.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.40) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::BigRat 3" .TH Math::BigRat 3 "2020-06-14" "perl v5.32.0" "Perl Programmers Reference Guide" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::BigRat \- Arbitrary big rational numbers .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& use Math::BigRat; \& \& my $x = Math::BigRat\->new(\*(Aq3/7\*(Aq); $x += \*(Aq5/9\*(Aq; \& \& print $x\->bstr(), "\en"; \& print $x ** 2, "\en"; \& \& my $y = Math::BigRat\->new(\*(Aqinf\*(Aq); \& print "$y ", ($y\->is_inf ? \*(Aqis\*(Aq : \*(Aqis not\*(Aq), " infinity\en"; \& \& my $z = Math::BigRat\->new(144); $z\->bsqrt(); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" Math::BigRat complements Math::BigInt and Math::BigFloat by providing support for arbitrary big rational numbers. .SS "\s-1MATH LIBRARY\s0" .IX Subsection "MATH LIBRARY" You can change the underlying module that does the low-level math operations by using: .PP .Vb 1 \& use Math::BigRat try => \*(AqGMP\*(Aq; .Ve .PP Note: This needs Math::BigInt::GMP installed. .PP The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc: .PP .Vb 1 \& use Math::BigRat try => \*(AqFoo,Math::BigInt::Bar\*(Aq; .Ve .PP If you want to get warned when the fallback occurs, replace \*(L"try\*(R" with \*(L"lib\*(R": .PP .Vb 1 \& use Math::BigRat lib => \*(AqFoo,Math::BigInt::Bar\*(Aq; .Ve .PP If you want the code to die instead, replace \*(L"try\*(R" with \*(L"only\*(R": .PP .Vb 1 \& use Math::BigRat only => \*(AqFoo,Math::BigInt::Bar\*(Aq; .Ve .SH "METHODS" .IX Header "METHODS" Any methods not listed here are derived from Math::BigFloat (or Math::BigInt), so make sure you check these two modules for further information. .IP "\fBnew()\fR" 4 .IX Item "new()" .Vb 1 \& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq); .Ve .Sp Create a new Math::BigRat object. Input can come in various forms: .Sp .Vb 9 \& $x = Math::BigRat\->new(123); # scalars \& $x = Math::BigRat\->new(\*(Aqinf\*(Aq); # infinity \& $x = Math::BigRat\->new(\*(Aq123.3\*(Aq); # float \& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq); # simple string \& $x = Math::BigRat\->new(\*(Aq1 / 3\*(Aq); # spaced \& $x = Math::BigRat\->new(\*(Aq1 / 0.1\*(Aq); # w/ floats \& $x = Math::BigRat\->new(Math::BigInt\->new(3)); # BigInt \& $x = Math::BigRat\->new(Math::BigFloat\->new(\*(Aq3.1\*(Aq)); # BigFloat \& $x = Math::BigRat\->new(Math::BigInt::Lite\->new(\*(Aq2\*(Aq)); # BigLite \& \& # You can also give D and N as different objects: \& $x = Math::BigRat\->new( \& Math::BigInt\->new(\-123), \& Math::BigInt\->new(7), \& ); # => \-123/7 .Ve .IP "\fBnumerator()\fR" 4 .IX Item "numerator()" .Vb 1 \& $n = $x\->numerator(); .Ve .Sp Returns a copy of the numerator (the part above the line) as signed BigInt. .IP "\fBdenominator()\fR" 4 .IX Item "denominator()" .Vb 1 \& $d = $x\->denominator(); .Ve .Sp Returns a copy of the denominator (the part under the line) as positive BigInt. .IP "\fBparts()\fR" 4 .IX Item "parts()" .Vb 1 \& ($n, $d) = $x\->parts(); .Ve .Sp Return a