the start state to the goal state. See *partial order planning, *case-based
planning, *atomic action, *STRIPS.

676 Glossary

Planning Domain Definition Language (PDDL)

A planning language that can be used to represent problems expressed in
*STRIPS or *ADL.

Planning graph

A *graph that contains a number of levels that represent states and actions
that is used by algorithms such as *GraphPlan to devise plans for solving
problems. See *GraphPlan, *mutual exclusion.

Plateau

A flat region in the *search space, where moving in any direction leads to
an area at the same height as the current height. See *hill climbing, *local
maximum, *global maximum.

Ply

One level in a *game tree.

Population

The complete collection of *chromosomes that a *genetic algorithm has
developed in a given generation.

Possible world

A universe that could logically exist but is not necessarily the same as the
one we live in now.

Posterior probability

The *probability of a variable given that we know that another variable is
true. The posterior probability of B is written P(B | A). See *prior probabil-
ity, *conditional probability.

Pragmatic analysis

The analysis of the real meaning of an *utterance in a human language, by
disambiguating and contextualizing the utterance. See *semantic analysis,
*syntactic analysis, *morphologic analysis, *natural language processing.

Precision

A measure of the success of an *information retrieval system. A system that
gives no *false positives has 100% precision. See *recall, *false negative.

Glossary 677

Precondition

A requirement that must be met for a particular action to be carried out by
a *planning system.

Predecessor

The *node immediately above a given node in a *tree. Each node has
exactly one predecessor, except for the root node, which has no predeces-
sors. See *ancestor, *descendant, *successor.

Predicate calculus

See *first-order predicate calculus.

Premises

A set of logical statements from which a conclusion is drawn using logical
*deduction.

Prenex normal form

An expression that is in *conjunctive normal form and in which all *quan-
tifiers are at the beginning is in prenex normal form.

Principle component analysis

Analysis of data by determining the features of the data that vary the most
greatly from one item to another.

Prior probability

The *probability of a variable, regardless of any other variables. The prior
probability of B is written P(B). See *posterior probability, *conditional
probability.

Prisoner’s Dilemma

A two-player game based on the following scenario:

Two prisoners have been arrested on suspicion of committing a crime.
They are kept in separate cells, and each is told that if he betrays his friend
he will receive a reward. If his friend does not betray him, then he will go
free, and receive a reward, while his friend is tortured. If both betray each
other, they will both be tortured, and if neither betrays the other, they will
be set free.

Probabilistic planning

*Planning in nondeterministic environments, in which an action will cause
an effect with a given probability.

678 Glossary

Probabilistic reasoning

Reasoning about the probabilities of events or attributes.

Probability

The probability of A is a measure of how likely it is that A will occur
under ordinary circumstances. This is written P(A). See *conditional
probability, *joint probability distribution, *posterior probability, *prior
probability.

Problem reduction

A method of solving problems by breaking each problem down into a
number of subproblems, each of which may in turn be further broken
down. By solving all of the subproblems and combining the results cor-
rectly, the original problem can be solved. See *goal reduction, *goal tree.

Procedural attachment

A *procedure that is associated with a *frame.

Procedure

A method that is associated with a *frame. Each procedure is a set of
instructions that can be executed on request. Some procedures are executed
automatically when particular events occur, such as upon creation. See
*demon, *procedural attachment.

Product rule

The rule used in *Hebbian learning to determine the extent to which the
weights attached to each *node are increased or decreased during learning.

Production rule

1. A rule used by an *expert system. Each rule has the form input ->
action or input -> diagnosis.

2. A rule used to define a part of a grammar. Each rule explains how
one *nonterminal symbol is made up of one or more terminal or
nonterminal symbols. See *rewrite rule.

Production system

See *expert system.

Glossary 679

PROLOG

(PROgramming in LOGic). A language that is widely used in Artificial
Intelligence research. PROLOG programs are based around a database of
facts and rules.

Propositional calculus

The language that is used to express the concepts of *propositional logic.

Propositional logic

A *monotonic logical system based around logical operators (such as, ∧, ∨,
and ¬) and proposition terms. See *classical logic, *first-order predicate
calculus, *propositional calculus.

Propositional planning

A *planning system that models plans purely using *propositional calculus.

Protected link

A *causal link is said to be protected when it is needed to establish the *pre-
conditions of an operator below it in the plan that is being developed.

Pruning

Cutting off sections of a *search tree that are (probably) not worth examin-
ing. See *alpha–beta pruning.

Pure AND-OR tree

A *goal tree that has the following properties: the *tree has an *or-node at
the top, each or-node has *and-nodes as its direct *successors, and each
and-node has or-nodes as its direct successors. Another condition of a pure
AND-OR tree is that it does not have any *constraints that affect which
choices can be made. A *game tree is a pure AND-OR tree.

Q
Quantifier

See *universal quantifier, *existential quantifier, *first-order predicate logic.

R
Ramification problem

The problem of identifying all consequences of an action including trivial
ones or ones that are hard to foresee. See *frame problem.

680 Glossary

Rationality

An *agent or other computer program that behaves rationally is one that
acts to maximize some *utility function. In playing games, for example, a
rational opponent is one that is attempting to win. An irrational opponent
would be one that wanted to win but did not always play its best move.

Reactive agent

An *agent that simply responds to inputs from its environment. A reactive
agent has a set of rules (like an *expert system) that instruct it how it
should behave based on any given input from the environment.

Recall

A measure of the success of an *information retrieval system. A system that
gives no *false negatives has 100% recall. See *precision, *false negative.

Recurrent network

A *multilayer neural network that is able to feed information back from its
outputs to its inputs, and thus is able to act as a *memory.

Recursively enumerable

A class of *grammars that has no restrictions on the *rewrite rules that can
be used to define the grammar. Recursively enumerable grammars are also
known as unrestricted grammars. See *context-sensitive grammar, *con-
text-free grammar.

Reductio ad absurdum

A rule that states that if we assume that some expression E is false, and by a
process of logical deduction starting from this assumption can deduce fal-
sum, then E must in fact be true. See *refutation proof.

Reflex agent

See *reactive agent.

Refutation proof

A method that proves a logical *deduction is valid by first negating the con-
clusion and then using the resulting *clauses to deduce falsum. See *resolu-
tion, *reductio ad absurdum.

Regular expression

A *sentence defined by a *regular grammar.

Glossary 681

Regular grammar

A *grammar that defines the syntax of a *regular language.

Regular language

The simplest *grammar from *Chomsky’s hierarchy of grammars. A simple
language is one that can be described by a *finite state automaton.

Reinforcement learning

A *learning system that uses positive reinforcement when it succeeds and
negative reinforcement when it fails. See *bucket-brigade algorithm,
*credit assignment.

Relative likelihood

The relative likelihood of two hypotheses, H1 and H2, given evidence E is
defined as follows:

The relative likelihood thus tells us how much more likely one explanation
is than another for a piece of observed evidence.

Relaxed problem

A version of a *combinatorial problem that has fewer *constraints.

Replanning

The process of devising a new *plan during *execution when circumstances
have changed such that the existing plan is no longer suitable—for exam-
ple, because one of the *preconditions of the next planned action is no
longer satisfied.

Representation

A model used by a computer to represent a real-world situation or to store
some data that are used in solving a problem.

Representational adequacy

The ability of a representational system to represent different situations is
measured by representational adequacy. If representational system A can
model more situations than representational system B, then A has a higher
representational adequacy than B.

P H E

P H E
1

2

()
()

682 Glossary

Resolution

A method used in *propositional logic and *first-order predicate logic to
prove theorems by *contradiction. See *unification, *skolemization,
*skolem normal form, *most general unifier, *substitution.

Rete

A directed, acyclic *graph or *tree used by *expert systems to make the
process of modifying stored facts in the database efficient.

Rewrite rule

See *production rule.

Ridge

A narrow high region in a *search space that can cause problems for search
methods such as *hill climbing.

Robot

A physical *agent. A robot can take many forms, such as an arm, an insect,
or a bucket on wheels.

Robotic agent

See *robot, *software agent.

Root goal

The overall *goal of a problem that is being solved by *problem reduction.
The root goal is represented by the *root node of the *goal tree.

Root node

The only *node in a *tree that has no predecessor. The top node in the tree.

Rote learning

*Learning by simply storing each piece of *training data and its classification.

Roulette-wheel selection

A method that is used to make a random selection in which some items are
more likely to be selected than others. Roulette-wheel selection is used, for
example, to select *chromosomes to reproduce in *genetic algorithms.

Glossary 683

Rule

A method of *representing the *knowledge used by a *rule-based system.
Each rule has an *antecedent and a *consequent. A rule can be written A →
B or IF A THEN B, which are equivalent.

Rule-based system

A system whose behavior in a given situation is defined by a set of rules. See
*production system, *expert system.

S
Satisfiability

An expression is satisfiable if it true under some *interpretation.

SAT planning

A method of determining whether a suitable *plan exists to solve a given
problem. The problem is represented as a set of expressions, and if those
expressions can be shown to be *satisfiable, then a plan can be devised to
solve the problem.

Scheduling

A method for allocating resources to machines (or other agents).
Scheduling takes account of the time each task takes, which can be com-
pared with *planning in which the time taken to carry out each task is
usually ignored.

Schema

A template used to represent a set of *chromosomes, using the symbol * to
represent any value. See *messy genetic algorithm, *genetic algorithm.

Schema theorem

A theorem that states that short, low-order schemata that are fitter than the
average fitness of the population will appear with exponentially increasing
regularity in subsequent generations. See *genetic algorithm, *schema.

Script

A structured *representation for a scenario that involves a sequence of
events, such as buying a house or going to a restaurant.

684 Glossary

Search

The process of locating a solution to a problem by systematically looking at
nodes in a *search tree or *search space until a *goal node is located. See
*heuristic, *blind search method, *informed search method.

Search space

The set of possible permutations that can be examined by a *search method in
order to find a solution. The search space represents every possible solution
and all the arrangements that do not satisfy the problem’s *constraints.

Search tree

A *tree that is used to represent a *search problem and is examined by a
search method to search for a solution.

Segmentation

The process of breaking an image down into homogeneous areas. See *edge
detection, *image recognition.

Semantic analysis

The analysis of the meaning of words in an *utterance in a human lan-
guage. See *syntactic analysis, morphologic analysis, *pragmatic analysis,
*natural language processing.

Semantic net

A *graph in which the *nodes represent objects and the *edges between
nodes represent relationships between the objects. See *semantic tree.

Semantic tree

A *semantic net in which each *node has exactly one *predecessor, apart
from the *root node, which has none.

Sentence

See *well-formed formula.

S-expression

A symbolic expression used by *LISP as either data or as a program to
be executed.

Glossary 685

Shepard’s method

A variant of the *nearest neighbor algorithm in which the contribution of
each neighbor is determined by its distance from the point that is being
classified.

Sigmoid function

A mathematical function that is defined as follows:

The sigmoid function is often used as the *activation function in *back-
propagation *neural networks because it is easy to differentiate.

Sign activation function

A mathematical function that is usually used as the *activation function in
*Hopfield networks:

Simulated annealing

A *local search method based on the way in which metal or glass can be
made very strong by being heated and then cooled very slowly.

Situated action rule

A *rule used by an *augmented finite state automaton that takes the form
input -> action.

Situation calculus

A form of *first-order predicate calculus that is able to represent change
and the way in which variables relate to each other over time.

Situation variable

A variable used in a *situation calculus expression that represents the situ-
ation that that expression represents. For example, in the following expres-
sion, S1 is the situation variable:

∃x(In(Robot, x, S1) ∧ In(cheese, x, S1))

Sign X
for X

for X
() =

+ >
− <

1 0

1 0

σ x
e x() =

+ −
1

1

686 Glossary

Skolem constant

A variable that is used to replace an *existentially quantified variable when
*skolemizing an expression.

For example, the expression ∃x.x → b would be skolemized as x → c, where
c is the skolem constant.

Skolem function

A function that is used to replace an *existentially quantified variable that
comes after a *universal quantification when *skolemizing an expression.

For example, ∀x ∃y (x ∧ y) → b would be skolemized as ∀x (x ∧ f(x)) → b),
where f(x) is the skolem function.

Skolemization

The process of replacing an *existentially quantified variable in an expres-
sion with a *skolem constant or *skolem function. Skolemization is a part
of the process of *resolution and results in an expression that is in *skolem
normal form.

Skolem normal form

The normal form produced by applying the process of *skolemization to
an expression.

Slipnet

A structure that represents the long-term memory of the *copycat architecture.

Slot

A named variable that is used in a *frame system to store an item of data.

Slot reader

A *procedure that returns the value that is stored in a *slot.

Slot value

The item of data that is stored in a *slot in a *frame system.

Slot writer

A *procedure that inserts a value into a *slot.

Smart agent

A fully *autonomous, *intelligent, cooperative *agent. Smart agents are the
ultimate goal of *agent research.

Glossary 687

Smoothing

The process of removing noise from an image. See *convolution.

Software agent

An *agent that exists only as a computer program, as compared with a
*robotic agent.

Soundness

A logical system is sound if every *theorem is a *tautology. See *completeness.

Spidering

The process of retrieving documents from the Internet by following hyper-
text links from one page to another. Spidering systems usually follow some
search strategy such as *depth-first or *breadth-first search.

Stack

A data structure that stores its data sequentially and has just two operators:
“push,” which places a new item onto the top of the stack, and “pop,” which
removes the top item from the stack. A stack is a “LIFO” or last-in-first-out
data structure.

State

The set of variables that define the current situation in a *world model.

State space

See *search space.

Static evaluator

A function used to evaluate a single position in a game, such as chess.

Stemming

The process of removing suffixes from words to render words with a com-
mon stem into the same form. For example, the following words would all
be stemmed to swim: swimmer, swimming, swimmers, swims. Most stem-
mers would not successfully convert swam or swum into swim. Stemmers
are used in *information retrieval systems to increase *recall.

Stop list

A list of words that an *information retrieval system is instructed to ignore
in queries and in the corpus it is searching against. The stop list usually
contains extremely common words such as and, the, and of.

688 Glossary

STRIPS

An operator-based *planning approach and the corresponding planning lan-
guage that uses *well-formed formulae to represent the *state of the world.

STRIPS assumption

The assumption used by *STRIPS *planning systems that any statement
that is true before applying an operator is also true after applying the oper-
ator, unless it is included in the operator’s delete list.

Strong AI

The belief that a computer system that is given sufficient processing power
and sufficiently powerful artificial intelligence would actually be capable of
having mental states in the way that humans are. See *weak AI.

Strong methods

Artificial Intelligence methods that rely on systems with a great deal of
knowledge built in. See *expert system, *weak methods.

Subclass

The *class that *inherits the properties of a *superclass.

Subgoal

See *subproblem.

Subproblem

One of the smaller problems into which a large problem is broken down by
the process of *problem reduction. By achieving all of the subproblems of a
problem, the complete problem can be solved.

Subset

Set A is a subset of set B if A is wholly contained by B. For example, the set
of all men is a subset of the set of all humans.

Substitution

The process of replacing a *free variable in an expression with another free
variable in order to facilitate the process of *unification. See *resolution.

Subsumption architecture

A layered architecture designed for the control of reactive *robotic agents.

Glossary 689

Success node

An *and-node in a *goal tree that is a *leaf node.

Successor

The *node immediately below a given node in a *tree. Each node has one or
more successors, except for leaf nodes, which have no successors. See
*ancestor, *descendant, *predecessor.

Superclass

The *class from which a subclass *inherits certain properties.

Supervised learning

A form of *learning method in which the learning system is presented with
a set of preclassified data before being expected to classify unseen data. See
*backpropagation, *competitive learning, *unsupervised learning.

Syllogism

A logical argument that contains a set of statements (premises) from which
is logically derived a conclusion. An example of a syllogism is:

All cats have two ears.

Mavis is a cat.

Therefore, Mavis has two ears.

Synapse

A connection between two *neurons in the human brain.

Syntactic analysis

The analysis of the grammatical or syntactic structure of an *utterance in a
*human language. See *parser.

