The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/0265-671X.htm

JQRM RELIABILITY PAPER
’ Performance modeling and
optimization for complex
1212 repairable system of paint

s ss MANUfacturing unit using a hybrid
Revised 1 November 2018 .
Sl BFO-PSO algorithm

Amit Kumar

Department of Mechanical Engineering,
Seth Jai Parkash Mukand Lal Institute of Engineering and Technology,
Yamunanagar, India
Vinod Kumar

Department of Mechanical Engineering,
National Institute of Technology Kurukshetra, Kurukshetra, India, and

Vikas Modgil
Department of Mechanical Engineering,
DeenBandhu Chhotu Ram University of Engineering and Technology, Sonipat, India

Abstract

Purpose — The purpose of this paper is to optimize the performance for complex repairable system
of paint manufacturing unit using a new hybrid bacterial foraging and particle swarm optimization
(BFO-PSO) evolutionary algorithm. For this, a performance model is developed with an objective to analyze
the system availability.
Design/methodology/approach — In this paper, a Markov process-based performance model is put forward
for system availability estimation. The differential equations associated with the performance model are developed
assuming that the failure and repair rate parameters of each sub-system are constant and follow the exponential
distribution. The long-run availability expression for the system has been derived using normalizing condition.
This mathematical framework is utilized for developing an optimization model in MATLAB 15 and solved
through BFO-PSO and basic particle swarm optimization (PSO) evolutionary algorithms coded in the light of
applicability. In this analysis, the optimal input parameters are determined for better system performance.
Findings — In the present study, the sensitivity analysis for various sub-systems is carried out in a more
consistent manner in terms of the effect on system availability. The optimal failure and repair rate parameters
are obtained by solving the performance optimization model through the proposed hybrid BFO-PSO algorithm
and hence improved system availability. Further, the results obtained through the proposed evolutionary
algorithm are compared with the PSO findings in order to verify the solution. It can be clearly observed from the
obtained results that the hybrid BFO-PSO algorithm modifies the solution more precisely and consistently.
Research limitations/implications — There is no limitation for implementation of proposed methodology
in complex systems, and it can, therefore, be used to analyze the behavior of the other repairable systems in
higher sensitivity zone.
Originality/value — The performance model of the paint manufacturing system is formulated by utilizing

I the available uncertain data of the used manufacturing unit. Using these data information, which affects the
performance of the system are parameterized in the input failure and repair rate parameters for each
sub-system. Further, these parameters are varied to find the sensitivity of a sub-system for system
availability among the various sub-systems in order to predict the repair priorities for different sub-systems.
The findings of the present study show their correspondence with the system experience and highlight the
various availability measures for the system analyst in maintenance planning.
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Nomenclature
Ai B, lC, D E Full capacity wgrkmg state -, Repair rate parameters of D
DY, E Reduced capacity working and E in reduced capacity
state state
ab,cde Fa;led state Probability of full capacity
N, A2, A3, A4y A5 Failure rate parameters of A, working state
B, C, D and E, respectively — p , p, Probability of reduced
A6, A7 Failure rate parameters of D capacity working state
and E in reduced capacity  p, (, p,y Probability of failed state
state Pi(t) First-order derivative of ith