list consisting of (signed) numerator and (unsigned) denominator as BigInts. .IP "\fBnumify()\fR" 4 .IX Item "numify()" .Vb 1 \& my $y = $x\->numify(); .Ve .Sp Returns the object as a scalar. This will lose some data if the object cannot be represented by a normal Perl scalar (integer or float), so use \*(L"\fBas_int()\fR\*(R" or \*(L"\fBas_float()\fR\*(R" instead. .Sp This routine is automatically used whenever a scalar is required: .Sp .Vb 3 \& my $x = Math::BigRat\->new(\*(Aq3/1\*(Aq); \& @array = (0, 1, 2, 3); \& $y = $array[$x]; # set $y to 3 .Ve .IP "\fBas_int()\fR" 4 .IX Item "as_int()" .PD 0 .IP "\fBas_number()\fR" 4 .IX Item "as_number()" .PD .Vb 2 \& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq); \& print $x\->as_int(), "\en"; # \*(Aq1\*(Aq .Ve .Sp Returns a copy of the object as BigInt, truncated to an integer. .Sp \&\f(CW\*(C`as_number()\*(C'\fR is an alias for \f(CW\*(C`as_int()\*(C'\fR. .IP "\fBas_float()\fR" 4 .IX Item "as_float()" .Vb 2 \& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq); \& print $x\->as_float(), "\en"; # \*(Aq1\*(Aq \& \& $x = Math::BigRat\->new(\*(Aq2/3\*(Aq); \& print $x\->as_float(5), "\en"; # \*(Aq0.66667\*(Aq .Ve .Sp Returns a copy of the object as BigFloat, preserving the accuracy as wanted, or the default of 40 digits. .Sp This method was added in v0.22 of Math::BigRat (April 2008). .IP "\fBas_hex()\fR" 4 .IX Item "as_hex()" .Vb 2 \& $x = Math::BigRat\->new(\*(Aq13\*(Aq); \& print $x\->as_hex(), "\en"; # \*(Aq0xd\*(Aq .Ve .Sp Returns the BigRat as hexadecimal string. Works only for integers. .IP "\fBas_bin()\fR" 4 .IX Item "as_bin()" .Vb 2 \& $x = Math::BigRat\->new(\*(Aq13\*(Aq); \& print $x\->as_bin(), "\en"; # \*(Aq0x1101\*(Aq .Ve .Sp Returns the BigRat as binary string. Works only for integers. .IP "\fBas_oct()\fR" 4 .IX Item "as_oct()" .Vb 2 \& $x = Math::BigRat\->new(\*(Aq13\*(Aq); \& print $x\->as_oct(), "\en"; # \*(Aq015\*(Aq .Ve .Sp Returns the BigRat as octal string. Works only for integers. .IP "\fBfrom_hex()\fR" 4 .IX Item "from_hex()" .Vb 1 \& my $h = Math::BigRat\->from_hex(\*(Aq0x10\*(Aq); .Ve .Sp Create a BigRat from a hexadecimal number in string form. .IP "\fBfrom_oct()\fR" 4 .IX Item "from_oct()" .Vb 1 \& my $o = Math::BigRat\->from_oct(\*(Aq020\*(Aq); .Ve .Sp Create a BigRat from an octal number in string form. .IP "\fBfrom_bin()\fR" 4 .IX Item "from_bin()" .Vb 1 \& my $b = Math::BigRat\->from_bin(\*(Aq0b10000000\*(Aq); .Ve .Sp Create a BigRat from an binary number in string form. .IP "\fBbnan()\fR" 4 .IX Item "bnan()" .Vb 1 \& $x = Math::BigRat\->bnan(); .Ve .Sp Creates a new BigRat object representing NaN (Not A Number). If used on an object, it will set it to NaN: .Sp .Vb 1 \& $x\->bnan(); .Ve .IP "\fBbzero()\fR" 4 .IX Item "bzero()" .Vb 1 \& $x = Math::BigRat\->bzero(); .Ve .Sp Creates a new BigRat object representing zero. If used on an object, it will set it to zero: .Sp .Vb 1 \& $x\->bzero(); .Ve .IP "\fBbinf()\fR" 4 .IX Item "binf()" .Vb 1 \& $x = Math::BigRat\->binf($sign); .Ve .Sp Creates a new BigRat object representing infinity. The optional