T
Tabu search

A *metaheuristic that uses a list of states that have already been visited to
attempt to avoid repeating *paths.

Tautology

An expression that is true under all *interpretations.

690 Glossary

Temporal logic

A form of *modal logic that was designed to reason about change and the
effects of time.

Term

A *constant, a variable, or a function of terms in *first-order predicate calculus.

Term frequency - Inverse document frequency (TF-IDF)

A method used in *information retrieval to identify words that occur rarely
in a *corpus of text, but frequently in a particular document.

Terminal symbol

A symbol used in expressing a *grammar for a language that represents a
real word that appears in the language. See *nonterminal symbol.

Texel

A single *texture element that is repeated in an image to produce an area of
a particular texture.

Texture

A perceived pattern on the surface of an object in an image. See *texel,
*image recognition.

Theorem

A theorem of a logical system is a statement that can be proved by applying
the rules of *deduction to the axioms in the system.

Three-coloring problem

See *map coloring.

Tit for tat

A strategy employed when playing the *Prisoner’s Dilemma game. The
strategy involves cooperating on the first iteration of the game, and then
for each subsequent iteration, doing what the opponent did in the previous
iteration.

Top down

An approach to solving problems that involves recursively breaking a prob-
lem down into smaller *subproblems until trivial problems are obtained
and the whole problem can be solved. See *bottom up, *problem reduction.

Glossary 691

Towers of Hanoi

A problem that involves moving a number of discs from one peg to
another. The *constraints that are applied are that no disc can ever be
placed on top of a smaller disc and that a disc cannot be moved if it has
another disc on top of it.

Training

The process of teaching a *learning system to classify data by showing it
preclassified *training data.

Training data

The preclassified data that is shown to a *learning system in the *train-
ing phase.

Transition network

A *finite state automaton used to represent a part of a *grammar.

Trihedral vertex

A vertex at which three faces meet.

Truth maintenance system (TMS)

A system that stores a set of beliefs along with information about how those
beliefs were derived. The TMS is able to use this information to retract beliefs
if conflicting information later arrives. See *nonmonotonic reasoning.

Truth table

A table that represents the behavior of a logical operator by showing the
possible input *truth values for the operator and the corresponding output
truth values.

Truth value

A representation of whether an expression is correct or not. In *classical
logic, the truth values are true and false. In *multivalent logics, there are more
truth values. *Fuzzy logic has an infinite range of truth values from 0 to 1.

Turing Test

A test devised by Alan Turing to determine whether an attempt to create a
truly intelligent computer has been successful or not, by seeing whether the
computer can fool a human into thinking that it might actually be human
too. See *strong AI.

692 Glossary

U
Unary operator

A logical or mathematical operator that takes just one argument, such as ¬
(logical negation).

Uncertainty

A lack of knowledge about the world. Most real-world problems are full of
uncertainty, but many Artificial Intelligence techniques deal very poorly
with uncertainty.

Underspecified chromosome

A *chromosome in which one or more bits do not have any value assigned
to them. See *messy genetic algorithm, *Overspecified chromosome.

Unification

The process of applying a *substitution to a set of *clauses that enables
those clauses to be *resolved.

Unifier

A *substitution that is applied to a set of clauses to enable those clauses to
be resolved.

Uniform crossover

A form of *crossover in which a probability, p, is used to determine
whether a given bit from parent 1 will be used or from parent 2.

Uniform tree

A *tree in which each non-leaf *node has the same *branching factor.

Uninformed Search

A *search method that does not use *heuristics.

Universal quantifier

The quantifier ∀, which can be read “for all” and indicates that a property
holds for all possible values of the quantified variable. Hence, ∀x.P(x) can
be read as “for all values of x, P(x) is true.” See *existential quantifier, *first-
order predicate calculus.

Universe of discourse

The range of possible values for a *linguistic variable.

Glossary 693

Unsupervised learning

A form of *learning method that does not require training or any other human
intervention. See *Hebbian learning, *Kohonen map, *supervised learning.

Utility-based agent

An *agent that seeks to maximize some *utility function.

Utility function

A function that defines for any state how successful an *agent has been. A
high utility function is the goal of any *rational agent.

Utterance

A *sentence or partial sentence in a *human language that is spoken or
written by a human being or by an agent.

V
Validity

A logical *deduction is valid if its conclusions follow logically from its premises.

Vanishing point

The point to which perspective causes all parallel lines to appear to vanish.

Verb

A word in a *human language that is used to define an action. See *verb
phrase, *noun.

Verb phrase

A phrase that has the same properties within a *grammar as a *verb and can
thus be used interchangeably with a verb, at least as far as the syntactic rules of
the grammar are concerned. For example, the following are all verb phrases:
jump, jump over the moon, jumping over the table which is next to the door.

Version space

The set of *hypotheses that correctly map each of a set of *training data to
its classification.

W
Weak AI

The view that intelligent behavior can be modeled and used by computers
to solve complex problems. See *strong AI.

694 Glossary

Weak methods

Artificial Intelligence methods that use logic or other representational sys-
tems to solve problems but do not rely on any real-world knowledge. See
*strong methods.

Weight

A value associated with each connection between *neurons in an artificial
*neural network that indicates how important that connection is and how
much of a role in the learning process that connection plays.

Weighted linear function

A function that takes the form ax + by + cz + . . . , where a number of vari-
ables (in this case x, y, z. . .) are each multiplied by a weight (in this case a,
b, c. . .) and the results summed.

Weight vector

A vector that represents the *weights of all connections from a given *neu-
ron in an artificial *neural network.

Well-formed formula (wff)

An expression that is correctly constructed according to the syntactic rules
of *propositional calculus or *first-order predicate calculus.

WHEN-CHANGED procedure

A *procedure that is run automatically whenever the value of a *slot is changed.

WHEN-NEEDED procedure

A *procedure that is run automatically when the value of a given *slot
needs to be determined.

WHEN-READ procedure

A *procedure that is run automatically whenever the value of a *slot is read.

WHEN-WRITTEN procedure

See *WHEN-CHANGED procedure.

Winner takes all algorithm

The algorithm used by *Kohonen maps to assign credit to nodes in the net-
work. See *competitive learning, *credit assignment.

Glossary 695

Workspace

A data structure similar to a *blackboard that is used by the *copycat
architecture.

World model

A representation of the state of the world or environment as it affects an
*agent.

Z
Zero sum game

A game in which if one player wins, the other player loses.

This page intentionally left blank

Bibliography

A
Introduction to Artificial Life, by Christoph Adami (1997 – Telos)

Natural Language Understanding, by James Allen (1995 – Addison Wesley)

Reasoning About Plans, by James F. Allen, Henry A. Kautz, Josh Tenenberg,
and Richard Pelavin (1991 – Morgan Kaufmann)

2D Object Detection and Recognition: Models, Algorithms, and Networks, by
Yali Amit (2002 – MIT Press)

Nonmonotonic Reasoning, by Grigoris Antoniou (1997 – MIT Press)

The Handbook of Brain Theory and Neural Networks: Second Edition, edited
by Michael A. Arbib (2002 – MIT Press)

Behavior-Based Robotics, by Ronald C. Arkin (1998 – MIT Press)

Real-Time and Multi-Agent Systems, by Ammar Attoui (2000 – SpringerVerlag)

Genetic Algorithm for the Prisoner Dilemma Problem, by R. Axelrod (1987 -
in Genetic Algorithms and Simulated Annealing, edited by L. Davis – Hyper-
ion Books)

B
Handbook of Evolutionary Computation, edited by T. Bäck, D. B. Fogel, and
Z. Michalewicz (1997- Institute of Physics Publishing)

Francis Bacon: The New Organon, by Francis Bacon; edited by Lisa Jardine
and Michael Silverthorne (2002 – Cambridge University Press)

698 Bibliography

Modern Information Retrieval, by Ricardo Baeza-Yates and Berthier
Ribeiro-Neto (1999 – Addison Wesley)

Modeling the Internet and the Web: Probabilistic Methods and Algorithms, by
Pierre Baldi, Paolo Frasconi, and Padhraic Smyth (2003 – John Wiley &
Sons)

Genetic Programming: An Introduction: On the Automatic Evolution of Com-
puter Programs and Its Applications, by Wolfgang Banzhaf, Peter Nordin,
Robert E. Keller, and Frank D. Francone (1997 – Morgan Kaufmann)

Knowledge Representation, Reasoning and Declarative Problem Solving, by
Chitta Baral (2003 – Cambridge University Press)

The Handbook of Artificial Intelligence, edited by A. Barr and E. Feigenbaum
(1989 – William Kaufman)

Intelligent Machine Vision: Techniques, Implementations and Applications,
by Bruce G. Batchelor and Frederick M. Waltz (2001 – Springer Verlag)

Digital Biology, by Peter Bentley (2002 – Simon & Schuster)

Bayesian Theory, by José M. Bernardo and Adrian F. M. Smith (2001 – John
Wiley & Sons)

Neural Networks for Pattern Recognition, by Christopher M. Bishop (1996 –
Oxford University Press)

Fundamentals of Expert System Technology: Principles and Concepts, by
Samuel J. Biondo (1990 – Intellect)

Recent Advances in AI Planning, by Susanne Biundo and Maria Fox (2000 –
Springer Verlag)

Fast Planning Through Planning Graph Analysis, by A. Blum and M. Furst
(1997 – in Artificial Intelligence, Vol. 90, pp. 281–300)

A Logical Theory of Nonmonotonic Inference and Belief Change, by Alexan-
der Bochman (2001 – Springer Verlag)

The Philosophy of Artificial Life, by Margaret A. Boden (1996 – Oxford Uni-
versity Press)

Swarm Intelligence: From Natural to Artificial Systems, by Eric Bonabeau,
Marco Dorigo, and Guy Theraulaz (1999 – Oxford University Press)

Understanding 99% of Artificial Neural Networks: Introduction & Tricks, by
Marcelo Bosque (2002 – Writers Club Press)

Bibliography 699

Advances in Image Understanding: A Festschrift for Azriel Rosenfeld, edited
by Kevin W. Bowyer and Narendra Ahuja (1996 – Wiley IEEE Press)

Software Agents, edited by Jeffrey M. Bradshaw (1997 – AAAI Press)

Robot Motion: Planning and Control, edited by Michael Brady, John Holler-
bach, Timothy Johnson, Tomás Lozano-Pérez, and Matthew T. Mason
(1983 – MIT Press)

Empirical Analysis of Predictive Algorithms for Collaborative Filtering, by
John S. Breese, David Heckerman, and Carl Kadie (1998 – in Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann)

Nonmonotonic Reasoning: An Overview, by Gerhard Brewka, Jürgen Dix,
and Kurt Konolige (1995 – Cambridge University Press)

Nonmonotonic Reasoning: From Theoretical Foundation to Efficient Compu-
tation, by G. Brewka (1991 – Cambridge University Press)

Cambrian Intelligence: The Early History of the New AI, by Rodney A.
Brooks (1999 – MIT Press)

Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuris-
tic Programming Project, by B. G. Buchanan and E. H. Shortliffe (1984 –
Addison Wesley)

Propositional Logic: Deduction and Algorithms, by Hans Kleine Büning and
Theodor Lettmann (1999 – Cambridge University Press)

A Resolution Principle for a Logic with Restricted Quantifiers, by H. J. Burck-
ert (1992 – Springer Verlag)

C
The Essence of Neural Networks, by Robert Callan (1999 – Prentice Hall)

Prolog Programming for Students: With Expert Systems and Artificial Intelli-
gence Topics, by David Callear (2001 – Continuum)

Efficient and Accurate Parallel Genetic Algorithms, by Erick Cantu-Paz (2002
– Kluwer Academic Publishers)

Plan Recognition in Natural Language Dialogue, by Sandra Carberry (1990
– MIT Press)

Neural Networks for Vision and Image Processing, edited by Gail A. Carpen-
ter and Stephen Grossberg (1992 – MIT Press)

700 Bibliography

Symbolic Logic and Game of Logic, by Lewis Carroll (Published in one vol-
ume – 1958 – Dover Books)

Expert Systems and Probabilistic Network Models, by Enrique Castillo, Jose
Manuel Gutierrez, and Ali S. Hadi (1997 – Springer Verlag)

The Essence of Artificial Intelligence, by Alison Cawsey (1998 – Prentice
Hall)

Artificial Intelligence, by Jack Challoner (2002 – Dorling Kindersley, Essen-
tial Science)

Practical Handbook of Genetic Algorithms, by Lance Chambers (1995 – CRC
Press)

Symbolic Logic and Mechanical Theorem Proving, by Chin-Liang Chang and
Richard Char-Tung Lee (1973 – Academic Press)

Introduction to Artificial Intelligence, by Eugene Charniak and Drew
McDermott (1985 – Addison Wesley; out of print)

Genetic Algorithms and Genetic Programming in Computational Finance,
edited by Shu-Heng Chen (2002 – Kluwer Academic Publishers)

Learning from Data: Concepts, Theory, and Methods, by Vladimir
Cherkassky and Filip Mulier (1998 – Wiley Interscience)

The Computational Brain, by Patricia S. Churchland and Terrence J.
Sejnowski (1992 – The MIT Press)

An Introduction to Genetic Algorithms for Scientists and Engineers, by David
A. Coley (1999 – World Scientific Publishing Company)

Adaptive Parallel Iterative Deepening Search, by Diane J. Cook and R. Craig
Varnell (1998 – in Journal of Artificial Intelligence Research, Vol. 9, pp.
139–166)

Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein (2001 – MIT Press)

Probabilistic Networks and Expert Systems, edited by Robert G. Cowell
(1999 – Springer Verlag)

The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, &
Maintaining Fuzzy Systems, by Earl Cox (1999 – Morgan Kaufmann)

Fuzzy Logic for Business and Industry, by Earl Cox (2000 – Charles River
Media)

Bibliography 701

AI: The Tumultuous History of the Search for Artificial Intelligence, by Daniel
Crevier (1999 – Basic Books)

The Turing Test and the Frame Problem: AI’s Mistaken Understanding of
Intelligence, by Larry J. Crockett (1994 – Intellect)

D
The Origin of Species, by Charles Darwin (1859 – reprinted, by Penguin)

Artificial Immune Systems and Their Applications, edited by Dipankar Das-
gupta (1999 – Springer Verlag)

Multiobjective Heuristic Search: An Introduction to Intelligent Search Meth-
ods for Multicriteria Optimization, by Pallab Dasgupta, P. P. Chakrabarti,
and S. C. Desarkar (1999 - Friedrich Vieweg & Sohn)

Socially Intelligent Agents - Creating Relationships with Computers and
Robots, edited by Kerstin Dautenhahn, Alan H. Bond, Lola Canamero, and
Bruce Edmonds (2002 – Kluwer Academic Publishers)

Machine Vision: Theory, Algorithms, Practicalities, by E. R. Davies (1996 –
Academic Press)

Adaptive Learning, by Genetic Algorithms: Analytical Results and Applica-
tions to Economic Models, by Herbert Dawid (1999 – Springer Verlag)

The Blind Watchmaker, by Richard Dawkins (1996 – W. W. Norton & Com-
pany)

Artificial Immune Systems: A New Computational Intelligence Paradigm, by
Leandro N. de Castro and Jonathan Timmis (2002 – Springer Verlag)

A Generalization of Bayesian Inference, by A. P. Dempster (1968 - in Journal
of the Royal Statistical Society Vol. 30 (pp. 205–217))

Bayesian Methods for Nonlinear Classification and Regression, by David
G. T. Denison, Christopher C. Holmes, Bani K. Mallick, and Adrian F. M.
Smith (2002 – John Wiley & Sons)

Brainstorms: Philosophical Essays on Mind and Psychology, by Daniel Den-
nett (1978 – Bradford)

Consciousness Explained, by Daniel Dennett (1992 – Little, Brown & Co.)

