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Abstract

Purpose — The purpose of this paper is to propose that the effectiveness of organizational design-
manufacturing integration (ODMI) practices is contingent upon the degree of complexity of the
manufacturing environment. The paper submits that the level of use of ODMI ought to match the level
of complexity of the manufacturing environment. The paper puts forward the hypothesis that when a
misfit occurs between ODMI and complexity (high use of ODMI practices in low complexity
environments or low use of ODMI practices in high complexity environments) manufacturing
operational performance declines.

Design/methodology/approach — The paper tests the hypothesis based on a survey database of
725 manufacturers from 21 countries. The measurement model was assessed with confirmatory factor
analysis and the hypothesis was tested with linear regression.

Findings — A misfit between the level of ODMI use (job rotation and co-location) and manufacturing
complexity (product and process complexity) has a negative effect on manufacturing operational
performance dimensions of quality, delivery and flexibility. Post hoc analyses also suggest that firms
that operate in different environments in what concerns the rate of change in process technologies
suffer differentiated negative impacts of ODMI-complexity misfit.

Research limitations/implications — Future studies could extend this research to other dimensions
of design-manufacturing integration, such as technological practices.

Practical implications — Manufacturers with high levels of complexity should invest strongly in
ODMI practices. However, manufacturers with low levels of complexity should invest in these practices
with caution since the expected payoffs may not outweigh the effort.

Originality/value — The study assesses fit as a simultaneous set of contingency factors, applying
profile-deviation analysis to ODMI and operational performance relationships. By focusing on plant-
level manufacturing complexity, this study complements existing studies of product development
complexity which tend to focus on project-level complexity.

Keywords Manufacturing strategy, Structural equation modelling, Engineering management,
Manufacturing complexity, Process integration

Paper type Research paper

1. Introduction

Short product life cycles, more informed and demanding customers, and increased
competition are pressuring firms to shorten time-to-market for new and innovative
products. New product design and development (NPD) requires highly specialized
knowledge and expertise, which are often concentrated in specialized organizational
units or functions. These functions require organizational integration due to
the interdependency of tasks and responsibilities (Lawrence and Lorsch, 1967;



Thompson, 1967; Vandevelde and Van Dierdonck, 2003). Product design and
manufacturing have been recognized as two key functions that need to be integrated
(Griffin and Hauser, 1992; Adler, 1995). The sequential logic of designing first and
producing later is long questioned (Adler, 1995). Instead, the development of new
products and their introduction into production requires the mutual adaptation of
product designs and manufacturing processes.

The integration of the design and manufacturing functions can be achieved by
organizational practices (e.g. direct contacts, job rotation, co-location) and/or by
technological practices (e.g. collaborative information technologies, such as e-mail or
decision rules software) (Twigg, 2002). In this paper, we focus on organizational
Integration practices, namely, job rotation and co-location, from here onwards referred
to as organizational design-manufacturing integration (ODMI). Reported ODMI
benefits include reduced time-to-market, increase in the quality of final products and
cost reductions (Dekkers et al, 2013), as well as increased profit and market-share,
higher product effectiveness and better production outcomes (Troy et al, 2008).
Although cross-functional integration can be achieved in a number of ways, such as
better communications, matrix organizations, reward systems and top management
mvolvement (Mintzberg, 1979), job rotation and co-location are two practices long
recognized as being key for the success of NPD projects (Allen, 1977; Dougherty, 1992;
Griffin and Hauser, 1996; Browning, 1998). These practices address the reciprocal
interdependencies between design and manufacturing, and are able to foster the
exchange of tacit knowledge. They are a key element of concurrent engineering
(Youssef, 1994), driving cross-functional integration early in the product development
project, which is paramount as most NPD costs are committed early in the process
(Liker et al,, 1999).

Despite extensive research in the past 20 years and substantial progress in
understanding the effects of ODMI on manufacturing performance, there is still a lack
of comprehension about the contextual conditions under which ODMI is beneficial, as
consistently evidenced in recent literature reviews (Troy et al, 2008; Dekkers et al,
2013). Complexity has been proposed as a relevant ODMI contingency (Adler, 1995),
with some authors suggesting that a high level of use of ODMI practices may not be
effective in low complexity environments (Duysters and Lokshin, 2011). Our study
empirically examines the complexity of the manufacturing environment as a
contingency factor affecting the impact of ODMI on manufacturing operational
performance. By manufacturing environment we mean the plant level, manufacturing
setting in which the design and manufacturing functions interact throughout the
product development process, from product design to the introduction of a product into
production. Complexity is analysed as a contextual variable, grounded on the
framework of contingency theory (Lawrence and Lorsch, 1967; Thompson, 1967).

We submit the hypothesis that in order to positively affect performance, the level of
ODMI use ought to match the level of complexity of the manufacturing environment.
Two basic notions underlie the research: there is an ideal profile of fit between the level
of ODMI use and the level of manufacturing complexity; manufacturers that deviate
from the ideal profile of fit will exhibit inferior performance than manufacturers that
are closer to the ideal profile. We test the hypothesis based on survey data from 725
manufacturing firms.

The study makes four major contributions. First, it enriches our knowledge about
the contingencies affecting the use of design-manufacturing integration (DMI).
Specifically, we find that while for high complexity manufacturing environments ODMI
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use enhances performance, for low complexity environments the high use of ODMI
may actually hinder performance. Second, we employ a profile-deviation methodology
for measuring fit that allows for a novel and systemic examination of ODMI
contingencies. Third, by drawing on a large international sample with a wide
geographical scope (725 manufacturers in 21 countries), the study provides a rigorous
empirical examination of ODMI contingencies that has been lacking in past research.
Fourth, we complement existing studies of product development complexity in novel
ways. These studies have often focused on the project as the unit of analysis,
emphasized product-related complexity and addressed NPD performance. In our study,
we take a different focus by addressing plant-level manufacturing complexity
dimensions (determined both by product-related and manufacturing process-related
aspects) and addressing overall manufacturing performance.

The structure of the paper is as follows. In Section 2, we review the concepts of
contingency theory/fit, DMI and manufacturing complexity, resulting in the
development of a theoretical framework for ODMI-manufacturing complexity fit.
Section 3 develops the research model and hypothesis. Section 4 addresses the
methodology of the study, including data and measures. Section 5 presents the results
and discussion. Section 6 concludes with a discussion of the contributions to research,
implications for practice, limitations and suggestions for future research.