argument is either '\-' or '+', indicating whether you want infinity or minus infinity. If used on an object, it will set it to infinity: .Sp .Vb 2 \& $x\->binf(); \& $x\->binf(\*(Aq\-\*(Aq); .Ve .IP "\fBbone()\fR" 4 .IX Item "bone()" .Vb 1 \& $x = Math::BigRat\->bone($sign); .Ve .Sp Creates a new BigRat object representing one. The optional argument is either '\-' or '+', indicating whether you want one or minus one. If used on an object, it will set it to one: .Sp .Vb 2 \& $x\->bone(); # +1 \& $x\->bone(\*(Aq\-\*(Aq); # \-1 .Ve .IP "\fBlength()\fR" 4 .IX Item "length()" .Vb 1 \& $len = $x\->length(); .Ve .Sp Return the length of \f(CW$x\fR in digits for integer values. .IP "\fBdigit()\fR" 4 .IX Item "digit()" .Vb 2 \& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(1); # 1 \& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(\-1); # 3 .Ve .Sp Return the N'ths digit from X when X is an integer value. .IP "\fBbnorm()\fR" 4 .IX Item "bnorm()" .Vb 1 \& $x\->bnorm(); .Ve .Sp Reduce the number to the shortest form. This routine is called automatically whenever it is needed. .IP "\fBbfac()\fR" 4 .IX Item "bfac()" .Vb 1 \& $x\->bfac(); .Ve .Sp Calculates the factorial of \f(CW$x\fR. For instance: .Sp .Vb 2 \& print Math::BigRat\->new(\*(Aq3/1\*(Aq)\->bfac(), "\en"; # 1*2*3 \& print Math::BigRat\->new(\*(Aq5/1\*(Aq)\->bfac(), "\en"; # 1*2*3*4*5 .Ve .Sp Works currently only for integers. .IP "\fBbround()\fR/\fBround()\fR/\fBbfround()\fR" 4 .IX Item "bround()/round()/bfround()" Are not yet implemented. .IP "\fBbmod()\fR" 4 .IX Item "bmod()" .Vb 1 \& $x\->bmod($y); .Ve .Sp Returns \f(CW$x\fR modulo \f(CW$y\fR. When \f(CW$x\fR is finite, and \f(CW$y\fR is finite and non-zero, the result is identical to the remainder after floored division (F\-division). If, in addition, both \f(CW$x\fR and \f(CW$y\fR are integers, the result is identical to the result from Perl's % operator. .IP "\fBbmodinv()\fR" 4 .IX Item "bmodinv()" .Vb 1 \& $x\->bmodinv($mod); # modular multiplicative inverse .Ve .Sp Returns the multiplicative inverse of \f(CW$x\fR modulo \f(CW$mod\fR. If .Sp .Vb 1 \& $y = $x \-> copy() \-> bmodinv($mod) .Ve .Sp then \f(CW$y\fR is the number closest to zero, and with the same sign as \f(CW$mod\fR, satisfying .Sp .Vb 1 \& ($x * $y) % $mod = 1 % $mod .Ve .Sp If \f(CW$x\fR and \f(CW$y\fR are non-zero, they must be relative primes, i.e., \&\f(CW\*(C`bgcd($y, $mod)==1\*(C'\fR. '\f(CW\*(C`NaN\*(C'\fR' is returned when no modular multiplicative inverse exists. .IP "\fBbmodpow()\fR" 4 .IX Item "bmodpow()" .Vb 2 \& $num\->bmodpow($exp,$mod); # modular exponentiation \& # ($num**$exp % $mod) .Ve .Sp Returns the value of \f(CW$num\fR taken to the power \f(CW$exp\fR in the modulus \&\f(CW$mod\fR using binary exponentiation. \f(CW\*(C`bmodpow\*(C'\fR is far superior to writing .Sp .Vb 1 \& $num ** $exp % $mod .Ve .Sp because it is much faster \- it reduces internal variables into the modulus whenever possible, so it operates on smaller numbers. .Sp \&\f(CW\*(C`bmodpow\*(C'\fR also supports negative exponents. .Sp .Vb 1 \& bmodpow($num, \-1, $mod) .Ve .Sp is exactly equivalent to .Sp .Vb 1 \& bmodinv($num, $mod) .Ve .IP "\fBbneg()\fR" 4 .IX Item "bneg()" .Vb 1 \& $x\->bneg(); .Ve .Sp Used to negate the object in-place. .IP "\fBis_one()\fR" 4 .IX Item "is_one()" .Vb 1 \& print "$x is 1\en" if $x\->is_one(); .Ve .Sp Return true if \f(CW$x\fR is exactly one, otherwise false. .IP "\fBis_zero()\fR" 4 .IX Item "is_zero()" .Vb 1 \& print "$x is 0\en" if $x\->is_zero(); .Ve .Sp Return true if \f(CW$x\fR is exactly zero, otherwise false. .IP "\fBis_pos()\fR/\fBis_positive()\fR" 4 .IX Item "is_pos()/is_positive()" .Vb 1 \& print "$x is >= 0\en" if $x\->is_positive(); .Ve .Sp Return true if \f(CW$x\fR is positive (greater than or equal to zero), otherwise false. Please note that '+inf' is also positive, while 'NaN' and '\-inf' aren't. .Sp \&\f(CW\*(C`is_positive()\*(C'\fR is an alias for \f(CW\*(C`is_pos()\*(C'\fR. .IP "\fBis_neg()\fR/\fBis_negative()\fR" 4 .IX Item "is_neg()/is_negative()" .Vb 1 \& print "$x is < 0\en" if $x\->is_negative(); .Ve .Sp Return true if \f(CW$x\fR is negative (smaller than zero), otherwise false. Please note that '\-inf' is also negative, while 'NaN' and '+inf' aren't. .Sp \&\f(CW\*(C`is_negative()\*(C'\fR is an alias for \f(CW\*(C`is_neg()\*(C'\fR. .IP "\fBis_int()\fR" 4 .IX Item "is_int()" .Vb 1 \& print "$x is an integer\en" if $x\->is_int(); .Ve .Sp Return true if \f(CW$x\fR has a denominator of 1 (e.g. no fraction parts), otherwise false. Please note that '\-inf', 'inf' and 'NaN' aren't integer. .IP "\fBis_odd()\fR" 4 .IX Item "is_odd()" .Vb 1 \& print "$x is odd\en" if $x\->is_odd(); .Ve .Sp Return true if \f(CW$x\fR is odd, otherwise false. .IP "\fBis_even()\fR" 4 .IX Item "is_even()" .Vb 1 \& print "$x is even\en" if $x\->is_even(); .Ve .Sp Return true if \f(CW$x\fR is even, otherwise false. .IP "\fBbceil()\fR" 4 .IX Item "bceil()" .Vb 1 \& $x\->bceil(); .Ve .Sp Set \f(CW$x\fR to the next bigger integer value (e.g. truncate the number to integer and then increment it by one). .IP "\fBbfloor()\fR" 4 .IX Item "bfloor()" .Vb 1 \& $x\->bfloor(); .Ve .Sp Truncate \f(CW$x\fR to an integer value. .IP "\fBbint()\fR" 4 .IX Item "bint()" .Vb 1 \& $x\->bint(); .Ve .Sp Round \f(CW$x\fR towards zero. .IP "\fBbsqrt()\fR" 4 .IX Item "bsqrt()" .Vb 1 \& $x\->bsqrt(); .Ve .Sp Calculate the square root of \f(CW$x\fR. .IP "\fBbroot()\fR" 4 .IX Item "broot()" .Vb 1 \& $x\->broot($n); .Ve .Sp Calculate the N'th root of \f(CW$x\fR. .IP "\fBbadd()\fR" 4 .IX Item "badd()" .Vb 1 \& $x\->badd($y); .Ve .Sp Adds \f(CW$y\fR to \f(CW$x\fR and returns the result. .IP "\fBbmul()\fR" 4 .IX Item "bmul()" .Vb 1 \& $x\->bmul($y); .Ve .Sp Multiplies \f(CW$y\fR to \f(CW$x\fR and returns the result. .IP "\fBbsub()\fR" 4 .IX Item "bsub()" .Vb 1 \& $x\->bsub($y); .Ve .Sp Subtracts \f(CW$y\fR from \f(CW$x\fR and returns the result. .IP "\fBbdiv()\fR" 4 .IX Item "bdiv()" .Vb 2 \& $q = $x\->bdiv($y); \& ($q, $r) = $x\->bdiv($y); .Ve .Sp In scalar context, divides \f(CW$x\fR by \f(CW$y\fR and returns the result. In list context, does floored division (F\-division), returning