Probabilistic Theory of Pattern Recognition, by Luc Devroye, Laszlo Gyorfi,
and Gabor Lugosi (1998 – Springer Verlag)

702 Bibliography

Understanding Agent Systems, edited by Mark D’Inverno and Michael Luck
(2001 – Springer Verlag)

A Truth Maintenance System, by Jon Doyle (1979 – in Computation & Intel-
ligence – Collected Readings, edited by George F. Luger, The MIT Press)

What Computers Still Can’t Do, by Hubert L. Dreyfus (1999 – The MIT
Press)

An Introduction to Fuzzy Control, by Dimiter Driankov, Hans Hellendoorn
and M. Reinfrank (1996 – Springer Verlag)

How to Solve it, by Computer, by R. G. Dromey (1982 – out of print)

Artificial Intelligence: Strategies, Applications, and Models Through Search,
by Benedict Du Boulay and Christopher James Thornton (1999 – AMA-
COM)

E
Intelligent Agents for Mobile and Virtual Media, edited by Rae Earnshaw,
John Vince, and Margaret A. Arden (2002 – Springer Verlag)

Neural Darwinism: The Theory of Neuronal Group Selection, by Gerald M.
Edelman (1990 – Oxford University Press)

Computational Intelligence: An Introduction, by Andries P. Engelbrecht
(2003 – John Wiley & Sons)

Predicate Logic: The Semantic Foundations of Logic, by Richard L. Epstein
(2000 – Wadsworth Publishing)

Propositional Logics: The Semantic Foundations of Logic, by Richard L.
Epstein (2000 – Wadsworth Publishing)

F
Fuzzy Control: Synthesis and Analysis, edited by Shehu S. Farinwata, Dimi-
tar P. Filev, and Reza Langari (2000 – John Wiley & Sons)

Three-Dimensional Computer Vision, by Olivier Faugeras (1993 – MIT
Press)

Fundamentals of Neural Networks, by Laurene V. Fausett (1994 – Prentice
Hall)

STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving, by Richard E. Fikes and Nils J. Nilsson (1971 – in Computation &
Intelligence, edited by George F. Luger, 1995, MIT Press)

Bibliography 703

Artificial Intelligence: A Knowledge-Based Approach, by Morris W. Firebaugh
(1988 – Boyd & Fraser Publishing Company – out of print)

The Anatomy of Programming Languages, by Alice E. Fischer and Frances S.
Grodzinsky (1993 – Prentice Hall)

Blondie 24: Playing at the Edge of AI, by David B. Fogel (2001 – Morgan
Kaufmann)

Evolutionary Computation in Bioinformatics, edited by Gary B. Fogel and
David W. Corne (2002 – Morgan Kaufmann)

The Robots Dilemma Revisited: The Frame Problem in Artificial Intelligence,
by Kenneth M. Ford and Zenon W. Pylyshyn (1996 – Ablex Publishing)

Computer Vision: A Modern Approach, by David A. Forsyth and Jean Ponce
(2002 – Prentice Hall)

Parallel Computing Works, by G. C. Fox, R. D. Williams, and P. C. Messina
(1994 – Morgan Kaufmann)

Understanding Artificial Intelligence (Science Made Accessible), compiled by
Sandy Fritz (2002 – Warner Books)

G
Handbook of Logic in Artificial Intelligence and Logic Programming: Nonmo-
notonic Reasoning and Uncertain Reasoning, edited by Dov M. Gabbay, J. A.
Robinson, and Christopher John Hogger (1994 – Oxford University Press)

Bayesian Data Analysis, by Andrew Gelman, Donald B. Rubin, and Hal S.
Stern (2003 – CRC Press)

Genetic Algorithms and Engineering Optimization, by Mitsuo Gen and Run-
wei Cheng (1991 – Wiley Interscience)

Expert Systems: Principles and Programming, by Joseph C. Giarratano (1998
– Brooks Cole)

Tabu Search, by Fred W. Glover and Manuel Laguna (1998 – Kluwer Acade-
mic Publishers)

Genetic Algorithms in Search, Optimization and Machine Learning, by David
E. Goldberg (1989 – Addison Wesley)

Messy Genetic Algorithms: Motivation, Analysis and First Results, by D. E.
Goldberg (1989 - in Complex Systems, Vol. 3, pp. 493–530)

704 Bibliography

Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic
Algorithms, by David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and
Georges Harik (1993 – in Proceedings of the Fifth International Conference
on Genetic Algorithms, pp. 56–64, Morgan Kaufmann)

Dynamic Vision: From Images to Face Recognition, by Shaogang Gong,
Stephen J. McKenna, and Stephen J. McKenna (2000 – Imperial College
Press)

Creation: Life and How to Make It, by Steve Grand (2001 – Harvard Univer-
sity Press)

Cross-Language Information Retrieval, edited by Gregory Grefenstette
(1998 – Kluwer Academic Publishing)

Managing Uncertainty in Expert Systems, by Jerzy W. Grzymala-Busse (1991
– Kluwer Academic Publishers)

An Introduction to Neural Networks, by Kevin Gurney (1997 – UCL Press)

H
From Animals to Animats 7: Proceedings of the Seventh International Confer-
ence on Simulation of Adaptive Behavior, edited by Bridget Hallam, Dario
Floreano, John Hallam, Gillian Hayes, and Jean-Arcady Meyer (2002 – MIT
Press; also available are the proceedings from the first to sixth conferences)

Computer and Robot Vision (Volume II), by Robert M. Haralick and Linda
G. Shapiro (2002 – Pearson Education)

Algorithmics: The Spirit of Computing, by David Harel (1987 – Addison
Wesley)

Expert Systems: Artificial Intelligence in Business, by Paul Harmon (1985 –
John Wiley & Sons – out of print)

Artificial Intelligence: The Very Idea, by J. Haugeland (1985 – The MIT
Press)

Practical Genetic Algorithms, by Randy L. Haupt and Sue Ellen Haupt (1998
– Wiley Interscience)

Foundations of Computational Linguistics: Human-Computer Communica-
tion in Natural Language, by Roland R. Hausser (2001 – Springer Verlag)

Neural Networks: A Comprehensive Foundation, by Simon S. Haykin (1998 –
Prentice Hall)

Bibliography 705

The Organisation of Behavior: A Neuropsychological Theory, by D. O. Hebb
(1949 – republished in 2002, by Lawrence Erlbaum Assoc.)

Probabilistic Interpretations for Mycin’s Certainty Factors, by O. Heckerman
(1986 – in Uncertainty in Artificial Intelligence, edited by L. N. Kanal and
J. F. Lemmer, Elsevier Science, pp. 167–196)

Silicon Second Nature: Culturing Artificial Life in a Digital World, by Stefan
Helmreich (2000 – University of California Press)

Information Retrieval, by William R. Hersh (2002 – Springer Verlag)

Fuzzy and Neural Approaches in Engineering, by J. Wesley Hines (1997 –
Wiley Interscience)

Visual Intelligence: How We Create What We See, by Donald D. Hoffman
(1998 – W. W. Norton & Company)

Braitenberg Creatures, by David W. Hogg, Fred Martin, and Mitchel Resnick
(1991 - originally published as Epistemology and Learning Memo #13)

Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, by John H. Hol-
land (1992 – MIT Press)

Robot Vision, by Berthold K. Horn (1986 – McGraw Hill Higher Education)

Behind Deep Blue: Building the Computer That Defeated the World Chess
Champion, by Feng-Hsiung Hsu (2002 – Princeton University Press)

Spoken Language Processing: A Guide to Theory, Algorithm and System
Development, by Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj
Reddy (2001 – Prentice Hall)

I
Natural Language Processing and Knowledge Representation: Language for
Knowledge and Knowledge for Language, edited by Lucja M. Iwanska and
Stuart C. Shapiro (2000 – AAAI Press)

J
Introduction to Expert Systems, by Peter Jackson (1999 – Addison Wesley)

Introduction to Artificial Intelligence, by Philip C. Jackson (1985 – Dover
Publications)

706 Bibliography

Natural Language Processing for Online Applications: Text Retrieval, Extrac-
tion, and Categorization, by Peter Jackson and Isabelle Moulinier (2002 –
John Benjamins Publishing Company)

Text-Based Intelligent Systems: Current Research and Practice in Information
Extraction and Retrieval, edited by Paul Schafran Jacobs (1992 – Lawrence
Erlbaum Assoc.)

Increased Rates of Convergence Through Learning Rate Adaptation, by R. A.
Jacobs (1987 - in Neural Networks, Vol. 1, pp. 295–307)

Spotting and Discovering Terms through Natural Language Processing, by
Christian Jacquemin (2001 – MIT Press)

Machine Vision, by Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck
(1995 –McGraw Hill)

Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient
Systems, edited by Mohammad Jamshidi, Andre Titli, Lotfi Zadeh, and
Serge Boverie (1997 – Prentice Hall)

Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning
and Machine Intelligence, by Jyh-Shing Roger Jang, Chuen-Tsai Sun, and
Eiji Mizutani (1996 – Prentice Hall)

Simulated Annealing for Query Results ranking, by B. J. Jansen (1997 – in
ACM Computer Science Education Conference, ACM Press)

Agent Technology: Foundations, Applications, and Markets, edited by
Nicholas R. Jennings and Michael J. Wooldridge (1998 – Springer Verlag)

Emergence: The Connected Lives of Ants, Brains, Cities, and Software, by
Steven Johnson (2001 – Scribner)

AI Application Programming, by M. Tim Jones (2003 – Charles River Media)

Speech and Language Processing: An Introduction to Natural Language Pro-
cessing, Computational Linguistics and Speech Recognition, by Dan Jurafsky,
James H. Martin, Keith Vander Linden, and Nigel Ward (2000 – Prentice
Hall)

K
Multistage Fuzzy Control: A Model-Based Approach to Fuzzy Control and
Decision Making, by Janusz Kacprzyk (1997 – John Wiley & Sons)

Choices, Values, and Frames, by Daniel Kahneman (Editor) and Amos Tver-
sky (2000 – Cambridge University Press)

Bibliography 707

An Introduction to Computational Learning Theory, by Michael J. Kearns
and Umesh V. Vazirani (1994 – MIT Press)

Learning and Soft Computing: Support Vector Machines, Neural Networks,
and Fuzzy Logic Models (Complex Adaptive Systems), by Vojislav Kecman
(2001 – MIT Press)

The Essence of Logic, by John Kelly (1997 – Prentice Hall)

Out of Control: The New Biology of Machines, by Kevin Kelly (1994 – Fourth
Estate)

Swarm Intelligence, by James Kennedy, Russell C. Eberhart, and Yuhui Shi
(2001 – Morgan Kaufmann)

Knowledge Acquisition for Expert Systems: A Practical Handbook, by Alison
L. Kidd (1987 – Plenum Publishing Corporation)

Commitment and Effectiveness of Situated Agents, by D. Kinny and M.
Georgeff (1991 – in Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, pp. 82–88, Morgan Kaufmann)

Intelligent Information Agents: The Agentlink Perspective (Lecture Notes in
Computer Science, 2586), edited by Matthias Klusch, Sonia Bergamaschi,
and Pete Edwards (2003 – Springer Verlag)

An Analysis of Alpha Beta Pruning, by Donald Knuth and R. W. Moore
(1975 - in Artificial Intelligence, Vol. 6 (4), pp. 293–326)

Art of Computer Programming: Sorting and Searching, by Donald Knuth
(1973 – Pearson Addison Wesley)

Self-Organizing Maps, by Teuvo Kohonen (2000 – Springer Verlag)

Case-Based Reasoning, by Janet Kolodner (1993 – Morgan Kaufmann)

Learning to Solve Problems, by Searching for Macro-Operators (Research
Notes in Artificial Intelligence, Vol. 5), by Richard E. Korf (1985 – Longman
Group United Kingdom)

Search, by Richard E. Korf (1987 – in Encyclopedia of Artificial Intelligence,
edited by E. Shapiro – Wiley)

Bidirectional Associative Memories, by Bart Kosko (1988 - in IEEE Transac-
tions Systems, Man & Cybernetics, Vol. 18, pp. 49–60)

Fuzzy Thinking: The New Science of Fuzzy Logic, by Bart Kosko (1994 –
Hyperion)

708 Bibliography

Genetic Programming: On the Programming of Computers, by Means of Nat-
ural Selection, by John R. Koza (1992 – MIT Press)

Genetic Programming II: Automatic Discovery of Reusable Programs, by John
R. Koza (1994 – MIT Press)

A Learning Interface Agent for Scheduling Meetings, by R. Kozierok and P.
Maes (1993 – in Proceedings of the ACM-SIGCHI International Workshop on
Intelligent User Interfaces, ACM Press)

Strategic Negotiation in Multiagent Environments, by Sarit Kraus (2001 –
MIT Press)

Computer Vision and Fuzzy Neural Systems, by Arun D. Kulkarni (2001 –
Prentice Hall)

The Age of Spiritual Machines, by Ray Kurzweil (1999 – Viking Penguin)

L
Artificial Life: An Overview, edited by Christopher Langton (1995 – MIT
Press)

Case-Based Reasoning: Experiences, Lessons, and Future Directions, edited by
David B. Leake (1996 –AAAI Press)

The Resolution Calculus, by Alexander Leitsch (1997 – Springer Verlag)

Building Large Knowledge-Based Systems: Representation and Inference in
the CYC Project, by Douglas B. Lenat and R. V. Guha (1990 – Addison Wes-
ley)

The Logic of Knowledge Bases, by Hector J. Levesque and Gerhard Lake-
meyer (2001 – MIT Press)

For the Sake of the Argument: Ramsey Test Conditionals, Inductive Inference
and Nonmonotonic Reasoning, by Isaac Levi (1996 – Cambridge University
Press)

Artificial Life: A Report from the Frontier Where Computers Meet Biology, by
Steven Levy (1993 – Vintage Books)

Making Decisions, by D. V. Lindley (1991 – John Wiley & Sons)

Knowledge Representation and Defeasible Reasoning (Studies in Cognitive
Systems, Vol. 5), edited by Ronald P. Loui and Greg N. Carlson (1990 –
Kluwer Academic Publishers)

Bibliography 709

Automated Theorem Proving: A Logical Basis, by Donald W. Loveland (1978
– Elsevier Science – Out of Print)

Artificial Intelligence & Manufacturing Research Planning Workshop, edited
by George F. Luger (1998 – AAAI)

Artificial Intelligence: Structures and Strategies for Complex Problem-Solving,
by George F. Luger (2002 – Addison Wesley)

Computation & Intelligence: Collected Readings, edited by George F. Luger
(1995 – The AAAI Press / The MIT Press)

M
Foundations of Statistical Natural Language Processing, by Christopher D.
Manning and Hinrich Schütze (1999 – MIT Press)

Nonmonotonic Logic: Context-Dependent Reasoning, by V. W. Marek and M.
Truszczynski (1993 – Springer Verlag)

Probabilistic Situation Calculus, by Paulo Mateus, António Pacheco, Javier
Pinto, Amílear Sernadas, and Cristina Sernadas (2001 – in Annals of Math-
ematics and Artificial Intelligence)

Intelligent Multimedia Information Retrieval, edited by Mark T. Maybury
(1997 – AAAI Press)

Circumscription: A Form of Non-Monotonic Reasoning, by John McCarthy
(1980 – in Computation & Intelligence – Collected Readings, edited by
George F. Luger, The MIT Press)

Some Expert Systems Need Common Sense, by John McCarthy (1983 – in
Computer Culture: The Scientific, Intellectual and Social Impact of the Com-
puter, edited by Heinz Pagels, Vol. 426)

A Production System Version of the Hearsay-II Speech Understanding System,
by Donald McCracken (1981 - UMI Research)

A Logical Calculus of the Ideas Immanent in Nervous Activity, by W. S.
McCulloch and W. Pitts (1943 - in Bulletin of Mathematical Biophysics, Vol.
5, pp. 115–137)

Computational Linguistics, by Tony McEnery (1992 – Coronet Books – out
of print)

Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our
World, by Daniel McNeill (1994 – Simon & Schuster)