2. Theoretical foundations

2.1 Contingency theory and complexity

In its simpler expression, structural contingency theory (SCT) states that organizations
adapt their structures and processes to their environment (or context), in order to attain
high performance (Drazin and van de Ven, 1985; Donaldson, 2001). A “contingency”
or “contextual variable” is defined as “any variable that moderates the effect of an
organizational characteristic on organizational performance” (Donaldson, 2001, p. 7). Of
paramount relevance for our study is SCT’s postulate that there ought to be some level
of fit between the organizational characteristics and each level of the contingency,
whereby high levels of fit causes effectiveness and low fit (misfit) causes ineffectiveness
(Donaldson, 2001).

One prominent contingency studied by SCT has been organizational complexity.
SCT posits that organizational complexity results from organizations adding more
subunits specialized in specific tasks, thereby increasing the level of differentiation of
its constituent parts (Thompson, 1967). Differentiation is defined as “the state of
segmentation of the organizational system into subsystems, each of which tends to
develop particular attributes in relation to the requirements posed by its relevant
external environment” (Lawrence and Lorsch, 1967, p. 3).

According to SCT, the greater the differentiation the more complex the organization
(Hall, 1979). Complexity results from the increase in the number of functions and their
interdependencies. Thompson (1967) defines three types of inter-functional
dependencies, with increasing levels of complexity: pooled, sequential and reciprocal.
Pooled interdependency is present in every organization as each function contributes to
the whole; sequential interdependency is related to the ordering of the tasks performed
by different functions; reciprocal interdependency occurs when one task executed by a
function is dependent on the output of a task executed by another function. These three
types of interdependencies are present in product development.

According to Lawrence and Lorsch’s (1967) differentiation-integration framework,
the greater the differentiation, the greater the organizational complexity and the need



for integration. Integration is defined as “the process of achieving unity of effort among
the various subsystems in the accomplishment of the organization’s task” (Lawrence
and Lorsch, 1967 p. 4). SCT posits that highly complex organizations benefit from
integration mechanisms such as coordinating departments, task forces, cross-
functional coordinating teams, liaison positions and ad hoc committees (Lawrence and
Lorsch, 1967; Mintzberg, 1979). On the other hand, in low complexity organizations,
information gathering and processing are expected to be minimal, perceived
uncertainty is low, decisions are likely to be routine, high standardization and
formalization are feasible, and participatory decision making and specialization of
functions can be kept to a minimum (e.g. Burns and Stalker, 1961; Woodward, 1965;
Thompson, 1967; Perrow, 1970). In this context, a high level of organizational
integration is deemed unnecessary and dysfunctional (Tung, 1979).

Our study will adopt the theoretical lens of SCT. Specifically, it will be underpinned
by SCT’s notion that the adoption of integration mechanisms among functions should
match the level of organizational complexity (Hall, 1979; Thompson, 1967). Figure 1
shows the adopted conceptual framework for SCT and complexity.

22 DMI

For the purpose of our study, we borrow from Pagell’s (2004) definition of integration, to
define DMI as the interaction and collaboration between design/engineering and
manufacturing managers, who work together to arrive at mutually acceptable outcomes
for their organization. The integration between design and manufacturing should occur
throughout the several stages of product development, including pre-project, product and
process design and manufacturing (Adler, 1995). A number of practices (or mechanisms)
have been proposed in the literature for the purpose of integrating the design and
manufacturing functions.

Twigg (2002) classifies DMI practices into two broad categories: organizational
(e.g. direct contacts, liaison roles, secondment, task forces, project team, role combination,
permanent team or cell, integrator function, combined department, matrix organization);
and technological (e.g. decision rules software, e-mail, video conferencing, advanced
manufacturing technologies). This classification is consistent with those of other studies,
whose categories can easily be related to organizational- or technological-related
practices. For example, Boyle ef al. (2006) enlist 12 process-related, 15 people-focused and
three information technology DMI practices. Thompson (1967) considers the coordination
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mechanisms of standardization or rules, plans and schedules, and mutual adjustments.
Van de Ven and Koenig (1976) added the coordination mechanisms of integrated
design-manufacturing teams, which demands “the simultaneity of multilateral
interactions and which typically requires physical proximity” (Adler, 1995, p. 152).
Finally, Adler (1995) proposes four coordination mechanisms: standards, schedules,
mutual adaptations and teams.

Our study focuses on organizational (people-related) DMI practices (ODMI), namely,
job rotation and co-location. Design/manufacturing job rotation (ie. having design
people work in the manufacturing function and vice versa) is expected to enhance the
ability of individuals to serve as gatekeepers and foster interdepartmental integration
(Hauptman and Hirji, 1999; Liker et al, 1999; Rusinko, 1999). Physical co-location
(ie. physically locating project personnel in a single area) is expected to enable more
rapid and frequent decision making and communication between the two functions
(Liker et al, 1999; Rusinko, 1999). According to Browning (1998, p. 103), co-location
leads to more expedient resolution of low level issues, as well as an increase in cross-
functional awareness and appreciation.

2.3 Complexity of the manufacturing environment
During the development of new products, the design of the products needs to be
coordinated with the design and operation of the processes in which they will be
manufactured (e.g. Clark and Fujimoto, 1991). Not only the products need to offer
desirable functionality to customers, but also the processes in which they will be
manufactured need to be capable of meeting adequate operational performance targets
such as quality, delivery, flexibility or cost. Thus, the development of new products
encompasses the development of manufacturing processes, in a cycle of mutual
adaptation of products and processes. Accordingly, a number of initiatives to support this
mutual adaptation are usually adopted, such as design for manufacturing, failure mode
and effects analysis, prototyping, process capability studies, etc. (Otto and Wood, 2001).
In this context, we argue that in order to understand manufacturing complexity
contingencies in ODMI, we need to consider both product-related and process-related
sources of complexity. Thus, for the purposes of our paper, we define manufacturing
complexity as comprising product and process complexity dimensions. This definition
draws on prior conceptualizations of manufacturing complexity that associate
complexity with the existence of diverse products/components and process subsystems
(e.g. work centres, machines), that are inter-related (Gabriel, 2013; Bozarth ef al., 2009).
For example, Bozarth ef al (2009) define system complexity as comprising the distinct
number of components or parts that make up a system as well as their
interconnectedness. We next discuss in more detail product and process complexity
in the context of the development and introduction of new products into production.
Product complexity has been substantially researched in NPD (e.g. Lebcir, 2006;
Grussenmeyer and Blecker, 2013). It has been defined by the number of parts
(Murmann, 1994), the number of functions embedded in the product (Griffin, 1997) and
the interdependence of parts and functions (Ulrich, 1995). Lebcir (2006) notes that the
number of parts and multi-functionality are usually correlated. Ulrich (1995) combines
these dimensions in his definition of “integral products” (many inter-related parts and
functions), as opposed to simpler “modular products” (few parts/functions). According
to Gabriel (2013), the number of product parts and components is a key driver of
manufacturing complexity. Consistent with these definitions, we define product
complexity in terms of the number of parts and its interdependencies.