, U, U3, Uy, 45 Repair rate parameters of A,
B, C, D and E, respectively

state w.r.t. time ¢

1. Introduction

System availability is always being considered one of the major problems for the industries as
it affects directly to the overall industrial performance in terms of maximum utilization of
various operating systems. The inaccuracies in the maintenance planning highly influence
the system performance and their effects become magnified with increased complexity of the
system or the number of the sub-systems/machines used is large. The visual inspection is not
enough for the system analyst to predict the perfect system behavior. It is also necessary to
analyze all the factors which cause the system failures. These complex industrial systems are
the main challenges for system analyst in maintaining the availability of various operating
systems for a long period of time without failure. In recent years, evolutionary tools have
become popular optimization methods to solve complex engineering problems of industrial
systems (Garg and Rani, 2013). It predicts not only the system behavior but provides various
availability measures to devise a suitable maintenance policy for better system performance.
Therefore, several evolutionary tools have been applied to the complex engineering problems
for the purpose of getting maximum performance by utilizing existing operating systems.
Different aspects of availability analysis and performance optimization are explored in the
literature. Arabi and Jahromi (2013) used the redundancy technique to improve system
availability. The availability of the system is optimized considering the redundancy and repair
facility allocation. Di Bona, Forcina and Silvestri (2016) applied a new approach based on
integrated factor method for reliability allocation using an aerospace system prototype and
compared with other traditional methods in order to validate the proposed method. Di Bona,
Forcina, Petrillo, De Felice and Silvestri (2016) proposed a new reliability allocation method,
i.e. critical flow method (CFM) for complex systems with series-parallel configuration and the
proposed method is validated using a real case study of a cooling system through
the comparison with conventional methods. (Garg, 2013; Garg and Sharma, 2012) analyzed the
system behavior by utilizing the rough and imperfect data of the complex repairable system.
They have used the Lambda—Tau technique for behavior analysis of the system whereas
Garg and Rani (2013) presented the PSO and IFS technique for reliability analysis of the
industrial system. Gupta et al (2007) used the matrix method to solve the governing
differential equations to analyze the system reliability and used Runge-Kutta fourth-order
method to solve the same differential equations to verify the solution. Hajeeh (2015) developed
the optimization models to study the perfect behavior of operating systems in order to
maintain the balance between the cost and performance of the repairable system.
Kachitvichyanukul (2012) reported the application of GA, PSO and DE algorithms using the
different optimization problems with the same number of function evaluations. Kajal and
Tewari (2012) proposed the GA approach for performance optimization in the dairy industry.
Kennedy and Eberhart (1995) presented the particle swarm optimization (PSO) technique
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whose mechanics is inspired by the social behavior of the biological population. Khanduja
et al (2010; Khanduja ef al, 2011) developed the performance model in a paper plant and
presented the GA technique for the optimization of system performance. Kora and Kalva
(2015) proposed the hybrid BFPSO technique to detect the bundle branch block for heart
circulatory system. Kumar and Garg (2016) applied the PSO technique to improve the
availability of a repairable system in brewery plant. Kumar and Ram (2013) investigated the
reliability and sensitivity analysis of a coal handling system of thermal power plant. Kumar
et al. (2018) selected the ethanol manufacturing plant to demonstrate the application of PSO
algorithm for performance optimization whereas Kumar and Tewari (2017) used the PSO
technique to optimize the availability of various sub-systems in a beverage plant. Raju et al
(2018) used a hybrid PSO-BFO algorithm for the optimization of FDM process parameters in
order to improve the mechanical and surface quality of complex objects manufactured
through the 3D printer. Modgil ef al (2013) developed the performance model using Markov
approach for the time-dependent system availability in a shoe industry. Pang (2015) proposed
a new computer network technology based Markov model for failure prediction in a
manufacturing industry. Rabbani ef al (2018) employed the GA and PSO algorithms to obtain
the optimal value of design parameters of a CCHP system. Sharma and Vishwakarma (2014)
described the GA approach for the availability optimization of refining system in the sugar
industry. Yadav and Zhuang (2014) reported the effectiveness of a reliability allocation
approach considering the modified criticality factors. A case example is considered to
demonstrate the proposed approach.

Keeping in view the use of different evolutionary algorithms for parameter
optimization in various industries, this paper proposed a new hybrid BFO-PSO
algorithm for performance optimization of the complex industrial system. The main aim of
the methodology presented in the paper is to optimize the performance for a multi-state
repairable system of paint manufacturing unit. For this, a hybrid BFO-PSO algorithm is
applied to obtain maximum system performance by rectifying the uncertain data up to a
desired degree of accuracy. To explain the findings of this study computational results are
presented in two sections. In the first section (4.1), the system behavior is analyzed to find
the sensitivity of each sub-system for system availability. The second section (4.2)
discusses the details of solving performance model through BFO-PSO and PSO
algorithms. In this section, the optimal combinations of failure and repair rate parameters
are obtained for various sub-systems in order to improve the system efficiency. The
obtained results are highly useful for the system analyst in the development of suitable
maintenance scheduling for maximum utilization of various operating systems, which
finally leads to higher system performance.

2. System description

The liquid paint is a composite of mainly three constituents, i.e. pigments, binders and
solvents (thinners). Some other additional additives are also blended in the solution to get
the required properties for specific purposes or applications. Generally, paint is a blend of a
finely divided pigment dispersed in a combination of different constitutes. The paint
manufacturing system comprises following five sub-systems in series and parallel
configuration. The schematic process flow diagram of the paint manufacturing system is
shown in Figure 1:

(1) Sub-system A: it consists of a mixer which is used to achieve homogeneity between
the different constituents. It is a single component and the failure of this component
lead to complete failure of the system.

(2) Sub-system B: it consists of a grinding mill which is used for the grinding of
composite solution in fine particles and also to improve its homogeneity. It is a
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Sub-system C: it includes another mixer for thinning and dilution, where the solvents
and other additives are added. It is a single component and the failure of this
component lead to complete failure of the system.

Sub-system D: it includes two filling machines which are arranged in parallel. In this
sub-system, the empty containers are filled with the paint (final product). The failure
of one component reduces the productive capacity of the unit. The complete failure
occurs when both components remain in the failed state.