710 Bibliography

Text Information Retrieval Systems, by Charles T. Meadow, Bert R. Boyce,
and Donald H. Kraft (2000 – Academic Press)

Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions,
by Jerry M. Mendel (2000 – Prentice Hall)

Building Expert Systems in Prolog, by Dennis Merritt (1995 – Springer Ver-
lag)

Genetic Algorithms + Data Structures = Evolution Programs, by Zbigniew
Michalewicz (1999 - Springer)

How to Solve It: Modern Heuristics, by Zbigniew Michalewicz and David B.
Fogel (1999 – Springer Verlag)

A Framework for Representing Knowledge, by Marvin Minsky (1975 – in
Computation & Intelligence – Collected Readings, edited by George F. Luger,
The MIT Press)

Perceptrons, by Marvin Minsky and Seymour A. Papert (1969 – now avail-
able in an extended edition: Perceptrons - Expanded Edition: An Introduc-
tion to Computational Geometry, 1987 – MIT Press)

The Society of Mind, by Marvin Minsky (1988 – Simon & Schuster)

Steps towards Artificial Intelligence, by Marvin Minsky (1961 – in Computa-
tion & Intelligence – Collected Readings, edited by George F. Luger, MIT
Press)

Learning Search Control Knowledge: An Explanation Based Approach, by
Stephen Minton (1988 – Kluwer Academic Publishers)

Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction
and Scheduling Problems, by S.Minton, M. D. Johnson, A. B. Philips, and P.
Laird (1992 – Artificial Intelligence, Vol. 58)

An Introduction to Genetic Algorithms, by Melanie Mitchell (1998 – MIT
Press)

The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Perfor-
mance, by Melanie Mitchell, Stephanie Forrest, and John H. Holland (1992
- In Towards a Practice of Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, edited by Francisco J. Varela and Paul
Bourgine, pp. 245–254, MIT Press)

Machine Learning, by Tom M. Mitchell (1997 – McGraw Hill)

Bibliography 711

The Turing Test: The Elusive Standard of Artificial Intelligence, edited by
James H. Moor (2003 – Kluwer Academic Publishers)

Robot: Mere Machine to Transcendent Mind, by Hans P. Moravec (2000 –
Oxford University Press)

An Introduction to AI Robotics, by Robin R. Murphy (2000 – MIT Press)

N
A Guided Tour of Computer Vision, by Vishvjit S. Nalwa (1993 – Addison
Wesley)

Local Search for Planning and Scheduling: Ecai 2000 Workshop, Berlin, Ger-
many, August 21, 2000: Revised Papers (Lecture Notes in Computer Science,
2148), edited by Alexander Nareyek (2001 – Springer Verlag)

Machine Learning: A Theoretical Approach, by Balas K. Natarajan (1991 –
Morgan Kaufmann)

Learning Bayesian Networks, by Richard E. Neapolitan (2003 – Prentice
Hall)

Artificial Intelligence: A Guide to Intelligent Systems, by Michael Negnevitsky
(2002 – Addison Wesley)

Automated Theorem Proving: Theory and Practice, by Monty Newborn
(2001 – Springer Verlag)

Deep Blue: An Artificial Intelligence Milestone, by Monty Newborn (2003 –
Springer Verlag)

Kasparov Versus Deep Blue: Computer Chess Comes of Age, by Monty New-
born (1997 – Springer Verlag)

Computer Science as Empirical Enquiry: Symbols and Search, by Allen
Newell and Herbert A. Simon (1976 - in Computation & Intelligence – Col-
lected Readings, edited by George F. Luger, MIT Press)

GPS, A Program That Simulates Human Thought, by Alan Newell and Her-
bert A. Simon (1963 – in Computation & Intelligence, edited by George F.
Luger 1995 – MIT Press)

Report on a General Problem Solving Program, by Alan Newell, J. C. Shaw,
and Herbert A. Simon (1959 – in Proceedings of the International Conference
on Information Processing, pp. 256–264, UNESCO)

712 Bibliography

Blackboard Systems: The Blackboard Model of Problem Solving and the Evo-
lution of Blackboard Architectures, by H. Penny Nii (1986 – in Computation
& Intelligence – Collected Readings, edited by George F. Luger, The MIT
Press)

Artificial Intelligence: A New Synthesis, by N. J. Nilsson (1998 – Morgan
Kauffman)

Readings in Machine Translation, edited by Sergei Nirenburg, Harold L.
Somers, and Yorick A. Wilks (2002 – MIT Press)

Feature Extraction in Computer Vision and Image Processing, by Mark S.
Nixon and Alberto Aguado (2002 – Butterworth-Heinemann)

Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Orga-
nizing Machines, by Stefano Nolfi and Dario Floreano (2000 – MIT Press)

O
Computational Explorations in Cognitive Neuroscience: Understanding the
Mind, by Simulating the Brain, by Randall C. O’Reilly (Author) and Yuko
Munakata (2000 – MIT Press)

Evolutionary Algorithms for Single and Multicriteria Design Optimization,
by Andrzej Osyczka (2001 – Physica Verlag)

P
Soft Computing in Case Based Reasoning, edited by Sankar K. Pal, Tharam S.
Dillon, and Daniel S. Yeung (2000 – Springer Verlag)

Kasparov and Deep Blue, by Bruce Pandolfini (1997 – Fireside)

Combinatorial Optimization: Algorithms and Complexity, by Christos H.
Papadimitriou and Kenneth Steiglitz (1998 – Dover Publications)

Evolving Hexapod Gaits Using a Cyclic Genetic Algorithm, by Gary Parker
(1997 – in Proceedings of the IASTED International Conference on Artificial
Intelligence and Soft Computing, pp. 141–144, IASTED/ACTA Press)

Generating Arachnid Robot Gaits with Cyclic Genetic Algorithms, by Gary
Parker (1998 - in Genetic Programming III, pp. 576–583)

Metachronal Wave Gait Generation for Hexapod Robots, by Gary Parker
(1998 – in Proceedings of the Seventh International Symposium on Robotics
with Applications, ISORA)

Bibliography 713

Algorithms for Image Processing and Computer Vision, by J. R. Parker (1996
– John Wiley & Sons)

Learning-Based Robot Vision, edited by Josef Pauli (2001 – Springer Verlag)

Heuristics: Intelligent Search Strategies for Computer Problem Solving, by
Judea Pearl (1984 – Addison Wesley)

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence, by Judea Pearl (1997 – Morgan Kaufmann)

An Introduction to Fuzzy Sets: Analysis and Design, by Witold Pedrycz and
Fernando Gomide (1998 – MIT Press)

The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of
Physics, by Roger Penrose (1989 – Oxford University Press)

Natural Language Processing, by Fernando C. N. Pereira and Barbara J.
Grosz (1994 – MIT Press)

Understanding Intelligence, by Rolf Pfeiffer and Christian Scheier (2000 –
ISBN: The MIT Press)

An Algorithm for Suffix Stripping, by M. F. Porter (1980 - in Spärck Jones
and Willett, 1997)

Introduction to Logic: Propositional Logic, by Howard Pospesel (1999 –
Prentice Hall)

Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the
Bomb, by William Poundstone (1994 – MIT Press)

Views into the Chinese Room: New Essays on Searle and Artificial Intelligence,
edited by John Preston and Mark Bishop (2002 – Oxford University Press)

The Robots Dilemma: The Frame Problem in Artificial Intelligence, by Zenon
W. Pylyshyn (1987 – Ablex Publishing)

Q
Induction of Decision Trees, by J. R. Quinlan (1986 – from Machine Learn-
ing, Vol. 1 (1), pp. 81–106)

R
Fundamentals of Speech Recognition, by Lawrence Rabiner and Biing-
Hwang Juang (1993 – Pearson Education)

Modern Heuristic Search Methods, edited by V. J. Rayward-Smith, I. H.
Osman, Colin R. Reeves, and G. D. Smith (1996 – John Wiley & Sons)

714 Bibliography

Logic for Computer Science, by Steve Reeves and Michael Clarke (1993 –
Addison Wesley)

Are We Spiritual Machines?: Ray Kurzweil vs. the Critics of Strong A.I., edited
by Jay W. Richards (2002 – Discovery Institute)

Word of Mouse: The Marketing Power of Collaborative Filtering, by John
Riedl and Joseph Konstan (2002 – Warner Books)

Inside Case-Based Reasoning, by Christopher K. Riesbeck and Roger C.
Schank (1989 – Lawrence Erlbaum)

The Bayesian Choice: From Decision-Theoretic Foundations to Computa-
tional Implementation, by Christian P. Robert (2001 – Springer Verlag)

Monte Carlo Statistical Methods, by Christian P. Robert and George Casella
(1999 – Springer Verlag)

Logic, Form and Function: The Mechanization of Deductive Reasoning, by
John Alan Robinson (1980 – Elsevier Science)

The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain, by F. Rosenblatt (1958 - in Psychological Review, Vol. 65,
pp. 386–408)

Representations for Genetic and Evolutionary Algorithms, by Franz Rothlauf
and David E. Goldberg (2002 – Springer Verlag)

Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic
Reasoning, by Hans Rott (2002 – Oxford University Press)

Artificial Intelligence: A Modern Approach, by Stuart Russell and Peter
Norvig (1995 – Prentice Hall)

S
Logical Forms: An Introduction to Philosophical Logic, by Mark Sainsbury
(1991 – Blackwell)

Evolutionary Language Understanding, by Geoffrey Sampson (1996 – Con-
tinuum)

Some Studies in Machine Learning Using the Game of Checkers, by Arthur
Samuel (1959 - in Computation & Intelligence – Collected Readings, edited
by George F. Luger - MIT Press)

Using Sophisticated Models in Resolution Theorem Proving (Lecture Notes in
Computer Science, Vol. 90), by David M. Sandford (1981 – Springer Verlag)

Bibliography 715

The Importance of Being Fuzzy, by Arturo Sangalli (1998 – Princeton Uni-
versity Press)

One Jump Ahead: Challenging Human Supremacy in Checkers, by Jonathan
Schaeffer (1997 – Springer Verlag)

A Re-examination of Brute-force Search, by Jonathan Schaeffer, Paul Lu,
Duane Szafron, and Robert Lake (1993 – in Games: Planning and Learning,
AAAI 1993 Fall Symposium, Report FS9302, pp. 51–58)

A World Championship Caliber Checkers Program, by Jonathan Schaeffer,
Joseph Culberson, Norman Treloar, Brent Knight, Paul Lu, and Duane
Szafron (1992 – in Artificial Intelligence, Vol. 53 (2–3), pp. 273–290)

Artificial Intelligence: An Engineering Approach, by Robert J. Schalkoff (1990
– McGraw Hill)

The Structure of Episodes in Memory, by Roger C. Schank (1975 – in Com-
putation & Intelligence – Collected Readings, edited by George F. Luger, The
MIT Press)

The Evidential Foundations of Probabilistic Reasoning, by David A. Schum
(2001 – Northwestern University Press)

Minds, Brains, and Programs, by John R. Searle (1980 – in The Behavioral
and Brain Sciences, Vol. 3, Cambridge University Press)

Minds, Brains and Science, by John R. Searle (1986 – Harvard University
Press)

Algorithms, by Robert Sedgewick (1988 – Addison Wesley)

A New Method for Solving Hard Satisfiability Problems, by B. Selman, H.
Levesque, and D. Mitchell (1992 – in Proceedings of the Tenth National
Conference on Artificial Intelligence, pp. 440–446, AAAI)

Noise Strategies for Improving Local Search, by B. Selman, H.A. Kautz, and B.
Cohen (1994 – Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 337–343, AAAI)

Computer Vision, by Linda G. Shapiro and George C. Stockman (2001 –
Prentice Hall)

The Encylopedia of Artificial Intelligence, edited by S. C. Shapiro (1992 –
Wiley)

716 Bibliography

Social Information Filtering: Algorithms for Automating “Word of Mouth,” by
U. Shardanand and P. Maes (1995 – in Proceedings of CHI’95 - Human Fac-
tors in Computing Systems, pp. 210–217)

A Two Dimensional Interpolation Function for Irregularly Spaced Data, by D.
Shepard (1968 - Proceedings of the 23rd National Conference of the ACM, pp.
517–523, ACM Press)

Computer Based Medical Consultations: Mycin, by Edward Shortliffe (1976
– Elsevier Science, out of print)

Artificial Evolution for Computer Graphics, by Karl Sims (1991 – Siggraph
’91 - Annual Conference Proceedings, 1991, pp. 319–328, Eurographics Asso-
ciation)

Evolving Virtual Creatures, by Karl Sims (1994 - Siggraph ’94 - Annual Con-
ference Proceedings, 1994, pp. 43–50, Eurographics Association)

The Algorithm Design Manual, by Steven S. Skiena (1997 – Telos)

Data Analysis: A Bayesian Tutorial, by D. S. Sivia (1996 – Oxford University
Press)

Image Processing: Analysis and Machine Vision, by Milan Sonka, Vaclav
Hlavac, and Roger Boyle (1998 – Brooks Cole)

Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations, by John F. Sowa and David Dietz (1999 – Brooks Cole)

Computer Viruses as Artificial Life, by Eugene Spafford (1989 – in Artificial
Life An Overview, edited by Christopher G. Langton, 1995, MIT Press, pp.
249–265)

Evaluating Natural Language Processing Systems: An Analysis and Review, by
Karen Spärck Jones and Julia R. Galliers (1996 – Springer Verlag)

Readings in Information Retrieval, edited by Karen Spärck Jones and Peter
Willett (1997 – Morgan Kaufmann)

Logic and Prolog, by Richard Spencer-Smith (1991 – Harvester Wheatsheaf)

Resolution Proof Systems: An Algebraic Theory (Automated Reasoning Series,
Vol. 4), by Zbigniew Stachniak (1996 – Kluwer Academic Publishers)

Artificial Life VIII: Proceedings of the Eighth International Conference on
Artificial Life, edited by Russell Standish, Mark A. Bedau, and Hussein A.
Abbass (2003 – MIT Press; also available are the proceedings from the first
through the seventh conferences)

Bibliography 717

Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer, by Peter Stone (2000 – MIT Press)

Reinforcement Learning: An Introduction (Adaptive Computation and
Machine Learning), by Richard S. Sutton and Andrew G. Barto (1998 – MIT
Press)

Bayes’s Theorem (Proceedings of the British Academy, Vol. 113), edited by
Richard Swinburne (2002 – British Academy)

T
Evolutionary Art and Computers, by Stephen Todd and William Latham
(1992 – Academic Press)

Introductory Techniques for 3-D Computer Vision, by Emanuele Trucco and
Alessandro Verri (1998 – Prentice Hall)

Translation Engines: Techniques for Machine Translation, by Arturo Trujillo
(1999 – Springer Verlag)

Managing Expert Systems, edited by Efraim Turban and Jay Liebowitz (1992
– Idea Group Publishing)

U
Human Face Recognition Using Third-Order Synthetic Neural Networks, by
Okechukwu A. Uwechue and Abhijit S. Pandya (1997 – Kluwer Academic
Publishers)

V
Simulated Annealing: Theory and Applications, by P. J. M. Van Laarhoven
and E. H. L. Aarts (1987 - D Reidel Publishing Company – out of Print)

Statistical Learning Theory, by Vladimir N. Vapnik (1998 – Wiley Inter-
science)

Planning and Learning, by Analogical Reasoning, by Manuela M. Veloso
(1994 – Springer Verlag Telos)

Learning and Generalization: With Applications to Neural Networks, by
Mathukumalli Vidyasagar (2002 – Springer Verlag)

The Simple Genetic Algorithm: Foundations and Theory, by Michael D. Vose
(1999 – MIT Press)

718 Bibliography

W
Virtual Organisms: The Startling World of Artificial Life, by Mark Ward
(2000 – St Martin’s Press)

In the Mind of the Machine: The Breakthrough in Artificial Intelligence, by
Kevin Warwick (1998 – Random House)

Face Recognition: From Theory to Applications, by Harry Wechsler (1998 –
Springer Verlag)

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
edited by Gerhard Weiss (1999 – MIT Press)