Process complexity has not received the same degree of attention as product
complexity in the NPD literature. In general, the NPD literature on complexity adopts
the NPD project as the unit of analysis and, as a result, tends to emphasize product-
related aspects. Process-related aspects are addressed somewhat tangentially by
arguing that there are interdependencies between products and process technology
that lead to increased complexity in product development. For example, Wheelwright
and Clark (1992), consider product newness as a source of NPD project complexity, and
state that one of the dimensions of newness is the degree of required change in the
process technology. Lebcir (2006) argues that an important driver of NPD project
complexity is the existence of reciprocal interdependence between project’s elements. In
NPD projects, this type of interdependence occurs between products and processes, and
leads to snowball effects, by which changes in one project element trigger changes in
several other elements, making the effective coordination between functions very
complex and hard to achieve (Lebcir, 2006). For Williams (1999), organizational
interdependency of the reciprocal type is an important driver of NPD complexity, as
each output from one function becomes the input to another function and vice versa.
Reciprocal interdependence between products and processes also leads to a higher
number and higher complexity interactions between design and manufacturing, an
aspect which has been considered as an important driver of NPD project complexity
(Tatikonda and Rosenthal, 2000, p. 78).

In summary, studies of complexity in NPD usually adopt the NPD project as the unit
of analysis and recognize there are reciprocal interdependencies between products and
processes that lead to higher complexity in product development. However, they stop
short of discussing the detailed characteristics of the manufacturing processes that affect
the complexity associated with the introduction of a new product in the manufacturing
processes. In order to close this gap, we take a manufacturing/operations perspective of
process complexity. We consider the detailed characteristics of manufacturing processes
and recognize that not all manufacturing processes are alike from a product development
perspective. Specifically, we draw on Woodward’s (1965) contention that process
complexity is associated with the technology being used, ranging in an increasing order
of complexity from job-shop (low level of automation) to mass production (high level of
automation). Thus, we define process complexity in terms of the intensity of use of
technology in the manufacturing process and the level of interdependencies across these
technologies. This aspect of complexity is consistent with one of the key drivers of
manufacturing complexity identified by Gabriel (2013), namely, the existence of different
process subsystems and their interdependencies. The more intense and integrated the
technology in a manufacturing process is the higher are the changes required when
introducing a new product (i.e. reciprocal interdependence increases), corresponding to a
more complex product development environment (Wheelwright and Clark, 1992;
Williams, 1999; Lebcir, 2006).

2.4 Theoretical framework for ODMI-complexity fit

SCT postulates that there ought to be some level of fit between organizational
complexity and integration mechanisms (Section 2.1). ODMI, and in particular job
rotation and co-location, can be viewed as an integration mechanism, in accordance
with the structural contingency differentiation and integration framework (Lawrence
and Lorsch, 1967). Based on this theoretical lens, we posit that in order to positively
impact on manufacturing performance, the level of use of ODMI should fit the level of
manufacturing complexity. Our overall argument is that as manufacturing complexity
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Figure 2.

Fit between levels of
ODMI use and
manufacturing
complexity

increases, reciprocal interdependencies between the design and manufacturing
functions also increase, leading to the need for higher integration between the two
functions. Consistent with SCT, the reverse argument also applies, so that we posit that
when manufacturing complexity is low, the marginal costs of managing ODMI may be
higher than the expected benefits. Thus, an ideal profile of ODMI-complexity fit will be
attained when both ODMI and complexity are high or when both are low. Accordingly,
integration efforts off the diagonal would be dysfunctional and would affect
performance negatively. Figure 2 shows the associated framework.

In the next section, we discuss the research model in the specific context of the
ODMI and manufacturing/operations literatures.

3. Research model and hypotheses

Many studies have found support for the positive effect of ODMI practices on
performance (Griffin, 1997; Koufteros et al, 2002; Swink and Calantone, 2004; Moses
and Ahlstrom, 2008; Ernst et al., 2010; Engelen et al., 2012). Examples of studied ODMI
practices include cross-functional teams, task forces, integrator roles, recreational
activities or collective lunches, co-location, multifunctional design teams, among others
(Vandevelde and Van Dierdonck, 2003).

Despite findings of a positive effect of ODMI on performance, Homburg and Kuehnl
(2013) argue that the effect of these practices on performance is not clear-cut, and suggest
that in some cases the costs of ODMI can outweigh the benefits. Among the drawbacks of
ODM]I, one could enlist the organizational costs, time and efforts for collaboration
(e.g. meetings, workflow coordination, handling decision making by teams with
conflicting goals), conflicts over resources and technical issues, budget overruns and
project failure (De Luca and Atuahene-Gima, 2007; Troy et al, 2008; Ernst et al, 2010
Cuijpers et al, 2011). These drawbacks are likely to affect several manufacturing
performance dimensions negatively. In a similar vein, Turkulainen and Ketokivi (2012)
reported mixed empirical evidence concerning the impact of cross-functional integration
on NPD lead times. Likewise, Parente (1998) argues that the mere use of cross-functional
teams does not automatically lead to successful cross-functional integration. Finally,
Jayaram and Malhotra (2010) found that five contextual factors (location of products in a
family stream, project size, stage in the product life cycle, innovativeness of the product
and predictability of market demand) significantly affected the relationship between
DMI-related practices (interactive routines, cross-functional coordination, downstream
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coordination and computer-based integrated design tools) and NPD project performance.
We submit that the existence of contingency effects emerges as a promising explanation
for the mixed findings reported in the literature and merit further study. The contingency
view of NPD is consistent with Loch’s (2000) argument that Stage-Gate™ processes must
fit the environment to succeed and with Davidson et al’s (1999) view that the flexibility of
the NPD processes should match organizational needs in NPD projects.