an integer \f(CW$q\fR and a remainder \f(CW$r\fR so that \f(CW$x\fR = \f(CW$q\fR * \f(CW$y\fR + \f(CW$r\fR. The remainer (modulo) is equal to what is returned by \f(CW\*(C`$x\-\*(C'\fRbmod($y)>. .IP "\fBbdec()\fR" 4 .IX Item "bdec()" .Vb 1 \& $x\->bdec(); .Ve .Sp Decrements \f(CW$x\fR by 1 and returns the result. .IP "\fBbinc()\fR" 4 .IX Item "binc()" .Vb 1 \& $x\->binc(); .Ve .Sp Increments \f(CW$x\fR by 1 and returns the result. .IP "\fBcopy()\fR" 4 .IX Item "copy()" .Vb 1 \& my $z = $x\->copy(); .Ve .Sp Makes a deep copy of the object. .Sp Please see the documentation in Math::BigInt for further details. .IP "\fBbstr()\fR/\fBbsstr()\fR" 4 .IX Item "bstr()/bsstr()" .Vb 3 \& my $x = Math::BigRat\->new(\*(Aq8/4\*(Aq); \& print $x\->bstr(), "\en"; # prints 1/2 \& print $x\->bsstr(), "\en"; # prints 1/2 .Ve .Sp Return a string representing this object. .IP "\fBbcmp()\fR" 4 .IX Item "bcmp()" .Vb 1 \& $x\->bcmp($y); .Ve .Sp Compares \f(CW$x\fR with \f(CW$y\fR and takes the sign into account. Returns \-1, 0, 1 or undef. .IP "\fBbacmp()\fR" 4 .IX Item "bacmp()" .Vb 1 \& $x\->bacmp($y); .Ve .Sp Compares \f(CW$x\fR with \f(CW$y\fR while ignoring their sign. Returns \-1, 0, 1 or undef. .IP "\fBbeq()\fR" 4 .IX Item "beq()" .Vb 1 \& $x \-> beq($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise. .IP "\fBbne()\fR" 4 .IX Item "bne()" .Vb 1 \& $x \-> bne($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is not equal to \f(CW$y\fR, and false otherwise. .IP "\fBblt()\fR" 4 .IX Item "blt()" .Vb 1 \& $x \-> blt($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise. .IP "\fBble()\fR" 4 .IX Item "ble()" .Vb 1 \& $x \-> ble($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is less than or equal to \f(CW$y\fR, and false otherwise. .IP "\fBbgt()\fR" 4 .IX Item "bgt()" .Vb 1 \& $x \-> bgt($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is greater than \f(CW$y\fR, and false otherwise. .IP "\fBbge()\fR" 4 .IX Item "bge()" .Vb 1 \& $x \-> bge($y); .Ve .Sp Returns true if and only if \f(CW$x\fR is greater than or equal to \f(CW$y\fR, and false otherwise. .IP "\fBblsft()\fR/\fBbrsft()\fR" 4 .IX Item "blsft()/brsft()" Used to shift numbers left/right. .Sp Please see the documentation in Math::BigInt for further details. .IP "\fBband()\fR" 4 .IX Item "band()" .Vb 1 \& $x\->band($y); # bitwise and .Ve .IP "\fBbior()\fR" 4 .IX Item "bior()" .Vb 1 \& $x\->bior($y); # bitwise inclusive or .Ve .IP "\fBbxor()\fR" 4 .IX Item "bxor()" .Vb 1 \& $x\->bxor($y); # bitwise exclusive or .Ve .IP "\fBbnot()\fR" 4 .IX Item "bnot()" .Vb 1 \& $x\->bnot(); # bitwise not (two\*(Aqs complement) .Ve .IP "\fBbpow()\fR" 4 .IX Item "bpow()" .Vb 1 \& $x\->bpow($y); .Ve .Sp Compute \f(CW$x\fR ** \f(CW$y\fR. .Sp Please see the documentation in Math::BigInt for further details. .IP "\fBblog()\fR" 4 .IX Item "blog()" .Vb 1 \& $x\->blog($base, $accuracy); # logarithm of x to the base $base .Ve .Sp If \f(CW$base\fR is not defined, Euler's number (e) is used: .Sp .Vb 1 \& print $x\->blog(undef, 100); # log(x) to 100 digits .Ve .IP "\fBbexp()\fR" 4 .IX Item "bexp()" .Vb 