Recent Advances in AI Planning, by Daniel S. Weld in AI Magazine, Summer
1999

Practical Planning: Extending the Classical AI Planning Paradigm, by David
E. Wilkins (1989 – Morgan Kaufman)

Arguing A. I.: The Battle for Twenty-First Century Science, by Sam Williams
(2002 – Random House)

Artificial Intelligence, by Patrick Henry Winston (1992 – Addison Wesley)

Introduction to MultiAgent Systems, by Michael Wooldridge (2002 – John
Wiley & Sons)

X
Y
Intelligent Planning: A Decomposition and Abstraction Based Approach, by
Qiang Yang (1998 – Springer Verlag)

Z
Intelligent Scheduling, edited by Monte Zweben and Mark S. Fox (1998 –
Morgan Kaufmann)

Index

A
A* algorithms, 108–109
Abduction, 201–202, 633

and Bayesian theory, 338–339
Abductive reasoning, 467, 482–483
Abelard, Peter, Dialectica, 6–7
Accepting state, 366, 633
Accessibility, 560–561
Acquaintance algorithm, 633
Action, 242
Action description language (ADL), 633
Action potential, of neuron, 293
Activation function, 293, 633
Activation level, 294f, 633
Activity product rule, 634
Adaptation in Natural and Artificial Systems

(Holland), 387
Add list, 436
ADL (action description language), 434, 455–456, 633

and open world assumption, 480
Admissibility, 93, 634
Admissible heuristic, 96
Adventures of Sherlock Holmes (Conan Doyle), 605
Adversarial methods, of game playing, 146, 634
Agent architectures, 556–560
Agent team, 555, 634
Agents, 196–197, 634

definition, 543
intelligent, 135, 543–569

accessibility, 560–561
architectures for, 556–560
bold, 558

Braitenberg vehicles, 562–565
collaborative, 642
goal-based, 548–549, 657
hybrid, 660
information (internet), 553–554, 572, 662
interface, 551–552, 663
learning, 561–562
mobile, 552–553
multiagent systems, 554–556
properties of, 544–546
reactive (reflex), 547–548, 554
robotic, 561–562
static, 552
utility-based, 549–551

mobile, 668
properties of, 544–546
reactive (reflex), 547–548, 559, 680
software, 543–544, 687
utility-based, 693

Aggregation, 34
AI. see Artificial intelligence (AI)
AI: Artificial Intelligence (film), 23
AIBO robotic dog, 23
Alan Turing the Enigma of Intelligence (Hodge), 291
Alfonso the Wise, 117
Algorithms

acquaintance, 633
AD3, 268, 278, 281, 661
bucket brigade, 286, 377, 378, 379–380, 639
genetic. See Genetic algorithms
GraphPlan, 434, 451, 454–455, 658
winner-take-all, 316, 694

720 Index

Alice’s Adventures in Wonderland (Carroll), 241
Alignment method, and machine vision, 626
Alpha-beta pruning, 69, 133, 153–159, 634

effectiveness, 154–155
implementation, 155–159

analysis of search, 158t
Alphabet, 634
Ambiguity, 589–592, 634

and disambiguation, 591–592
An Anatomy of the World (Donne), 503
An Essay on Man (Pope), 433
Analogy, and knowledge representation, 9. See also Copy-

cat architecture
Analogy (Evans), 9
Analogy of Religion, The (Butler), 327
Analytic engine, 7
Anaphoric expressions, 590
Ancestor, 45, 634
And-goals, 58–59, 634
And-elimination, 191
And-introduction, 191
And-nodes, 58–59, 635
And (operator), 178–179, 182
And-or trees, 635. See also Goal trees
Annealing schedule, 130
Annealing, simulated. See Simulated annealing
Ant colony optimization (ACO), 128
Antecedent, in logical statement, 183, 242
APL2, 42
Applicable operators, action, 437
Architectures, agent, 556–560

belief desire intention (BDI), 558
horizontal vs. vertical, 559–560
subsumption, 556–557
TouringMachines, 559, 560

Aristotelian logic. See Logic, classical
Aristotle, 6, 10, 364

Poetics, 327
Ars Rhetorica (Dionysius), 3
ART, 253
Art, and artificial evolution, 412–413
Artificial immune systems (AIS), 381–382
Artificial Intelligence: A Knowledge-Based Approach (Fire-

baugh), 241
Artificial intelligence (AI)

definition, 4–5, 635
history of, 3–18

important areas of study, 10
introduction of term, 9
weak vs. strong, 4, 5, 23

Artificial life, 128, 266, 635
techniques, 363–364

Artificial Life Roots of Artificial Intelligence (Steels), 363
Artificial neural network, 284, 635
Asexual reproduction, 373
Association, 34
Associativity (associative property), 187, 635
Assumption-based truth maintenance system (ATMS),

479
Atilla (robot), 563
Atomic actions, 422, 635
Atomic formula, 199, 635
Attractor networks, 307, 635
Augmented finite state machines (AFSMs), 556–557, 635
Augmented transition network (ATN), 585, 636
Autoassociative memory, 313, 636
Automated reasoning, 5
Automated translation, 572
Autonomy, of agents, 545, 636
Axelrod, R., 411
Axioms, 200
Axons, 292–293, 636

B
Babbage, Charles, 7
Backgammon, 167
Backpropagation algorithm, 291–292

in multilayer networks, 302–306, 636
improving performance, 305–306

Backtracking, 76
nonchronological, 479

Backtracking search, 135
Backus-Naur form (BNF), 575–579, 636
Backward chaining, 242, 243, 248–251, 469. See also

Goal-driven search
compared to forward chaining, 249–251
in rule-based systems, 257–259
in STRIPS, 440–441

Baldrick (from Blackadder), 433
Bates, Marston, 71
Bayes’ optimal classifier, 637
Bayes’ Theorem, 327, 330–337, 637

applications, 331–337
comparing conditional probabilities, 334–335

Index 721

medical diagnosis, 331–332
normalization, 335–337
witness reliability, 332–334

stated, 331
Bayes, Thomas, 327
Bayesian belief networks, 339–346, 347f, 636

examples, 342–346
Bayesian classifiers, 327, 349–356

naive, 351–356
Bayesian concept learning, 337–339
Bayesian reasoning, 266, 504

and abduction and induction, 338–339
and collaborative filtering, 356–357

Beam search, 105–107
analysis of search, 106t

Behavior, asynchronous, 557
Behavioral psychology, 12
Belief desire intention architecture (BDI), 558, 637
Belief networks, 339–346
Benevolence, 556
Best-first search, 69, 103–105

analysis of search, 104t
Bible, The, 19, 71, 267, 465, 543, 605
Bidding system, of classifiers, 378, 379–380
Bidirectional associative memories (BAMs), 292,

313–316, 637
compared to Hopfield networks, 314, 315–316

Bidirectional search, 136
Binary operators, 182, 637
Biology, and AI, 3, 4, 12, 128
Biomorphs, 372, 372–373, 412
Bivalent logic, 504, 637
Blackboard architecture, 467, 469–472, 637

implementing, 471–472
Bletchley Park, 7
Blind search methods, 72, 91, 440, 637. See also Generate

and test
Blind Watchmaker, The (Dawkins), 363, 372, 372–373
Blocks world, 428–430, 433, 438–443, 638
Blondie, 24, 164
Blum, Avrim, 454
Boids system, 366, 367–368, 555
Boltzmann acceptance criterion, 129
Boole, George, 7
Boolean algebra, 7, 276–277, 296
Boolean operators, and perceptrons, 296, 299–300
Bottom up or top down, 60–61, 278, 638

building parse tree, 581–582
Bound variables, 638
Bounded lookahead, 151–153, 638
Braitenberg, Valentino, 563
Braitenberg vehicles, 464, 563–565, 638
Branch, 45, 638
Branch and bound search, 109–110
Branching factor, 45, 638
Branching time temporal logic, 488
Breadth-first search, 71, 76–78, 80, 638

implementing, 83–90, 86–88
analysis of search, 87t

Bridge (game), 165, 167
British museum procedure, 107–108
Brooks, Rodney A., 556, 557
Browne, Thomas, Religio Medici, 363
Browning, Robert, Rabbi Ben Ezra, 421
Brute-force search (exhaustive search), 53, 639, 652. See

also Breadth-first search; Depth-first search;
Generate and test

Bucket brigade algorithm, 286, 377, 639
and classifier systems, 378, 379–380

Building-block hypothesis, 403–404, 639
Burke, Edmund, Letter to a Member of the National

Assembly, 421
Burns, Robert, To a Mouse, 421
Buro, Michael, 166
Butler, Joseph, The Analogy of Religion, 327
Byron, Manfred, 571

C
C++, 12–13, 32, 41–42, 173
Candidate elimination, 275, 639
Candide (Voltaire), 71
Canny edge detector, 611–612, 639
Carlyle, Thomas, Critical and Miscellaneous Essays, 3,

465
Carroll, Lewis

Alice’s Adventures in Wonderland, 241
Through the Looking Glass, 19, 175

Carruth, William Herbert, Each in His Own Tongue,
387

Case-based planning systems, 457–458, 639
Case-based reasoning, 467, 495–496, 639
Causal links, 446–447, 639
Cells, in Conway’s Life, 368

722 Index

Cellular automata, 364, 368–371, 639
definition, 369
one-dimensional, 370–371

Center of gravity. See Centroid
Centroid, 521–522, 640
Certainty, 328
Certainty factor algebra, 487
Certainty factors, 467, 485–487, 640
Change, and logical systems, 205, 210, 426, 487–494.

See also Situation calculus
event calculus, 490–492
mental situation calculus, 492–494
temporal logic, 487–490

Chart parser, 640
Chart parsing, 585–588
Checkers, playing, 159–164, 165

World Checkers Championship, 161
CHEF, 457–458
Chess, playing, 22, 164–165, 268–269
Chinese room, 20–21, 640
Chinook, 152

evaluation function, 162–163
forward pruning, 163

Chomsky, Noam, 11, 579, 580
Chomsky’s hierarchy, 640
Chromosomes, 131, 388–389, 640

overspecified, 674
size, 389
splicing, 405–406
template, 405
under- and overspecified, 405–406
underspecified, 692

Chronological backtracking, 76, 640
Circumscription, 467, 480–482, 641
Class, 30, 641
Class frame, 32, 641
Classical logic, 641
Classification, of data, 268
Classifier systems, 286, 364, 377–381, 388, 389, 641

Bayesian, 327, 349–356
naive, 351–356
optimal, 349–351

components of, 377
operation of, 377–381
reproduction in, 380–381
rules, 378–379

Clause, 641

CLIPS (C language integrated production system), 253,
255–257, 641

Cloning, 392, 641
Closed world assumption, 467, 480, 641
Cluster, 316
Cluster layer, 316
CNF-satisfiability problem, 414
Co-evolution, 413–414
Co-occurence matrix, 646
Codelets, 475
Coderack, 474–475
Coevolution, 642
Cognitive psychology, 12, 642
Collaboration, 555
Collaborative agents, 555–556, 642
Collaborative filtering, 327–328, 356–357, 642
Colony optimization, 126
Coloring problems, 216–218
Colossus, 161
Combinatorial explosion, 57, 125
Combinatorial problems, 24, 117, 173, 414, 642

optimization, 125–126
search, 216

Communative property, 187, 331
Communication, 555
Commutativity, 642
Competitive agents, 555
Competitive learning, 316, 642
Complete path, 45, 643
Completeness, 173, 175, 200, 643

of search methods, 79
Complexity, of search methods, 78–79
Composition, 223–224, 643
Computation tree logic (CTL), 488, 643
Computing Machinery and Intelligence (Turing), 7
Conan Doyle, Arthur

The Adventures of Sherlock Holmes, 605
The Sign of Four, 209

Concave edge, 613–614, 643
Concept learning, 270–271, 643

Bayesian, 337–339
Conclusion, 242
Conditional effects, 455–456
Conditional planning, 457, 643
Conditional probabilities, 329–330, 643

calculating, 344–345
comparing, 335–337

Index 723

tables, 340–341, 343–344, 644
Conflict resolution, 242, 245–247, 644
Conflicts, 37, 644
Conjunction, 644
Conjunctive normal forms (CNF), 210–211, 212, 644
Conjunctive operators, 182
Connect-4 (game), 166
Consequent, 183, 242, 644
Consistent, 273–274
Constant, 644
Constraint satisfaction problems (CSPs), 118, 644
Constraint satisfaction search, 118–121
Constraints, 48, 62, 644

relaxing, 95
Constructor, 41
Context-free grammar, 580, 645
Context-sensitive grammar, 580, 645
Contingent statements, 203–204, 645
Contradiction, proof by, 192–193, 214–216, 645
Contradictory assumptions, 201
Contradictory expressions, 186–187, 192–193
Convex edge, 613–614, 645
Convolution, 611–612, 645
Conway’s Life, 368–369, 646
Cook, Stephen, 51, 134
Cooperation

of agents, 545–546
in Prisoner’s Dilemma, 406

Copycat architecture, 9, 463, 467, 646
Corpus, 572–573, 646
Cost, 107
Crabbe, George, Gretna Green, 143
Creatures, 388, 390
Credit assignment, 286, 302, 378, 646
Crichton, Michael, Prey, 543
Crisp set, 646
Critical and Miscellaneous Essays (Carlyle), 3, 465
Crossover, 387, 389, 390–392, 646

application, 390–391
and genetic programming, 375, 378
and schemata, 401–402
single-point, 391
two-point, 391
uniform, 391–392, 692

Crossover position, 380
Cumulative selection, 372
Cut and splice operators, 405–406

CYC, 259–260, 365, 646
Cycles, 45, 49, 647

D
Dartmouth College, 9
Darwin, Charles, 372, 413
Data

dirty, 554
noisy, 282–283, 283–284

Data-driven reasoning, 244
Data-driven search, 73–74, 647
Database

access, 572
of facts, 252f, 253
of rules, 243

Dawkins, Richard, 390, 392, 393
biomorphs, 412
The Blind Watchmaker, 363, 372, 372–373

Deception, in genetic algorithms, 404, 647
combatting, 405–406

Decidability, 173, 175, 200–201, 647
Decision tree, 56–57, 277f, 647

for collaborative filtering, 357
Decision-tree induction, 276–278, 647
Decision-tree learning, 268
Declarative semantics, 38–39
Deduction, 243, 244–245. See also Forward chaining,

rules of, 189, 191–195, 647
Deduction theorem, rule of, 195–196
Deductive reasoning, 201–202
Deep Blue, 22, 133, 143, 165
Deep, definition, 133
Deep Fritz, 165
Deep Junior, 143, 165
Deep Thought, 133
Default reasoning, 467, 477–478, 647
Default value, 32, 648
Defection, in Prisoner’s Dilemma, 406
Defining length, 648
Defuzzification, 521–522, 531–533, 648

of neuro-fuzzy system, 538
Delete list, 436
Demons, 38, 648
DeMorgan’s laws, 188, 198, 442, 443, 648
Demoted operators, 447
Dempster-Shafer theory, 467, 483–485, 648
Dendrites, 292–293

724 Index

Dennett, Daniel, 10, 11
Dependence, 339-349
Dependency-directed backtracking, 121, 479.