Complexity has consistently been suggested as a relevant ODMI contingency in the
organizational and operations management literatures. The higher the complexity and
uncertainty of product and technology, the more difficult it is to have a smooth
production start-up (Vandevelde and Van Dierdonck, 2003). Adler (1995) posits that the
higher the complexity, the higher the need for mechanisms of coordination of design-
manufacturing teams. Swink and Calantone (2004) find that ODMI is important at the
NPD project level, as “an effective means for coping with technological uncertainty and
project organization complexity”. However, Duysters and Lokshin (2011, p. 570) have
noted that despite the advantages of integration, firms will at a certain stage reach a
specific inflection point after which the marginal costs of managing integration are
higher than the expected benefits from this increased integration.

Consequently, based on the earlier discussed theoretical framework for ODMI-
complexity fit, as well as the organizational and operations management literatures, we
posit that a misfit, or deviation from the ideal profile of fit, will negatively affect
manufacturing performance (Figure 3). Because our unit of analysis is the
manufacturing plant, and as manufacturing plants do not control directly financial
or market-share performance, we concentrate on the operational performance of plants.
Accordingly, we put forward the following hypothesis:

HI. Misfit to an ideal profile of ODMI use and manufacturing complexity will
negatively affect manufacturing operational performance.

We submit that deviations from an ideal fit ODMI-complexity have an adverse effect on
a broad range of operational performance dimensions. We concentrate on the
dimensions of quality, delivery and flexibility, which are largely controlled at plant
level (Akyuz and Erkan, 2010; Hill, 1994) and have been widely used in previous
research (e.g. Schmenner and Swink, 1998; Schroeder ef al,, 2002). Inadequate levels of
ODMI are expected to lead to a mismatch between product designs and manufacturing
processes, which have adverse impacts on quality, delivery and flexibility performance.
We present a number of examples. If product specifications are not adequate to the
capability of the manufacturing process technology, both conformance quality and
product reliability will suffer. In turn, higher defect rates lead to the increase of
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manufacturing lead times, harming delivery reliability and delivery speed. Product
components set at the design stage which have long or unreliable procurement lead
times will also hurt delivery performance. A mismatch between product design and
manufacturing processes may also lead to increased changeover times, hurting mix
and volume flexibility, as well as delivery speed (Blackburn, 1991). As a final example,
exaggerated levels of ODMI resulting in long development cycles may hurt delivery
speed and time-to-market.

Thus, we break HI into the following three sub-hypotheses: H1.1/H1.2/H1.3 — misfit
to an ideal profile of ODMI use and manufacturing complexity will negatively affect
quality/delivery/flexibility performance.

Based on a contingency logic (Sousa and Voss, 2008), it is conceivable that the
adverse effect of misfit on each individual performance dimension may itself vary
according to certain contextual traits of the NPD environment. We explore these
detailed contingency aspects post hoc, rather than specifying them in our hypotheses.

4. Methods

4.1 Data

The study draws on data from the fifth round of the International Manufacturing
Strategy Survey (IMSS-V). The IMSS project periodically collects data on strategies,
practices and performance of manufacturers around the world classified in ISIC 3.1 codes
28-35 (metal products, machinery, semiconductor, transportation, advanced instruments
and audio-video). The unit of analysis is the manufacturing plant and its dominant
activity. The survey was centrally coordinated to maximize consistency in data collection
procedures across countries. Country offices translated the questionnaire into the local
language when needed and were responsible for local data collection and verification.
The director of operations or equivalent from the companies in the 21 countries filled-out
the questionnaire in 2009-2010. Out of 4,457 questionnaires sent, 725 valid questionnaires
were returned (16.3 per cent response rate). No systematic biases were found in
comparing early and late respondents in key characteristics, such as company size and
ISIC codes, suggesting the absence of non-response bias (for additional information see
Laugen and Boer, 2009; www.manufacturingstrategy net).

Table I characterizes the sample according to production process, firm size, ODMI
level and country. Most plants employed batch production (48 per cent), followed by
one-of-a-kind (26 per cent) and mass production (23 per cent). Make-to-order producers
were 48 per cent, with 19 per cent of assemble-to-order, 15 per cent of engineered-to-order
and 14 per cent of make-to-stock (3 per cent did not declare). The average firm size for the
whole sample is 1,849 employees. As expected, mass producers exhibit larger size (3,046)
than one-of-a-kind (1,965) and batch producers (1,079). Average ODMI levels were
calculated based on answers to a five-point Likert scale measuring job rotation and
co-location, as described further in Section 4.2. Table I provides the average ODMI scores
by production process, because it is an important descriptor of manufacturing firms in
the sample. The average ODMI score for the whole sample was 2.37. Firms classified as
mass producers exhibit higher average ODMI scores (2.66), while one-of-a-kind and batch
producers have similar ODMI scores (2.23 and 2.29, respectively).

Table II shows the distribution of the sample firms by industrial sector (ISIC codes).
Approximately 33 per cent of the sample falls under ISIC code 28, which deals with the
manufacture of “pure” metal products (such as parts, containers and structures),
usually with a static, immovable function. This is followed by the manufacture of
machinery and equipment (ISIC code 29; 25 per cent of the sample), which includes


www.manufacturingstrategy.net

Production process

Global sample

Design-

Characteristics One-of-a-kind Batch Mass Missing Total n man‘ufacturl_ng

Average firm size (no. employees) 1,965 1,079 3,046 4277 1,849 725 1ntegTat10n

Average ODMI 2.23 2.29 2.66 263 237 698

Country

Belgium 19% 4%  31% 6% 5% 36 1099

Brazil 22% 46% 30% 3% 5% 37

Canada 63% 32% 5% 0% 3% 19

China 14% 42% 39% 5% 8% 59

Denmark 28% 56% 17% 0% 2% 18

Estonia 41% 44% 15% 0% 4% 27

Germany 18% 58% 24% 0% 5% 38

Hungary 28% 58% 14% 0% 10% 71

Ireland 0% 67% 33% 0% 1% 6

Italy 39% 54% 7% 0% 8% 56

Japan 21% 29% 39% 11% 4% 28

Korea 39% 15% 44% 2% 6% 41

Mexico 12% 24% 53% 12% 2% 17

The Netherlands 27% 57% 16% 0% 7% 51

Portugal 30% 50% 20% 0% 1% 10

Romania 29% 42% 26% 3% 4% 31

Spain 28% 63% 8% 3% 6% 40

Switzerland 26% 58% 16% 0% 4% 31

Taiwan 19% 55% 26% 0% 4% 31

UK 23% 47% 17% 13% 4% 30 Table L.