1 \& $x\->bexp($accuracy); # calculate e ** X .Ve .Sp Calculates two integers A and B so that A/B is equal to \f(CW\*(C`e ** $x\*(C'\fR, where \f(CW\*(C`e\*(C'\fR is Euler's number. .Sp This method was added in v0.20 of Math::BigRat (May 2007). .Sp See also \f(CW\*(C`blog()\*(C'\fR. .IP "\fBbnok()\fR" 4 .IX Item "bnok()" .Vb 1 \& $x\->bnok($y); # x over y (binomial coefficient n over k) .Ve .Sp Calculates the binomial coefficient n over k, also called the \*(L"choose\*(R" function. The result is equivalent to: .Sp .Vb 3 \& ( n ) n! \& | \- | = \-\-\-\-\-\-\- \& ( k ) k!(n\-k)! .Ve .Sp This method was added in v0.20 of Math::BigRat (May 2007). .IP "\fBconfig()\fR" 4 .IX Item "config()" .Vb 2 \& Math::BigRat\->config("trap_nan" => 1); # set \& $accu = Math::BigRat\->config("accuracy"); # get .Ve .Sp Set or get configuration parameter values. Read-only parameters are marked as \&\s-1RO.\s0 Read-write parameters are marked as \s-1RW.\s0 The following parameters are supported. .Sp .Vb 10 \& Parameter RO/RW Description \& Example \& ============================================================ \& lib RO Name of the math backend library \& Math::BigInt::Calc \& lib_version RO Version of the math backend library \& 0.30 \& class RO The class of config you just called \& Math::BigRat \& version RO version number of the class you used \& 0.10 \& upgrade RW To which class numbers are upgraded \& undef \& downgrade RW To which class numbers are downgraded \& undef \& precision RW Global precision \& undef \& accuracy RW Global accuracy \& undef \& round_mode RW Global round mode \& even \& div_scale RW Fallback accuracy for div, sqrt etc. \& 40 \& trap_nan RW Trap NaNs \& undef \& trap_inf RW Trap +inf/\-inf \& undef .Ve .SH "BUGS" .IX Header "BUGS" Please report any bugs or feature requests to \&\f(CW\*(C`bug\-math\-bigrat at rt.cpan.org\*(C'\fR, or through the web interface at (requires login). We will be notified, and then you'll automatically be notified of progress on your bug as I make changes. .SH "SUPPORT" .IX Header "SUPPORT" You can find documentation for this module with the perldoc command. .PP .Vb 1 \& perldoc Math::BigRat .Ve .PP You can also look for information at: .IP "\(bu" 4 \&\s-1RT: CPAN\s0's request tracker .Sp .IP "\(bu" 4 AnnoCPAN: Annotated \s-1CPAN\s0 documentation .Sp .IP "\(bu" 4 \&\s-1CPAN\s0 Ratings .Sp .IP "\(bu" 4 Search \s-1CPAN\s0 .Sp .IP "\(bu" 4 \&\s-1CPAN\s0 Testers Matrix .Sp .IP "\(bu" 4 The Bignum mailing list .RS 4 .IP "\(bu" 4 Post to mailing list .Sp \&\f(CW\*(C`bignum at lists.scsys.co.uk\*(C'\fR .IP "\(bu" 4 View mailing list .Sp .IP "\(bu" 4 Subscribe/Unsubscribe .Sp .RE .RS 4 .RE .SH "LICENSE" .IX Header "LICENSE" This program is free software; you may redistribute it and/or modify it under the same terms as Perl itself. .SH "SEE ALSO" .IX Header "SEE ALSO" bigrat, Math::BigFloat and Math::BigInt as well as the backends Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari. .SH "AUTHORS" .IX Header "AUTHORS" .IP "\(bu" 4 Tels 2001\-2009. .IP "\(bu" 4 Maintained by Peter John Acklam 2011\-