See also Nonchronological backtracking
Depth-first iterative deepening (DFID), 88–90
Depth-first search, 71, 75–76, 107, 228, 648. See also

Backtracking search; Hill climbing, steepest
ascent

and the eight queens problem, 118–121
examples, 80–83

maze, 81
searching for gift, 81–83

implementing, 83–90
analysis of search, 85t

and minimax, 149–150
Depth threshold, 78, 648
Derivation tree, 582, 648
Descartes, Rene, 10, 11
Descendent, 45, 648
Describe and match, 649
Diagnosis, 649
Dialectica (Abelard), 6–7
Dionysius, Ars Rhetorica, 3
Directed graphs, 45, 649
Directives, 243
Dirty data, 554
Disagreement set, 225
Disambiguation, 591–592
Discontinuity, 649
Disjunction, 649
Disjunctive normal forms (DNF), 211, 649
Disjunctive operators, 182–183
Distributed computing architecture, 553
Distributed tree search (DTS), 134
Distributive property, 188
Diversity, 649
Document frequency, 595
Domain expert, 252, 649
Donne, John, An Anatomy of the World, 503
Double negation, 193
Doyle, Jon, 478
Draughts, 159
Dreyfus, Hubert, 10
Dualism, 11, 649
Dynamic world planning, 419, 456–457, 650

E
Each in His Own Tongue (Carruth), 387
Eclipse, 253
Edelman, Gerald, M., 285
Edge detection, 609–612, 650

canny edge detector, 611–612
Edges, 29, 31, 586, 650

concave, 613–614
convex, 613–614
occluding, 613–614

Effect axioms, 422, 427, 450–451, 650
Effective branching factor, 650
Eigenfaces, 627–628
8-puzzle, 92–95, 425
Eight queens problem, 118–121, 425

diagram, 119f
and heuristic repair, 123–125
relaxed version, 125–126
solution, 120f

Eisenhower, Dwight D., 421
Elimination, rule of, 191

examples, 194
ELIZA, 8
Emergent behavior, 266, 365–366, 650
End-user, of expert system, 251
Energy of the system, 128
Entropy, 278–281, 650
Epoch, 297, 650
Equilibrium, of neural networks, 306–307
Equivalence, logical, 175, 187–189, 198, 442, 650
Equivalent sample size, 354
Error gradient, 651
Error value, 651
Especially When the October Wind (Thomas), 291
Establishes links, 446
Euclidean distance, calculating, 317
Evaluation functions, in game playing, 146–148

as weighted linear functions, 147
Evans, Thomas, Analogy, 9
Event calculus, 467, 490–492, 651
Event, defined, 491
Evolution, 651
Evolution, and artificial life, 365, 372–381, 396–397

predators, 413–414
strategies, 373–374
in visual arts, 412–413

Evolution, theory of, 266
Evolutionary programming (EP), 364, 375–376, 651

Index 725

Exchanging heuristic, 126–127
Excluded middle, law of, 203, 515, 651
Execution, 422, 651

monitoring, 457, 652
Exhaustive search (Brute-force search), 53, 639, 652.

See also Breadth-first search; Depth-first search;
Generate and test

Existential quantifiers, 197, 652
eliminating, 220–222

Expected value, 167
Expectiminimax, 167, 652
Expert system shell, 252f, 254–255, 652
Expert systems, 23–24, 241–263, 652

architecture of, 252–254
building, 32–33
end-user, 251
and frames, 34
fuzzy, 503, 522–533, 655
rule-based, 251–254

people involved in, 251–252
Explanation system, 252, 252f
Exponential growth, 57, 652
Eye, human, diagram of, 607f

F
Fables (Gay), 267
Face recognition, 464, 626–628, 652
Face space, 628
Fact, 228, 653
Fact database, 253
Failure nodes, 59, 653
False negatives, 598–599, 653
False positives, 598–599, 653
Falsum, 192, 193–194, 653
Feasible region, 125, 653
Feed-forward networks, 301, 306, 653
Fikes, Richard E., 434
Filter, 612, 653
Finite state automaton (FSA), 366–368,

375–376, 579, 653–654. See also
Transition networks

Firebaugh, Morris W., Artificial Intelligence: A Knowl-
edge-Based Approach, 241

Fired rule, 244
Firing, of classifiers, 378, 379
First-order predicate calculus, 468. See also First-order

predicate logic (FOPL); Situation calculus
and blackboard architecture, 469, 471

First-order predicate logic (FOPL), 30, 199–200, 201,
558–559

monotonicity, 201
representational adequacy of, 40–41
resolution in, 218–219

Fitness, 131, 387, 389, 393, 654
determining, 373–374, 378, 379, 390

calculating fitness ratio, 393–396
metrics for, 411–412
of offspring, 380
user choice, 412

Fluents, 490, 654
Focus of attention, 472
Fogel, David, 164
Fogel, Lawrence, 375
Foothills, 101–103, 654
FOPL (first-order predicate logic). See First-order predi-

cate logic (FOPL)
Forgetting factor, 654
Formal language, 571–572, 654
Forward chaining, 242, 244–245, 469, 654. See also CLIPS

(C language integrated production system);
Data-driven search; Deduction

compared to backward chaining, 249–251
and STRIPS, 439

Forward checking, 121
Forward pruning, 654
Fox, G. C., 133
Fractional knapsack problem, 110–111
Frame axioms, 422, 427, 434–435, 450–451, 655
Frame-based representations

and FOPL, 40–41
of knowledge, 259–260

Frame problem, 419, 422, 427–428, 480, 655
Frame system, 32, 655

graphic representations, 33f
Frames, 32–41, 173, 469, 654. See Semantic nets

combining, with rules, 40–41
instance, 663
slots as, 35–36

Frankenstein (Shelley), 3
Free variable, 655
Functions

and classification of data, 268
linearly separable, 299–300, 301
in predicate calculus, 199

Fundamental memories, 307, 655
Furst, Merrick, 454

726 Index

Fuzzification, 517–519, 655
of neuro-fuzzy system, 536–537

Fuzzy expert systems, 522–533, 655
building, 522–533

defining fuzzy rules, 527–528
defining fuzzy sets, 523–527

using, 528–533
defuzzification, 531–533

Fuzzy inference, 516–522, 655
applying fuzzy values, 519–520
defuzzification, 521–522
fuzzification, 517–519

Fuzzy logic, 23, 347, 463, 511–515, 655
application, 515–516
and fuzzy variables, 511–512
and truth tables, 512–515

Fuzzy operators, 503
Fuzzy reasoning, 463, 503–541, 655

bivalent and multivalent logics, 504
fuzzy sets, 505–511
and linguistic variables, 504–505
systems that learn, 534–538

Fuzzy rules, 516, 656
defining, 527–528

Fuzzy sets, 503, 505–507
defining, 523–527
hedges, 510–511
membership functions, 507
operators, 508–510

Fuzzy variables, 511–515

G
Game of life, 368–369, 664
Game playing, 143–171, 560–561

assumptions, 145–146
Backgammon, 167
Bridge, 165
Checkers, 159–164, 165
Chess, 22, 164–165, 268–269
draughts, 159
evaluation functions in, 146–148
games of chance, 166–167
Go, 165–166
Go-Moku, 166
Othello, 165–166
Prisoner’s Dilemma. See Prisoner’s Dilemma
Reversi, 166
Tic-tac-toe, 144–145, 166

zero-sum, 146, 695
Game trees, 63–64, 78, 144–145, 656

searching, 148–149
Gaussian function, 611
Gay, John, Fables, 267
Gelatt, C. D., 130
General Magic, 552
General Problem Solver (GPS), 6, 9, 422, 430, 656
General-to-specific ordering, 272–273, 273–274
Generalization, 33, 656
Generalized delta rule, 305
Generate and test, 74–75, 98, 656

and cyyptographic problems, 122–123
Generation, in Conway’s Life, 368
Generator, 74
Genes, 372, 388–389, 656
Genetic algorithms, 126, 131, 266, 321–322, 387–418,

555, 656
deception, 404
messy, 405–406
and optimization of mathematical function, 393–396
for Prisoner’s Dilemma, 410
problems applied to, 414
representations, 388–389
running, 389
termination criteria, 392–393
why they work, 396–404

building-block hypothesis, 403–404
schemata, 397–404

Genetic programming, 364, 374–375, 656
Genghis, 563
Genotype, 390, 412, 657
Geometric progression, 657
Georgeff, M., 558
Glider gun, in Conway’s Life, 369
Glider, in Conway’s Life, 369
Global maximum, 102, 657
Go (game), 165–166
Go-Moku (game), 166
Goal, 228, 248, 657
Goal-based agents, 548–549, 657
Goal-driven reasoning, 248
Goal-driven search, 61, 73–74, 657
Goal nodes, 45, 657
Goal reduction, 57, 657
Goal state, 72

diagram, 452f
in STRIPS, 437

Index 727

Goal trees, 58–64, 657
uses of, 61–64

games, 63–64
map coloring, 61–62
parsing sentences, 63
proving theorems, 62–63

Goals
and- and or-, 58–59
and planning, 428–430
vs. plans, 62
and PROLOG, 228, 229
root, 59, 682

Gödel implication, 515, 516, 657
definition, 513

Gödel’s incompleteness theorem, 21
Goldberg, David E., 405, 406
Gradient descent, 304, 658
Grammars, 575, 579–580, 658
Granularity, 181
Grapes of Wrath, The (Steinbeck), 291
GraphPlan algorithm, 434, 451, 454–455, 658
Graphs, 29, 658

coloring, 217–218
directed vs. nondirected, 45
leveling off, 454
planning, 451–455, 676

Greedy search, 110–112
Gretna Green (Crabbe), 143
Ground atoms, 230–231
Ground instance, 230, 658
Ground terms, 229, 658
GSAT system, 450

H
HAL, 19, 21–22, 22–23
Halting problem, 21, 658
Hamlet (Shakespeare), 503
Hamming distance, 313, 658
Headless clause, 228
HEARSAY, 472
HEARSAY II, 469, 471, 472, 659
Hebb, Donald O., 285, 320
Hebbian learning, 285, 295, 304, 320–321
Hebb’s law, 292, 320
Hedges, 503, 510–511, 659
Heisenberg, Werner, Physics and Beyond, 241
Henry V (Shakespeare), 143
Herbrand universes, 229–233, 659

definition, 229
example, 232–233
Herbrand base, 230–231, 659
Herbrand interpretations, 231–232, 659

Heteroassociative memory, 313, 659
Heuristic repair method, 123–125, 660
Heuristic search methods, 90–98

choosing, 92–93
evaluation function, 91, 659
examples, 92–98

Heuristics, 53, 72, 91, 659
exchanging, 126–127

Hidden layer, of multilayer network, 301, 660
Hill climbing, 98–103, 126, 392, 396, 660

analysis of search, 100t
and evolution strategies, 373
and foothills, plateaus and ridges, 101–103
steepest ascent, 98–100

Hillis, Danny, 413
Hodge, A., Alan Turing the Enigma of Intelligence, 291
Holland, John H., 377, 380, 388, 397, 403

Adaptation in Natural and Artificial Systems, 387
Hopfield, John, 307
Hopfield networks, 292, 307–313, 660

application, 310–313
stages of, 312–313

compared to BAMs, 314, 315–316
Horizon problem, 152, 660
Horizontal layer architecture, 559. See also Subsumption

architecture
Horn clauses, 173, 227–229, 660
Human language, 571, 660

and ambiguity, 589–592
and knowledge representation, 465–466

Hybrid agent, 660
Hyperbolic tangent function, 305
Hypothesis, 248, 271, 661

most general, 272
most specific, 272

I
IBM corporation, 42, 165
ID3 algorithm, 268, 278, 661

inductive bias of, 281
IF...THEN statements, 242, 243, 328. See also

Implication
Iff (if and only if), 177–178, 184
Image capture, 661

728 Index

Image processing, 608–615
edge detection, 609–612

Image recognition, 661
Implementation, 38–39
Implication, 178, 180, 183–184, 661. See also IF...THEN

statements
and fuzzy logic, 513–515
material, 183

Implied introduction, 193
Incompleteness theorem, of Gödel, 21
Independence, 661
Inductive bias, 265, 276, 283, 661

of ID3 algorithm, 281
of nearest neighbor algorithm, 283–284

Inductive-learning methods, 270–271
Inductive reasoning, 201–202, 662

and Bayesian theory, 338–339
Inference engine, 243, 252f, 253, 662
Inference rules, 191–195, 662
Information agents (Internet agents), 553–554, 572, 662
Information gain, 278–281, 662
Information retrieval (IR), 464, 572–573, 594–598, 662
Informed search methods, 72, 662
Inge, Charles, On Monsieur Coue, 433
Inheritance, 31–32, 662

and frames, 34–35, 469
multiple, 36–37, 42

Initial state, 72, 662
Input layer, of multilayer network, 301
Instance-based learning, 283–284
Instance constructor, 662
Instance frame, 32, 663
Instances, 30, 41–42, 436–437, 662
Instantiated variables, 436–437
Intelligence

of agents, 544–545
defining, 4, 10–11

Intelligent agents, 23, 434, 463, 543–569, 663
Interface agents, 551–552, 663
Internet agents (information agents), 553–554, 572, 663
Interpretation, 468, 663
Interpreter, 243
InteRRaP, 559–560
Introduction, rule of, 191

examples, 194, 194–195
Inverse, 36
Inversion, and deception, 404, 663

IR (information retrieval), 464
Irrevocability, of search methods, 80, 663
Island, 137–138
Island-driven search, 137
Iterated local search, 127, 663
Iterative approach, to segmenting, 613
Iterative-deepening A* (IDA), 132, 160
Iterative deepening search (IDS), 88–90

J
Jacobs, R. A., 305–306
Java, 11, 12–13, 32, 41–42, 173, 552
JESS, 253
Job shop scheduling, 458
Johnson, Samuel, 465
Joint. See Joint probability distribution
Joint probability distribution, 330, 344–345, 663–664

computing, 342
and dependence, 347–349

Justification-based truth maintenance system (JTMS),
478–479

K
K-exchange, 126–127
Kahneman, Daniel, 550
Karp, Richard, Randomized Parallel Algorithms for Back-

track Search and Branch-and-Bound Computa-
tion, 135

Kasparov, Garry, 22, 143, 165
King, Ron, 161
Kinny, D., 558
Kirkpatrick, S., 130
Klee, Paul, Pedagogical Sketchbook, 543
Knapsack problem, 110–112, 414
Knight’s Tour, 414
Knowledge

incomplete, 202
meta, 247

Knowledge acquisition, 494
Knowledge base, 243, 252f, 664
Knowledge base editor, 252f, 253
Knowledge base engineer, 664
Knowledge engineer, 252, 253
Knowledge engineering, 254, 467, 494–495
Knowledge, importance of, 6
Knowledge Level, The (Newell), 209
Knowledge representation, 11-12, 28–67, 465–501

Index 729

blackboard architecture, 469–472
copycat architecture, 474–476
and human language, 465–466
importance of, 28–29, 467
nonmonotonic reasoning, 476–487
rules for, 242–243
scripts, 472–474
structured, 469

Knowledge sources, 469–470
Kohonen maps, 265, 285, 292, 316–320, 664

purpose of, 316
Kosko, Bart, 313
Kozierok, R., 551

L
L-systems, 266, 376–377, 666
La Pensee Sauvage (Levi-Strauss), 571
La Vie d’Henri Brulard (Stendahl), 503
Lafferty, Don, 161
Langton, Christopher G., 371
Language. See also Linguistics, and AI

formal, 571–572
human, 468

and knowledge representation, 465–466
spoken, 472

natural, 571–572
Language identification, 593–594
Languages, of logic. See First-order predicate calculus;

Propositional calculus
Languages, programming, 468

C++, 12–13, 32
Java, 11, 12–13, 32
LISP, 9, 11, 13, 388

overview, 14–15
object-oriented. See C++; Java
PROLOG, 13, 13–14

Latham, William, 412
Law of the excluded middle, 203, 515, 651
Leaf nodes, 45, 664
Leak nodes, 348
Learning ability, of agents, 545
Learning agents, 561–562, 664
Learning algorithm, 273–274
Learning

centralized vs. decentralized, 562
competitive, 316, 642
machine. See Machine learning

in multiagent systems, 267
Learning neural networks, 284–285
Learning rate, 297
Least commitment, principle of, 447–448
Least-constraining value, 122
Legal rules, 370
Leibniz, Gottfried, 7
Lenat, Douglas B., Programming Artificial