USA 21% 48% 27% 4% 7% 48 Characterization of

Total 26% 48% 23% 3% 100% 725  the research sample

ISIC codes Description n %

28 Fabricated metal products, except machinery and equipment 242 33

29 Machinery and equipment 185 25

30 Office, accounting and computing machinery 12 2

31 Electrical machinery and apparatus 92 13

32 Radio, television and communication equipment and apparatus 42 6

33 Medical, precision and optical instruments, watches and clocks 42 6 Table II.

34 Motor vehicles, trailers and semi-trailers 52 7 Distribution of

35 Other transport equipment 34 5 manufacturing firms
Not reported 24 3 by industrial sector
Total sample 725 100 (ISIC codes)

domestic appliances, motors (except electric motors), turbines, pumps, compressors,
ovens, burners, agricultural machinery, machine tools, civil engineering, machinery for
other industries, weapons and munitions. The third group in importance is ISIC 31
(13 per cent of the sample), which deals with the manufacture of electrical machinery
and apparatus, including products such as power generators, motors, insulated
wire and cables, electrical lighting and signalling equipment, accumulators, cells,
batteries and lamps. Together, these three industrial groups represent about

71 per cent of

the total sample.
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4.2 Measures

Theory and statistical reasons guided the selection of scale items. The scales were first
built based on content validity or conformance with similar constructs in the literature
(Ping, 2004).

The construct of ODMI pertains to organizational (people-related) practices. We
drew on van de Ven and Koenig’s (1976) construct of DMI teams and earlier research on
job rotation (Dougherty, 1992; Griffin and Hauser, 1996) and co-location (Allen, 1977,
Griffin and Hauser, 1996; Browning, 1998) in NPD projects. Accordingly, ODMI was
measured by two items associated with the extent to which the plant organizationally
coordinated design and manufacturing by employing: job rotation between design and
manufacturing; co-location of design engineers and manufacturing managers.

Consistent with the conceptual framework of Section 2, we considered two
constructs pertaining to the complexity of the manufacturing environment of plants:
product complexity and process complexity. In order to have a reliable measure of
these constructs at the aggregate plant level, we focused on the dominant
manufacturing activity of the plants.

Product complexity was measured by three items associated with: the complexity of
the manufactured items in terms of the associated product functions (single
components vs finished assembled products); the complexity of the bill of materials
(number of parts and their interdependencies); the number of steps/operations required
in production. This construct is aligned with our discussion of the conceptual domain of
product complexity in Section 2.3 and is consistent with earlier research on the subject
(e.g. Murmann, 1994; Ulrich, 1995; Griffin, 1997).

Process complexity was measured by four items associated with the core process
technology of the dominant activity: extent of automation (manual operations vs highly
automated machine tools); extent of systems integration; extent of adoption of process
automation programs; and extent of adoption of flexible manufacturing/cell systems.
This construct is aligned with our discussion of the conceptual domain of process
complexity in Section 2.3, namely, the intensity and interdependencies of the
technology used in the manufacturing process.

Operational performance includes the dimensions of quality, delivery and flexibility
(Akyuz and Erkan, 2010; Hill, 1994), which have been widely used in previous research
(e.g. Schroeder et al, 2002), including those using IMSS data sets. Specifically, we
adopted the exact scales and items used previously in the IMSS studies by da Silveira
and Sousa (2010) and Thomé et al. (2014a, b).

Scales were validated for unidimensionality, validity and reliability using
confirmatory factor analysis. Table III shows descriptive statistics for the scale
items and the measurement model. All scale items were assessed on a five-point Likert
scale response format. The scale items had factor loads on or about 0.6 (Chin, 1998),
each contributing to the increase in overall measurement model fit and loading in one
dimension only (Anderson and Gerbing, 1988). The scales also passed rigorous tests for
convergent and discriminant validity, with CR well above 0.6, AVE over or about 0.5
and AVE’s square root higher than inter class correlation (Fornell and Larcker, 1981;
Anderson and Gerbing, 1988).

We adopted three criteria to define the acceptance of the measurement model:
the normed-y? (4?/df) should be close to or higher than 1 and close to or lower than 3
(Joreskog and Sérbom, 1993); the root mean square error of approximation (RMSEA)
should be close to or lower than 0.05 and pclose should be higher than 0.05;
and the comparative fit index (CFI) should be close to or higher than 0.95
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Table III.



(Browne and Cudeck, 1993; Hu and Bentler, 1999; Schermelleh-Engel et al., 2003).
According to these criteria, the overall fit of the measurement model was good (y*/
df =2.8; CFI=0.95; RMSEA = 0.05 in the interval of 0.044 and 0.057; pclose = 0.457).

4.3 Ideal profiles and profile deviation

The concept of fit is not straightforward (da Silveira and Sousa, 2010). Sousa and Voss
(2008) combined the typologies of Drazin and van de Ven (1985) and Venkatraman
(1989) into three broad classes of fit: selection (matching), interaction (moderation,
mediation) and systems (gestalt, profile deviation and covariation). In our study we
adopt the systems approach, in which fit is a holistic concept asserting that context-
structure-performance relationships are multi-faceted and require simultaneous
analyses that consider several contingencies at the same time.

