a:17:{s:8:"provides";a:0:{}s:8:"filelist";a:3:{s:13:"Fibonacci.php";a:4:{s:4:"role";s:3:"php";s:14:"baseinstalldir";s:4:"Math";s:6:"md5sum";s:32:"b2bf381e2478ff2a593a8d7d354c0045";s:12:"installed_as";s:37:"/opt/lampp/lib/php/Math/Fibonacci.php";}s:29:"Fibonacci/_fibonacciTable.php";a:4:{s:4:"role";s:3:"php";s:14:"baseinstalldir";s:4:"Math";s:6:"md5sum";s:32:"67245e31bd135cf1a9b4026bc63ba92c";s:12:"installed_as";s:53:"/opt/lampp/lib/php/Math/Fibonacci/_fibonacciTable.php";}s:27:"test/testMath_Fibonacci.php";a:4:{s:4:"role";s:3:"php";s:14:"baseinstalldir";s:4:"Math";s:6:"md5sum";s:32:"acbbc6aba59f295d73247a6ba0fd6425";s:12:"installed_as";s:51:"/opt/lampp/lib/php/Math/test/testMath_Fibonacci.php";}}s:10:"xsdversion";s:3:"1.0";s:7:"package";s:14:"Math_Fibonacci";s:7:"summary";s:52:"Package to calculat and manipulate Fibonacci numbers";s:11:"description";s:455:"The Fibonacci series is constructed using the formula: F(n) = F(n - 1) + F (n - 2), By convention F(0) = 0, and F(1) = 1. An alternative formula that uses the Golden Ratio can also be used: F(n) = (PHI^n - phi^n)/sqrt(5) [Lucas' formula], where PHI = (1 + sqrt(5))/2 is the Golden Ratio, and phi = (1 - sqrt(5))/2 is its reciprocal Requires Math_Integer, and can be used with big integers if the GMP or the BCMATH libraries are present. ";s:11:"maintainers";a:1:{i:0;a:4:{s:6:"handle";s:13:"jmcastagnetto";s:4:"name";s:20:"Jesus M. Castagnetto";s:5:"email";s:21:"jmcastagnetto@php.net";s:4:"role";s:4:"lead";}}s:7:"version";s:3:"0.8";s:12:"release_date";s:10:"2002-12-31";s:15:"release_license";s:3:"PHP";s:13:"release_state";s:6:"stable";s:13:"release_notes";s:27:"Initial release under PEAR.";s:12:"release_deps";a:1:{i:1;a:3:{s:4:"type";s:3:"pkg";s:3:"rel";s:3:"has";s:4:"name";s:12:"Math_Integer";}}s:9:"changelog";a:1:{i:0;a:0:{}}s:12:"_lastversion";N;s:7:"dirtree";a:3:{s:23:"/opt/lampp/lib/php/Math";b:1;s:33:"/opt/lampp/lib/php/Math/Fibonacci";b:1;s:28:"/opt/lampp/lib/php/Math/test";b:1;}s:13:"_lastmodified";i:1606820341;}