Intelligence, 241
Levi-Strauss, Claude, La Pensee Sauvage, 571
Lexical ambiguity, 589
Lexicon, 664
Life, defining, 364–365
Life, game of, 664
LIFO, 84
Lii, H. Penny, 469, 470
Likelihood, 338, 339, 504, 665

relative, 681
Lindenmayer, Aristid, 376
Linear threshold function, 665

of artificial neurons, 294
Linear time temporal logic, 488
Linearly separable functions, 299–300, 301, 665
Linguistic variables, 503, 504–505, 665
Linguistics, and AI, 3, 4, 11–12
Links, protected, 679
LISP, 9, 11, 13, 255, 388, 665
Literal, definition, 211
Literals, 227, 665
Load balancing, 134
Local ambiguity, 590
Local maxima, 101, 126, 392, 411, 665–666
Local minima, 130
Local optimization, 126, 666
Local search methods, 117, 126–128, 666. See also

Genetic algorithms
Logic, 5, 6–7, 175–208

classical, 177, 203, 504, 641
and change, 205

definition, 176
first-order predicate (FOPL). See First-order predi-

cate logic (FOPL)
fuzzy. See Fuzzy logic
logical operators, 177–181

translating, 178–181
modal, 668
propositional, 175–196

730 Index

propositional calculus, 189–196
use, in AI, 176–177

Logical systems, properties of, 175
Logics, nonclassical, 467
Logistello, 166
Longest-matching strategy, 246–247
Loops, as self-reproducing systems, 371
Love’s Labours Lost (Shakespeare), 28

M
M-estimate, 354
Machine learning, 265, 267–289

algorithms, 273–274, 281, 283–284, 286
and artificial neural networks, 284–285
candidate elimination, 275
concept learning, 270–271
and decision-tree induction, 276–278
general-to-specific ordering, 272–273, 273–274
and information gain, 278–281
and the problem of overfitting, 282–283
reinforcement, 286
rote learning, 270
and supervised learning, 285
training, 268–270
and unsupervised learning, 285
version spaces, 274–275

Machine translation, 592, 666
Machine vision, 464, 605–628

and face recognition, 626–628
image processing, 608–615
motion in, 623–625
parts decomposition method, 626
using, 625–626
using texture in, 615–623

Maes, P., 551
Mamdani, Ebrahim, 516
Mamdani inference, 516, 666
Manfred (Byron), 571
Manhattan distances, 93–94
Map coloring, 666
MAP hypothesis, 351
Markov decision processes (MDPs), 561
Massively parallel, 133
Material implication, 183
Mateus, Paulo, 456
Mathematical function, optimization of, 393–396
Matrix arithmetic, and Hopfield networks, 307–310

Max node, 149
Maximum a posteriori, 351, 666
McCarthy, John, 9, 480
McCulloch, W. S., 12, 291, 293
Means-ends analysis, 419, 422, 428–430, 667

and STRIPS, 435, 440–441
Medical uses, for AI, 23, 73

medical diagnosis, 331–332, 485–487
Membership function, 667
Memory, 306, 307, 667

autoassociative, 313
and Hopfield networks, 312–313

Mental situation calculus, 467, 492–494, 667
Messy genetic algorithms (mGAs), 405–406, 667
Meta knowledge, 247, 667
Meta rules, 247–248, 668
Metaheuristics, 126, 667
Methods, weak vs. strong, 5–6
Metrics, 69, 668

and artificial evolution, 373–374, 390
for determining fitness, 411–412

Metropolis Monte Carlo simulation, 128, 129
Min-conflicts heuristic, 123–125
Min node, 149–150
Minimax, 149–151
Minimax algorithm, 69, 149–153, 668

Expectiminimax, 167
limitations of, 163–164

Minsky, Marvin, Steps Toward Artificial Intelligence, 28
MIPS (millions of instructions per second), 160
Missionaries and cannibals, 47
MIT Mobot Lab, 563
Mitchell, Melanie, 9, 474
Mobile agents, 546, 552–553, 668
Modal logics, 177, 203–204, 668

reasoning in, 204
Modal operator, M, 668
Modus ponens, rule of, 192, 201, 668

examples, 193–194, 194–195
and fuzzy logic, 514, 515

Momentum, and backpropagation, 305
Monitor, 470
Monotonic heuristic, 96
Monotonic reasoning systems. See also Predicate logic;

Propositional logic
defined, 476–477

Monotonicity, 41, 95–96, 175, 196, 201, 668–669

Index 731

Monte Carlo simulation, 128–130
Morphologic analysis, 573, 574–575, 669
Most-constrained variables, 121–122
Most general hypothesis, 272, 669
Most general unifier (MGU), 224, 669
Most specific hypothesis, 272, 669
Motion field, 669
Motion, interpreting, 623–625
Move notation, 426
Multiagent system, 669
Multiagent systems, 545, 554–556

learning, 562
Multilayer neural networks, 291–292, 300–306, 669
Multiple inheritance, 36–37, 42, 670
Multivalent logic, 504, 670
Murakami, Takeshi, 166
Mutation, artificial, 372–373, 373, 375, 378, 380–381,

387, 392, 405–406, 670
and schemata, 402–403

Mutex conditions, 455
Mutexes, 452, 453–454, 454–455
Mutual exclusion information (mutex). See Mutexes
MYCIN, 255–256, 485–487, 670

N
N-gram, 670
Naive Bayes’ classifier, 351–356, 670
Natural language, 571–572
Natural language processing (NPL), 11, 12, 464, 472,

573–592, 670
and ambiguity, 589–592
Backus-Naur form (BNF), 575–579
definition, 572
morphological analysis, 574–575

Natural selection, 372
Natural Selection, Incorporated, 164
Nearest neighbor algorithm, 283–284, 671
Nearest neighbor heuristic, 53, 671
Negation, 179–180, 181–182
Negation by failure, 480, 671
Negation, double, 193
Negative training example, 271
Negatives, false, 598–599, 653
Neural networks, 126, 265, 284–285, 291–326, 671

evolving, 321–322
multilayer, 291–292, 300–306

architecture of, 301–302

backpropagation in, 302–306
Bidirectional associative memories (BAMs),

313–316
feed-forward, 301, 306
Kohonen maps, 316–320

recurrent, 292, 306–313
stability or equilibrium of, 306–307
unstable, 307
unsupervised learning networks, 316–321

Neuro-fuzzy systems, 503, 534–538, 671
defuzzification layer, 538
fuzzification layer, 536–537
fuzzy rule layer, 537
input layer, 536
learning mechanism, 538
output membership function layer, 537

Neurons, 284, 671
artificial, 293–295
biological, 292–293

Newborn, Monty, 164
Newell, Alan, 6, 9, 430

The Knowledge Level, 209
Newton, Isaac, 7
Night Thoughts (Young), 209
Nilsson, Nils J., 434
Nodes, 29, 31, 671

and- and or-, 58–59
and-nodes, 58–59
goal, 45
leak, 348
max, 149–150
min, 149–150
root, 45, 682
success and failure, 59

Noise parameters, 348
Noisy data, 282–283, 283–284
Noisy logical relationships, 346, 347–349
Noisy-v function, 346, 347–349
Nonchronological backtracking, 76, 121, 137–138, 671
Noncontingent statements, 203–204, 672
Nondeterministic search, 136–137
Nondirected graphs, 45, 672
Nonmonotonic, 672
Nonmonotonic logics, 467
Nonmonotonic reasoning, 467, 476–487. See also Fuzzy

logic
abductive, 482–483

732 Index

circumscription, 480–482
closed world assumption, 480
default reasoning, 477–478
Dempster-Shafer theory, 483–485
MYCIN, 485–487
nonmonotonic logic, 477
ramification problem, 480
truth maintenance systems (TMS), 478–479

Nonterminal symbol, 577, 672
Normal distribution, 373, 672
Normal forms, 210–212

for predicate logic, 219–220
prenex, 219–220

Normalization, 335–337, 672
Norvig, Peter, 167
Not (operator), 179–180, 181–182
Noun, 672
Noun phrases, 576, 581–582, 673
NP-complete, 50–51, 673
NPL (natural language processing), 464

O
Object, 242
Object-oriented programming, 41–42
Occam’s razor, 276, 283, 673
Occluding edge, 613–614, 673
Offspring, in artificial evolution, 373

determining fitness of, 380
Open world assumption, 480
Opening book, 161, 673
Operator-based planning, 434
Operator schema, 436–437, 673
Operators, action

demoted vs. promoted, 447
and STRIPS, 435–437

Operators, logical, 177–184
and, 178, 242, 296, 299
binary, 182, 637
implication, 180–181, 183–184, 242
not, 179–180, 181–182
or, 182–183, 242, 296, 299, 299–300
unary, 181, 392, 692
using, in truth tables, 181–184

Opportunistic reasoning model, 469–470
OPS5, 253
Optical field, 623
Optical flow, 623, 673
Optimal classification, Bayes’, 349–351

Optimal classifier, Bayes’, 637
Optimal path, 91, 673

identifying, 107–112
Optimality, of search methods, 79–80, 673
Or-goals, 58–59, 674
Or-introduction, rule of, 192
Or-nodes, 58–59, 674
Or (operator), 179, 182–183
Othello (game), 165, 166
Output layer, of multilayer network, 301
Overfitting, problem of, 282–283, 674
Overridden, 32
Overriding, 674
Overspecified chromosome, 674

P
P class problems, 50–51
Paradoxes, well-known, and fuzzy logic, 515–516
Parallel search, 117–118, 132–133, 674
Parallel window search (PWS), 134
Parent, in artificial evolution, 373
Parse trees, 581–582, 590
Parser, 63, 674
Parsing, 575, 581–588

chart, 585–588
Transition networks, 582–585

Partial order, 674
Partial order planning, 434, 444–447, 675. See also

GraphPlan algorithm
Partial path, 45, 675
Partially observable Markov decision processes

(POMDPs), 561
Parts decomposition method, and machine vision, 626
Path, 45, 675
Path-based evaluation function, 108
Pattern-matching, 675
Pattern-matching clauses, 40–41
PDDL. See planning domain definition language
Pedagogical Sketchbook (Klee), 543
Perceptron training rule, 297
Perceptrons, 291, 295–300, 675

and Boolean operators, 296, 299–300
Persistence actions, 451, 453
Phenotype, 390, 412, 675
Philosophische Untersuchunge (Wittgenstein), 571
Philosophy, and AI, 3, 4, 10–11
Phonology, 573
Physics and Beyond (Heisenberg), 241

Index 733

Pictures, evolving, 412–413
Pitts, W., 12, 291, 293
Pixel, 675
Plan, 675
Planner, 421–422
Planning, 469, 675

Action description language (ADL), 455–456
case-based systems, 457–458
conditional, 457, 643
dynamic world, 419, 456–457, 650
and goal-based agents, 548
graphs, 451–455

mutexes, 452
partial order, 434, 444–447
probabilistic, 419, 456, 677
propositional, 448–450
SAT, 450–451, 683
and scheduling, 458–459
as search, 423–425
vs. executing, 435–436

Planning domain definition language (PDDL), 456, 675
Planning graph, 451–455, 676
Planning methods, 433–462
Plans

vs. goals, 62
partial order. See also GraphPlan algorithm

Plateaus, 101–103
Plato, 6, 10
Ply, 77, 676
Poetics (Aristotle), 327
Point fluent, 494
Polaroid, 381
Polynomial time, 50–51
Pope, Alexander, An Essay on Man, 433
Population, 131

in genetic algorithm, 388, 676
size, 389

Porter’s stemmer, 597–598
Positives, false, 598–599, 653
Possible world, 479, 676

Posterior probability, 331, 676
calculating, 345–346, 350-354
estimating, 354–355
highest, 351

Praed, Winthrop Mackworth, The Talented Man, 175
Pragmatic analysis, 676

and natural language processing, 573
Precedence, 180

Precision, 553, 598–599, 676
Precondition, 677
Predators, and co-evolution, 413–414
Predecessor, 677
Predicate calculus, 173, 175, 196–199. See also First-order

predicate logic (FOPL)
and change, 210
interpretation, 468
syntax of, 196–197

Predicate logic, 30, 179, 476
normal forms for, 219–220

Premises, 176, 677
Prenex normal form, 219–220, 677
Prey (Crichton), 543
Principle component analysis, 627–628, 677
Principle of least commitment, 447–448
Prior probability, 331, 677
Prisoner’s Dilemma, 266, 388, 406–411, 677

choice of opponents, 410–411
diversity, 411–412
and predators, 413–414
strategies, 407–410

evolution of, 410
representation of, 407–408
tit-for-tat, 409

Probabilistic planning, 419, 456, 677
Probabilistic reasoning, 266, 327–361, 504, 678. See also

Bayesian; Bayes’ Theoerem and propositional
logic, 328-330

Probability, 504, 678
and ambiguity, 591
calculating, 330-332, 350, 351
conditional, 329-330, 643

comparing, 334-335
tables, 340-341

estimating, 354–355
joint probability distributions, 330

posterior. See Posterior probability
Probability theory, 201, 328–330

and dependence, 339-349
Problem reduction, 57–58, 678

top down vs. bottom up, 60–61
Procedural attachments, 37, 678
Procedural semantics, 38–39
Procedures, 37–38, 678
Product rule, 331, 678
Production rule, 678
Production systems, 469. See Expert systems

734 Index

Programming
evolutionary, 375–376
genetic, 374–375

Programming Artificial Intelligence (Lenat), 241
PROLOG, 13, 173, 679

and closed world assumption, 480
and Horn clauses, 227–229
overview, 13–14
and resolution, 210

Promoted operators, 447
Proof by contradiction, 192–193, 214–216
Proof by refutation, 173, 214–216
Proposition letters, 189
Propositional calculus, 173, 175, 189, 189–196, 679

rules of deduction, 190–196
semantics, 190
syntax, 189–190

Propositional logic, 175–196, 347, 468, 476, 679
logical operators, 177–178
monotonicity, 201
propositional calculus, 189–196
resolution in, 210–216
rules of inference, 191–196
semantics, 190
syntax, 189–190
translating, 178–181
and truth tables, 181–184

complex, 184–189
Propositional planning, 448–450, 679
Propositional symbols, 189
Protected causal links, 446–447
Protected links, 679
Pruning, 679
Psychology, and AI, 3, 4, 12
Pure and-or tree, 64, 679
Push, 435

Q
Quantifiers, 679

application, 199–200
existential, 197

eliminating, 220–222
moving, 220–222
universal, 197

Quantum physics, 504
Quenching, 130
Queue, 83, 84
Quinlan, J. R., 278

R
Rabbi Ben Ezra (Browning), 421
Ramification problem, 480, 679
Ramps, 413
Randomized Parallel Algorithms for Backtrack Search

and Branch-and Bound Computation (Karp and
Zhang), 135

Rationality, 550
and game playing, 146

Rationality, and game playing, 149, 680
Reactive agents, 547–548, 559, 680
Real-time A*, 131–132
Real-world systems, 573–574
Recall, 553, 598–599, 680
Rechenberg, Ingo, 373
Recommendation rule, 243
Recurrent networks, 301, 306–313, 680

Hopfield networks, 307–313
Recursive depth, 84
Recursively enumerable, 680
Recursively enumerable grammars, 580
Reductio ad absurdum, 192–193, 680

examples, 194–195
Referential ambiguity, 589–590
Reflex agents, 547–548, 680. See also Reactive agents
Refutation proof, 192–193, 214–216, 680
Regular expression, 580, 680
Regular grammar, 681
Regular languages, 579–580, 681
Reinforcement learning, 286, 681
Relative likelihood, 681
Relaxed problem, 95, 125–126, 681
Relaxing, 94
Religio Medici (Browne), 363
Replanning, 457, 681
Representational adequacy, 40–41, 467, 681
Representational frame problem, 427–428
Representational methods

blackboard architecture, 467
copycat architecture, 467
scripts, 467

Representations, 681
of frame problem, 427–428
for genetic algorithms, 388–389
of strategy, for Prisoner’s Dilemma, 407–408

Reproduction, 389–390, 395–396. See also Crossover
in classifier system, 380–381
and messy genetic algorithms, 405–406