Fit is defined here in accordance with configurational theories, which typically posit
higher effectiveness for organizations that resemble an ideal profile of fit. The
increased effectiveness of the ideal profile is attributed to the “internal consistency, or
fit, among the patterns of relevant contextual, structural, and strategic factors”
(Doty et al, 1993, p. 1193). In this connection, fit can be assessed based on the deviation
that a firm exhibits from the ideal profile. A challenge with testing fit as profile
deviation is to find the “ideal profile”. Within the systems approach, the computation of
ideal profiles can be done in a number of ways, including being based on the average of
a firm’s own fit dimensions (da Silveira, 2005), on a sample of top performers (e.g.
Venkatraman and Prescott, 1990; Das and Narasimhan, 2001) or by comparison with
best systems defined a priori based on the literature (e.g. Ahmad and Schroeder, 2003).

In our study, we followed da Silveira’s (2005) approach to compute the ideal profile
from the average of a firm’s own fit dimensions, namely, the manifest variables of
ODMI and manufacturing complexity (product complexity and process complexity).
This was for two reasons. First, this approach is aligned with Lawrence and Lorsch’s
(1967) contingency framework, according to which each organization attains its ideal
profile by matching its own structure with its own managerial processes and with the
environment. The assumption implied in this “measure by average” is that departure
from the average would represent a misfit and impact negatively on operational
performance. Conversely, different organizational arrangements (not specified a priori
by theory or by comparison with specific top-performers’ profiles) could equally and
effectively drive higher performance in case of fit, or proximity to the average. This
definition is consistent with the concept of “equifinality” in SCT, which implies that
there could be multiple “ideal profiles” and that multiple organizational forms could be
equally effective (Drazin and Van de Ven, 1985; Doty ef al, 1993; da Silveira, 2005).
From a theoretical stand point there is no reason to expect a priori that a particular
type of ODMI profile would result in superior performance, but the fit of ODMI with
the contextual factors of the firm can take upon different and equally effective
configurations.

The second reason for our choice of ideal profile was its consistency with Hill's
(1994) definition of the ideal profile of manufacturing organizations in the orders
winners’ framework. According to this framework, the ideal profile for each plant,
against which each individual variable is compared, is given by the average of the
variables that should exhibit fit (fit variables).

Da Silveira (2005) measures deviations (distances) from the ideal profile based on the
Euclidian distance, as depicted in Equation (1). The equation computes the level of
deviation of organization ¢ (MISFIT;) from its ideal profile X;. As explained above,
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Table IV.
Regression analysis
of misfit on
performance

a firm’s ideal profile X; is computed as the average of the fit variables
Xi= Z?:1 Xii/9), in which Xj; represents each of the nine manifest fit variables
(variables corresponding to constructs 1 to 3 in Table III). The use of the square root of
the Euclidian distance instead of the Euclidean distance is because it produces scores
that are close to a normal distribution, which is an assumption for regression analysis
(da Silveira, 2005). Because there is no reason to suppose a priori that one fit variable is
more important than another, they all received equal weights:

—.\2
Z?:l (X i—X 1)

MISFIT; = 3

@

5. Results and discussion

5.1 Hypothesis test

H1I states that ODMI-complexity misfit will negatively affect performance. Following
da Silveira (2005), HI is tested with a simple linear regression of misfit on
manufacturing operational performance, with the following equation:

Y = o+ B, MISFIT;+¢,;. ©

where Y represents the performance measures of quality, flexibility and delivery,
calculated in three separate equations. H1 is supported if f; is negative and statistically
significant.

Data analysis started with the computation of the ideal profile and the index of
“misfit” of ODMI-complexity for each plant in the sample (Equation (1)). We then
regressed the misfit variable on the three manufacturing operational performance
dimensions (Equation (2)). Table IV shows the results. All regression coefficients are
negative and statistically significant (p < 0.10 for quality and delivery; p < 0.05 for
flexibility). Thus, H1 is supported for quality (H1.1), delivery (H1.2) and flexibility (H1.3).

In summary, the results show a negative effect of ODMI-complexity misfit upon all
three dimensions of manufacturing operational performance (quality, delivery, flexibility).
These results are consistent with both the literature on ODMI and contingency theory.

Concerning the literature on ODM], the results are consistent with earlier findings of
a non-linear relationship between ODMI and performance (Homburg and Kuehnl, 2013).
Our findings support the notion that, depending on the level of manufacturing
complexity, there is a turning point beyond which the advantages of increased levels of
use of ODMI might not overcome the costs (Adler, 1995; Duysters and Lokshin, 2011,

Variables Quality Delivery Flexibility
n 541 497 523
Constant 3.708 (0.000) 3.514 (0.000) 3.721 (0.000)
MISFIT -0075 —0.084 —-0.090
R 0.006 0.007 0.008
F 3.036 3.506 1.254
df (1,539) (1,495) (1,521)
p-value 0.082 0.062 0.040

Notes: p-values for unstandardized parameter estimates are in parenthesis. Significant estimates and
F are set in italics (p < 0.10)




Homburg and Kuehnl, 2013). However, for complex environments, ODMI may Design-
contribute to easing the process of product introduction and manufacturability, manufacturing
contributing to higher levels of product conformance and reliability, on time and integration
reliable delivery, product volume and mix flexibility. gr

Concerning contingency theory, our results are in accordance with Lawrence and
Lorsch’s (1967) framework of differentiation and integration in complex organizations.
Consistent with this framework, our study suggests that in complex manufacturing 1105
environments, the integration mechanisms of job rotation and co-location may
contribute to closing the gap between departments and personnel with different
professional cultures and knowledge (e.g. design vs manufacturing engineers), thereby
leading to improved manufacturing performance.

5.2 Consequences of nusfit under different enviromments of process technology change
The results revealed a uniform negative impact of misfit on all three dimensions of
performance (quality, delivery, flexibility). As mentioned in Section 3, based on a
contingency logic (Sousa and Voss, 2007, 2008), it is useful to further analyse post hoc
whether the adverse effect of misfit on each individual performance dimension varies for
different NPD environments. As discussed in Section 2.3, a significant contribution of our
study is to understand the fit between ODMI and manufacturing complexity by including
processrelated sources of complexity. Thus, it is of particular interest to explore the
consequences of misfit under different degrees of technological change in manufacturing
processes. While research in NPD has emphasized the degree of technological change in
products as an important attribute of the NPD environment, it has paid relatively less
attention to the extent of technological change in manufacturing processes. Accordingly, we
examine in detail the adverse effects of misfit on performance (quality, delivery, flexibility)
for two groups of firms: low levels of change in process technology (stable process
technology) vs high levels of change in process technology (volatile process technology).

A subgroup analysis was performed using the same methodology that was applied
to the overall sample. Misfit was calculated with Equation (1) and regressions with
Equation (2). The subgroups were based on a median half-sample split of a perceptual
variable in the IMSS questionnaire characterizing the degree of technological change in
core production processes (1 — slowly to 5 — rapidly). Each group represents a more
homogeneous environment in terms of process technology change than the overall
sample. The Appendix shows the characterization of the two groups (Table Al) and the
detailed regression results (Table All). The volatile process technology group exhibits
higher average firm sizes, higher levels of ODMI use, a slightly larger proportion of
mass producers and higher proportions of manufacturers of electrical machinery and
apparatus (ISIC code 31). Table V summarizes the negative impact of misfit on each
dimension of performance. The results show that misfit has differentiated negative
impacts on performance in the two groups.

Impact of misfit on performance (p-values) Table V.

Process technology change Median Quality Delivery Flexibility Effect of misfit on
— ] ] i ] . performance under

Please indicate what characterizes technological change in your business (1 — slowly, 5 — rapidly) different
Core production processes change Slow (< 3) 0.016* 0.072% 0.451 environments
Rapid (=3) 0.765 0.235 0.034* of process

Note: *p-values in italic indicate a significant negative effect of misfit on performance (p < 0.10) technology change
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For firms in stable process technology environments, the distinguishing impact of
misfit occurs for quality and delivery. In other words, firms in this group which show
deviations from adequate levels of fit will be at a disadvantage on quality and delivery
relative to their counterparts. Deviations from fit seem to be more forgiving in what
concerns flexibility, since they do not lead to significant adverse impacts on this
performance dimension. For firms in volatile process technology environments, the
distinguishing impact of misfit occurs for flexibility. That is, firms in this group which
show misfit will be at a disadvantage on flexibility relative to their counterparts.
Deviations from fit in these firms seem to be more forgiving in what concerns quality
and delivery, since they do not lead to significant adverse impacts on these
performance dimensions.

A possible explanation for these results may be that the benefits of ODMI-
complexity fit (implying an effective coordination between product design and
manufacturing) on different performance dimensions take place in different ways.
The impact of ODMI fit on quality and delivery is expected to occur over time, as
learning about the processes takes place during their operation. Over time, a better fit
between products and processes is achieved through mutual adaptations of both,
leading to improved “steady-state” operation of the manufacturing processes,
reflected in higher levels of quality and delivery. On the other hand, the impact on
flexibility may be more heavily determined at the time the processes are
commissioned, as it is strongly influenced by structural decisions such as process
layouts and technology traits. At this early stage, ODMI fit is important to ensure
that the new processes are well matched with the product designs.

Therefore, in firms with stable process technology there is a sufficient period of
time (before technology changes) for adequate levels of fit to produce positive impacts
on quality and delivery performance. However, in firms with volatile process
technology there may not be sufficient time before technology changes for significant
learning during process operation to occur. Regarding flexibility, in firms with
volatile process technology, a very effective design-manufacturing coordination is
needed to achieve flexibility whenever technology changes and new processes
are installed. However, in firms with stable process technology, flexibility may be
already naturally imbedded in the existing process technology from knowledge
acquired in the past, leading to less differentiation of the impacts of ODMI fit on
flexibility across firms.

These results suggest that the fit between ODMI and complexity when considered
within more homogenous groups in terms of changes in process technology, produces
differentiated performance advantages. In volatile process technology environments,
fit provides a competitive advantage based on flexibility, while in stable process
technology environments fit provides a competitive advantage based on quality and
delivery. These impacts are theoretically meaningful and in line with prior literature
(e.g. Narasimhan et al., 2012), providing a deeper understanding of the competitive
implications of ODMI-complexity fit.

6. Conclusions

6.1 Contributions to research

Our study found that a misfit between the level of ODMI use (job rotation and
co-location) and manufacturing complexity (product and process) has a significantly
negative effect on the manufacturing operational performance dimensions of quality,
delivery and flexibility. The study makes several important contributions to research.



First, our study provides evidence of a contingent effect of manufacturing
complexity on the ODMI-performance relationship and thus contributes to the on-going
debate about the conditions under which ODMI can be beneficial to performance.
Consistent with contingency theory and our proposed theoretical framework,
the results show that those manufacturers that conform to an ideal profile of
ODMI-complexity fit (by which high complexity should correspond to higher use of
ODMI, and vice versa), outperform those manufacturers that operate farther from this
profile. In other words, ODMI is context dependent and, as such, there is no such thing
as “one size fits all” or universal approach to DML

Second, we complement existing studies of product development complexity in
novel ways. In general, these studies adopt the NPD project as the unit of analysis, tend
to emphasize product-related aspects of complexity and address NPD performance. Our
study takes a different focus by addressing plant-level manufacturing complexity
dimensions (determined both by product-related and manufacturing process-related
aspects) and addressing overall manufacturing performance. A key implication of our
study is that not all manufacturing processes are alike from a product development
perspective. Specifically, complex manufacturing processes (i.e. with high levels of
automation and systems integration) lead to higher levels of interdependencies with
product design, thus requiring higher levels of ODMI. Thus, future research on NPD
complexity should explicitly address process complexity alongside product
complexity, as key attributes of the NPD environment. In addition, such research
should extend the performance impacts of NPD activities beyond the NPD project, to
encompass manufacturing performance. This will require studies that have the
manufacturing plant as the unit of analysis and, accordingly, that look at
representative sets of NPD projects as a whole, rather than at each project in
isolation. While it is important that each project is successful per se (e.g. meeting time-
to-market goals), it is also important that the manufacturing plant where those
products are manufactured will exhibit sustainable and competitive levels of
manufacturing performance across a range of new products.