Index 735

and schemata, 399–403
sexual vs. asexual, 373

Republic: The Revolution, 24
Resolution, 209–239, 682

algorithm, 226–227
application, 216–218

example, 233–236
in predicate logic, 218–219
in propositional logic, 210–216

normal forms, 210–212
rule, 213–214

in PROLOG, 228
rules, 212–216
and STRIPS, 441–443

Resolution, automation of, 173
Resolution (Robinson), 209
Resolvent, 213
Result function, 426
Rete algorithm, 242, 253–254, 682
Reversi (game), 166
Rewrite rule, 682
Rewrite rules, 577–579, 580
Reynolds, Craig, 366, 555
Ridges, 101–103, 682
Robinson, Alan, Resolution, 209
Robot navigation, 414
Robotic agents, 562–563, 682
Robots, 23, 423, 434, 438–443, 682

control mechanisms, 557
mobile, 552

Romeo and Juliet (Shakespeare), 267
Root goals, 59, 682
Root nodes, 45, 682
Rosenblatt, F., 295, 296
Rote learning, 270, 682
Roulette-wheel selection, 394, 682
Rule-based systems, 30, 34, 243–251, 683

and backward chaining, 248–251
backward chaining in, 257–259
and conflict resolution, 245–247
and deduction, 244–245
and forward chaining, 244–245
and longest-matching strategy, 246–247
and meta rules, 247–248

Rule relation, 227
Rules, 173, 228, 683

as directives, 243
of inference, 191–195

legal, 370
purpose of, 242
recommendation, 243
resolution, 212–216
totalistic, 370

Run, of genetic algorithm, 392–393
Ruskin, John, Seven Lamps of Architecture, 28
Russell, Stuart, 167
Russell’s paradox, 515

S
S-expressions, 388, 684
Samuel, Arthur, Some Studies in Machine Learning Using

the Game of Checkers, 160
SAT planning, 450–451, 683
Satisfiability, 175, 187, 231–233, 683
Satisfiability problem, 51
Satisfiability problem (SAT)

and propositional notation, 450–451
systematic approach, 450

Schaeffer, Jonathan, 143, 160, 163, 164
Schank, 473
Scheduling, 683
Scheduling, and planning, 458–459
Schema, 472, 559, 683. See also Scripts
Schema theorem, 403, 683
Schemata, 387, 397–403

building blocks, 403–404
and crossover, 401–402
and mutation, 402–403
and reproduction, 399–403

Schwefel, Hans-Paul, 373
Scrabble, 167
Scripts, 20, 467, 683

definition, 472
Search, 684

data-driven, 73
and goal-based agents, 548
goal-driven, 73, 657
iterated, 663
problem solving as, 72

Search engines, 88, 135–136
Search methods, 71–116

breadth-first, 76–78
implementing, 86–88

data-driven or goal-driven, 73–74
depth-first, 75–76, 77, 80–83

implementing, 83–86

736 Index

depth-first iterative deepening, 88–90
generate and test, 74–75
heuristics, 90–97
hill climbing, 98–103
informed vs. uninformed, 91–92
local, 666
parallel, 674
and planning, 423–425
problem solving as, 72
properties of, 78–80

completeness, 79
complexity, 78–79
irrevocability, 80
monotonicity, 95–96
optimality, 79–80

Search spaces, 42–44, 72, 684
Search trees, 684

diagram, 46f
examples

describe and match, 56–57
missionaries and cannibals, 47–50
towers of Hanoi, 54–56
traveling salesman, 50–54

for plan, 424–425
Rete algorithm. See Rete algorithm
and STRIPS, 439–440

Searching, 49
Searle, John, 20
Segmentation, 612–613, 684
Selection, artificial, 372–373
Selection, evolutionary, 372
Self-organizing feature map, 316. See also Kohonen maps
Self-reproducing systems, 371–372
Selman, B., 450
Semantic ambiguity, 589
Semantic analysis, 588–589, 684
Semantic nets, 29–31, 588–589, 684

diagram, 30f
frame system for, 32–33

Semantic trees, 44–57, 684
diagram, 44f
search trees, 46–57

Semantics, 38–39
and natural language processing, 573
of propositional logic, 190
and representations, 468

Sen, Sandip, Learning in Multiagent Systems, 267

Sentence, well-formed, 189–190, 199
Set notation, of propositional logic, 189
Seven Lamps of Architecture (Ruskin), 28
Sexual reproduction, 373
Shakespeare, William

Hamlet, 503
Henry V, 143
Love’s Labours Lost, 28
Romeo and Juliet, 267

Shaw, George Bernard, 71
Shaw, J. C., 430
Shelley, Mary, Frankenstein, 3
Shepard, D., 283
Shepard’s method, 283, 685
Sigmoid function, 294f, 302, 305, 685
Sign activation function, 307, 685
Sign of Four, The (Conan Doyle), 209
Simon, Herbert A., 6, 9, 430
Simple Monte Carlo simulation, 128–129
Simplification, of logical expressions, 188–189
Sims, Karl, 390, 413
Simulated annealing, 69, 117, 126, 128–131, 396, 685

uses of, 130–131
Single-step selection, 372
Singular-extension heuristic, 153
Situated, 557
Situated action rules, 557, 685
Situation action rules. See Situated action rules
Situation calculus, 419, 422, 426–427, 467, 685
Situation variables, 426, 434–435, 685
Skolem constant, 221, 686
Skolem function, 686
Skolem normal form, 686
Skolemization, 173, 220–222, 686

example, 221–222
Slipnet, 474–475, 686
Slippage, 476
Slot reader, 37, 686
Slot values, 32–33, 686
Slot writer, 38
Slots, 32–33, 686

as frames, 35–36
Smart agent, 686
Smoothing, 611, 687
Social interaction, of agents, 545–546
Socrates, 10
Software agents, 543–544, 687

Index 737

mobile, 552
Solved, 166
Soma, 292–293
Some Studies in Machine Learning Using the Game of

Checkers (Samuel), 160
Sony corporation, 23
Soundness, 173, 175, 200, 687
Space complexity, 78
Spärck Jones, Karen, 597
Spidering the web, 72, 88, 135–136, 687
Spielberg, Stephen, 23
Splice and cut operators, 405–406
Splitting and merging, 613
SQL, 572
Stability, of neural networks, 306–307
Stack, 84, 687
Stagnant, 371
Stagnate, 395, 411
Stanford University, 255, 485–486
Start state, diagram, 452f
Start symbol, 577
State, 687
State spaces, 43–44, 72, 83, 84, 687

diagram, 44f
Static agents, 552
Static evaluators, in game playing, 146–148, 687
Steels, Luc, The Artificial Life Roots of Artificial Intelli-

gence, 363
Steepest ascent hill climbing, 98–100
Steinbeck, John, The Grapes of Wrath, 291
Stemming, 596–598, 687
Stendahl, Henri Beyle, La Vie d’Henri Brulard, 503
Step function, of artificial neuron, 294, 302
Steps Toward Artificial Intelligence (Minsky), 28
Stevenson, Adlai E., Jr., 117
Stochastic, 560
Stochastic methods, 450
Stop list, 594, 687
STRIPS (Stanford Research Institute Problem Solver),

419, 422, 430, 434–443, 688
assumption, 688
and closed world assumption, 480
and GraphPlan, 454–455
implementing, 437–443

backward chaining, 440–441
forward chaining, 439
means-ends analysis, 440–441

and resolution, 441–443
search trees, 439–440

operators, 435–437
and principle of least commitment, 447–448
and propositional planning, 448–450
Sussman anomaly, 443–444

Strong AI, 688
Strong methods, 688
Structural texture analysis, 620
Structured knowledge representation, 469
Subclass, 31–32, 42, 688
Subgoal, 58, 688
Subproblems, 57, 688
Subset, 688
Substitution, in logical expressions, 198, 222–223, 229,

688
Subsumption architecture, 556–557, 559, 688
Success nodes, 59, 689
Successor state axioms, 422, 427–428
Successors, 83, 689
Sun corporation, 552
Superclass, 31–32, 689
Supervised learning, 285, 689

in multilayer networks, 292
Survival of the fittest, 372
Sussman anomaly, 443–444
Syllogism, 6, 689
Symbolic representation, 558–559
Synapses, 292–293, 689
Syntactic ambiguity, 589
Syntactic analysis, 581–582, 689
Syntactic structures, 11
Syntax

and natural language processing, 573
of predicate calculus, 196–197
of propositional logic, 189–190

Systematic approach, to SAT, 450
Systems reply, to Chinese room, 21

T
Tabu search, 69, 126, 127–128, 689
Talented Man, The (Praed), 175
Tanh, 305
Task distribution, 134, 134–135
Tautologies, 175, 186–187, 201, 689
Telescript, 552
Temperature, 129

738 Index

Template chromosomes, 405
Temporal logic, 467, 487–490, 690

linear time, 488
using, 489–490

Tennyson, Alfred, 465
Term frequency-inverse document frequency (TF-IDF),

594–596, 690
Terminal symbols, 577, 580, 690
Termination criteria, for genetic algorithm, 392–393
Terms, 199, 690
Texels, 620, 690
Texture, 690

in machine vision, 615–623
determining shape and orientation, 620–623
identifying, 616–620
structural texture analysis, 620

TF-IDF (term frequency-inverse document frequency),
594–596, 690

Theorems, 200, 690
Thomas, Dylan, Especially When the October Wind, 291
Threat tree, 60
Threatened causal links, 446–447
Three-coloring problem, 216–218, 690
Thresholding, 612–613
Through the Looking Glass (Carroll), 19, 175
Tic-tac-toe, 144–145, 166
Time complexity, 78
Timetable problem, 414
Tinsley, Marion, 160–161, 163
Tit-for-tat strategy, 409, 690
To a Mouse (Burns), 421
Todd, Stephen, 412
Top down or bottom up, 60–61, 278, 690

building parse tree, 581–582
Total order plans, 444
Totalistic rules, 370
TouringMachines, 559, 560
Towers of Hanoi, 691
Tractatus Logico-Philosophicus (Wittgenstein), 19
Training, 691

and machine learning, 268–270
Training data, 691

positive and negative, 282
Transition model, 560
Transition networks, 582–585, 691

augmented, 585
Translating logical operators, 178–181
Translation, 8–9

automated, 572
machine, 592

Traveling salesman problem, 50–54, 96–98, 414
Tree ordering, 134, 135
Trihedral vertex, 614–615, 691
Truth maintenance system (TMS), 467, 478–479, 691
Truth tables, 173, 181–184, 691

complex, 184–186
and fuzzy logic, 512–515
tautologies, 186–187, 201

Truth values, 176, 691
Turing, Alan, 7–8, 21, 291

Computing Machinery and Intelligence, 7
Turing test, 8, 22, 691
Tversky, A., 550
2001: A Space Odyssey (film), 19, 21–22

U
Ulam, Stanislaw, 369
Unary operators, 181, 392, 692
Uncertainty, and logic, 177, 467, 564
Uncertainty principle, 504
Underspecified chromosomes, 692
Unification, 222–226, 228, 229

example, 225–226
and STRIPS, 437, 442

Unification algorithm, 224–225
Unifiers, 692
Uniform cost search, 109–110
Uniform crossover, 391–392, 692
Uniform tree, 692
Uninformed search, 692
Universal quantifiers, 197, 692
Universe of discourse, 504–505, 692
University of Alberta, Canada, 160
Unrestricted grammars, 580
Unstable neural networks, 307
Unsupervised learning, 285, 292, 693
Unsupervised learning networks, 316–321

Kohonen maps, 316–320
example, 318–320

User interface, 252f, 253
Utility-based agents, 549, 551, 693
Utility functions, 549–551, 693
Utterance, 693

Index 739

V
Vagueness, 504, 590
Validity, 176, 693
Vanishing point, 624, 693
Variables, 181

bound vs. free, 198, 638
Vecchi, M. P., 130
Verb, 693
Verb phrase, 693
Verb phrases, 576, 581–582
Versatility, of agents, 546
Version spaces, 274–275, 693
Vertical layer architecture, 559, 559–560
Vision

human, 606–608
machine, 605–628

Visual data, analyzing. See Machine vision
VLSI (very large-scale integration), 130
Voltaire, Candide, 71
Von Neumann, John, 369–370, 372

W
Walksat, 450
Watts, Isaac, 327
Wave search, 136
Weak AI, 693
Weak methods, 694
Web spidering, 88, 135–136
Weight, 694
Weight vector, 694
Weighted linear functions, 147, 694
Weiss, Gerhard, Learning in Multiagent Systems, 267

Weizenbaum, Joseph, 8

Well-formed formula (WFF), 189–190, 694

defined, 199–200

and STRIPS, 435, 436, 437

WHEN-CHANGED procedures, 39–40, 694

WHEN-NEEDED procedures, 38, 40, 694

WHEN-READ procedures, 694

WHEN-WRITTEN procedures, 694

Willett, Peter, 597

William of Occam, 276

Wilson, Stewart, 381

Winner-take-all algorithm, 316, 694

Winston, Patrick Henry, 412

Wittgenstein, Ludwig

Philosophische Untersuchungen, 571

Tractatus Logico-Philosophicus, 19

Wordsworth, William, 605

Workspace, 474–475, 695

World model, 436–437, 591–592, 695

Y
Young, Edward, Night Thoughts, 209

Z
Zero-sum games, 146, 695

Zhang, Yanjun, Randomized Parallel Algorithms for Back-
track Search and Branch-and-Bound Computa-
tions, 135

Computer Science Illuminated, Second Edition
Nell Dale and John Lewis
ISBN: 0-7637-0799-6
©2004

Programming and Problem Solving with Java
Nell Dale, Chip Weems,
and Mark R. Headington
ISBN: 0-7637-0490-3
©2003

Databases Illuminated
Catherine Ricardo
ISBN: 0-7637-3314-8
©2004

Foundations of Algorithms Using Java
Pseudocode
Richard Neapolitan and Kumarss Naimipour
ISBN: 0-7637-2129-8
©2004

Artificial Intelligence Illuminated
Ben Coppin
ISBN: 0-7637-3230-3
©2004

The Essentials of Computer Organization and
Architecture
Linda Null and Julia Lobur
ISBN: 0-7637-0444-X
©2003

A Complete Guide to C#
David Bishop
ISBN: 0-7637-2249-9
©2004

A First Course in Complex Analysis
with Applications
Dennis G. Zill and Patrick Shanahan
ISBN: 0-7637-1437-2
©2003

Programming and Problem Solving with C++,
Fourth Edition
Nell Dale and Chip Weems
ISBN: 0-7637-0798-8
©2004

C++ Plus Data Structures, Third Edition
Nell Dale
ISBN: 0-7637-0481-4
©2003

Applied Data Structures with C++
Peter Smith
ISBN: 0-7637-2562-5
©2004

Foundations of Algorithms Using C++
Pseudocode, Third Edition
Richard Neapolitan and Kumarss Naimipour
ISBN: 0-7637-2387-8
©2004

Managing Software Projects
Frank Tsui
ISBN: 0-7637-2546-3
©2004

Readings in CyberEthics, Second Edition
Richard Spinello and Herman Tavani
ISBN: 0-7637-2410-6
©2004

C#.NET Illuminated
Art Gittleman
ISBN: 0-7637-2593-5
©2004

Discrete Mathematics, Second Edition
James L. Hein
ISBN: 0-7637-2210-3
©2003

Outstanding New Titles:

http://www.jbpub.com/ 1.800.832.0034

http://www.jbpub.com/

Take Your Courses to the Next Level
Turn the page to preview new and forthcoming titles

in Computer Science and Math from
Jones and Bartlett…

Providing solutions for students and educators in the following
disciplines:

Please visit http://computerscience.jbpub.com/ and
http://math.jbpub.com/ to learn more about our exciting publishing

programs in these disciplines.

• Introductory Computer Science

• Java

• C++

• Databases

• C#

• Data Structures

• Algorithms

• Network Security

• Software Engineering

• Discrete Mathematics

• Engineering Mathematics

• Complex Analysis

http://www.jbpub.com/ 1.800.832.0034

http://www.jbpub.com/
http://computerscience.jbpub.com/
http://math.jbpub.com/