Third, the study addresses multiple manufacturing performance dimensions
individually, going beyond research that often measures performance as a single
aggregate performance construct. The finding that ODMI-complexity misfit impacts
multiple performance dimensions (quality, delivery and flexibility) highlights the
importance of pursuing a contingency approach in the design of ODMI initiatives. Our
post hoc analyses provide additional insights on the effects of fit on different performance
dimensions. Specifically, they suggest that, when considered within more homogenous
groups of firms in terms of change in process technology, the fit between ODMI and
complexity produces differentiated performance advantages. In volatile process
technology environments, fit provides a competitive advantage based on flexibility,
while in stable process technology environments fit provides a competitive advantage
based on quality and delivery. These impacts are theoretically meaningful and provide a
deeper understanding of the competitive implications of ODMI-complexity fit.

Fourth, the empirical examination involved a large set of manufacturers from
countries at different levels of development, employing a diversified array of
production processes (from one-of-a-kind products to batch and mass production), and
originating from different industries (metal products, machinery, semiconductor,
transportation, advanced instruments and audio-video). This level of diversity
enhances the generalizability of the findings, enriching the contribution to contingency
research on DML
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Finally, our study also effects a methodological contribution by successfully applying
Venkatraman’s (1989) Euclidean distance approach and da Silveira’s (2005) suggested
measurement technique of profile deviation to analyse fit in ODMIL This approach is
simple and parsimonious, because it requires a single predictor of misfit and the use of
simple regression analyses of misfit on performance. Alternative approaches to
analysing fit would be typically more complex. For example, the test of compliance of
different and simultaneous fit configurations to a set of possible ideal profiles, would
require simultaneous equation modelling or multiple regression techniques (Doty et al,
1993). Thus, we contribute to the generalization of a simple profile-deviation method to
assess fit as a simultaneous set of contingency factors. Future research might employ
this method to study ODMI contingencies beyond manufacturing complexity.

6.2 Implications for practice

Our findings suggest that manufacturers should adapt the level of use of ODMI to the
level of complexity of their manufacturing environments, in order to attain high
performance. Thus, manufacturers with high levels of manufacturing complexity
should invest strongly in ODMI practices, including job rotation and co-location of
manufacturing and design engineers. However, manufacturers with low levels of
complexity should invest in these practices with caution since the expected payoffs
may not outweigh the effort and may actually hurt performance. The need for fit
between complexity and ODMI use also needs to be observed dynamically along time.
For example, if manufacturers undertake manufacturing complexity reduction
initiatives (e.g. reduction of number of product components and manufacturing
steps) they may benefit from subsequently relaxing their ODMI efforts accordingly.
Thus, it is important that when manufacturers apply lean thinking or similar
approaches to reduce manufacturing complexity, they recognize that such initiatives
have positive spill-overs for the simplification of DMI activities.

Our results also suggest that firms that operate in different environments in what
concerns the rate of change in process technologies suffer differentiated negative
impacts of ODMI-complexity misfit. Specifically, firms operating in industries with
volatile process technologies which do a poor job in seeking ODMI-complexity fit, will
suffer an adverse impact on flexibility vis-d-vis their counterparts, while those that
operate in industries with stable process technologies will be at a disadvantage in terms
of quality and delivery.

The profile-deviation approach that we developed in our research could be used for
performance benchmarking with useful practical implications. One possibility would
be to calculate the ideal ODMI-complexity profile within a given industry, and employ
this profile as a benchmark to assess a specific firm’s profile. Another practical
extension of our approach could be for a multi-plants manufacturer to compare
individual plant profiles with their own average “ideal” profile.

6.3 Limutations and future research

This study has some limitations that open opportunities for future research. Our study
addressed long used ODMI practices associated with organizational integration
(people related), namely, job rotation and co-location. Future studies might extend this
research to other ODMI practices (e.g. concurrent engineering or mechanisms to manage
cross-functional teams), as well as to technological DMI practices (e.g. the use of
computer-aided design and manufacturing tools). They might also identify the most



effective DMI practices in different contexts. Future studies could also use the case study
method to examine in more detail the adverse consequences of ODMI-complexity misfit,
namely, the mechanisms by which misfit negatively affects different performance
dimensions. Our post hoc analyses revealed a differentiated impact of misfit on individual
performance dimensions for stable and volatile process technology environments, and we
advanced possible explanations for this differentiated impact. Case-based studies would
be especially useful to validate and enrich these explanations.

Finally, although our study has examined a diverse set of industries, future studies
should examine DMI-complexity contingencies in additional industries. To contrast
high clock-speed and low clock-speed industries would be of particular interest, as
these should exhibit very diverse product development environments.
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Appendix. Consequences of misfit under different environments of process
technology change

Process technology change groups®
Group 1 — stable Group 2 — volatile

Sample characteristics (<3 (=3) Total
Average firm size (no. employees) 885 2,442 1,849
Average ODMI 2.09 2.53 2.37
Production process

One-of-a-kind (%) 28 26 27
Batch (%) 50 46 48
Mass (%) 18 26 23
Missing (%) 4 2 2

Industry sector (ISIC codes)
28 — fabricated metal products, except machinery and

equipment (%) 37 31 33
29 — machinery and equipment (%) 32 22 25
30 — office, accounting and computing machinery (%) 2 2 2
31 — electrical machinery and apparatus (%) 6 17 13
32 — radio, television and communication equipment

and apparatus (%) 5 6 6

33 — medical, precision and optical instruments,
watches and clocks (%)

34 — motor vehicles, trailers and semi-trailers (%)

35 — other transport equipment (%)

Not declared (%)

Grand total (%) 100 100 100

Note: *Please indicate what characterizes technological change in your business (1 — slowly; 5 — rapidly)
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Table AIl
Regression results
for the groups

of process
technology change

Variables  Quality Delivery  Flexibility Variables  Quality Delivery  Flexibility

Group 1: stable process technology Group 2: volatile process technology

n 186 177 183 n 348 313 332
Constant  3.870 (0.000) 3.619 (0.000) 3.685 (0.000) Constant 3.623 (0.000) 3.481 (0.000) 3.769 (0.000)
MISFIT -0177 -0.136 —0.056  MISFIT -0.016 -0.067 -0.116
R 0.031 0.018 0003 R 0.000 0.005 0.014
F 5.960 3276 0.570 F 0.089 1413 4.528

df (1,184) 1,175) (1,181)  df (1,346) (1,311) (1,330)
p-value 0.016 0.072 0451 p-value 0.765 0.235 0.034

Notes: p-values for unstandardized parameter estimates are in parenthesis. Significant estimates and
F are set in italics (p < 0.10)
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