Sub-system E: it consists of two labeling machines which are arranged in parallel. It
is used for labeling the paint containers. The failure of one component reduces the
productive capacity of the unit. The complete failure occurs when both components
remain in the failed state.

The oil heating furnace and filtration/finishing process (Figure 1) never fail. So, it does not
affect the performance of the system. The sub-system A, B and C are subjected to major
failures while the sub-system D and E are subjected to minor failures. The major failures
cause the complete failure of the system while the minor failures can be repaired during the
reduced capacity working state.

2.1 Assumptions
It is difficult to predict the future system behavior as all the collected information represents
the past behavior of the system. Thus in order to find the optimal failure and repair rate
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Figure 1.

Schematic process
flow diagram of paint
manufacturing system
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« Failure and repair rate parameters of the sub-systems are statistically independent.
« Failure and repair rate parameters obey the exponential distribution.
« There are no simultaneous failures among the sub-systems.

1216

« Repaired components are considered as good as new.

« Separate maintenance facility is available for each component. So, there is no waiting
time for repair.

« All the components are initially operating and are in working state.
« The system may work as reduced capacity.

Based on the above assumptions and notations performance modeling and state transition
diagram of the paint manufacturing system have been developed.

3. Methodology

3.1 Performance modeling

The performance modeling of the system is carried out using simple probabilistic
considerations and differential equations associated with the transition diagram are
developed according to the mnemonic rule (Khanduja et al, 2011). The performance
modeling of the system is described in diagrammatic form (Figure 2), which is known as
the state transition diagram. The State 0 represents the full capacity working state, the
State 1-3 represents the reduced capacity working state and the State 4-19 represents the
failed state. Probability considerations give the following differential equations
associated with the transition diagram:

5
Pot)+ > 4Poh) = 3 P ya®) + 1Pt + 1sPa(d), (1)

3
=1 i=1

3 6 3
Pi(t)+ (Z = zl-m) Pit) =Y wiPivo(®)+ P30+ 15P10(0) + 24Po(h), ()
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3 3
Py(t)+ (Z J~i+)~4+i7+u5> Po(t) = wiPi10(t)+psPa()+ prPru(t)+25Po(®), (3)
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Pi(t)+ (Z DI EDY ui> Pty =Y wPis1a®)+ Y iPis1a(t)
o1 =6 i i=1 i=6
+24Po()+ 75P1(0), )

P{(H)+mP(t) = i1Pi(t) where i =4,7,11,15 and j =0,1,2,3, 5)

P{())+mPi(t) = isPi(t) where i =5,8,12,16 and j =0,1,2,3, ©)
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The initial conditions are:

, Lifi = 0
O=190.ifi 20"

3.1.1 Long-run availability. All the sub-systems must be available for the long duration of
time to achieve higher system performance. So, the long-run or steady-state availability
of the system is computed by substituting steady-state conditions, i.e. (P)) — 0 as the time

I — oo for first-order differential Equations (1)—(9) and solving these equations recursively
one gets:

Py =KyPy Py;=K3Py P3=K,P
Py=MPy Ps=MyPy Ps=M3Py
P; =M KoPy Ps= MsKsPy Pyg=Ms3KyP,
Pyo = MeKoPy Py =MK3Py Prp = M>K3Py
P13 =M3K3P() P14=M7K3P0 P15=M1K4P0
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P19 = M7K 4Py,
where M;=A/u;1=1, 2, 3,6, 7 and:

1218 AN AN sk
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T, = Vs—%— 5Hs5

v, V. Vi=Js+uy, Vo= latus, V= pu+us.

The probability of full capacity working state P, is obtained using normalizing condition i.e.
the sum of all the state probabilities is equal to one:

19
ZPz' =1,
P

b [T K Kk My Mo+ M KoM+ My 4 M+ M) !
07 | + KMy +My+Ms+M7)+ Ky (My 4+ Mo+ Ms+ Mg+ M)

The long-run availability (4,) of paint manufacturing system may be obtained by the
summation of all the working and reduced capacity state probabilities, i.e.:

Ay = Po+Py+Py+Ps = Py(1+ Ky + K3+Ky). (10)

The data collected from the maintenance history sheet is translated into the parameterized
form of failure and repair rate parameters as 4; =0.0049, u; =0.3, 15 =0.037, u>=0.5,
13=0005, uz=044, 1,=0067, puy= 04, 15=009, us=046, 15=0.077, pg=054,
A7=0.094, u;=0.7 for each sub-system, respectively. The long-run availability of the
system is obtained 87.40 percent using these parameters in Equation (10).

3.2 Particle swarm optimization

PSO technique is one of the evolutionary optimization algorithms and is based on social
behavior observed in bird folks and fish colonies (Kennedy and Eberhart, 1995). In PSO,
the population of solutions is known as a swarm and each member of the swarm is called a
particle, which is initialized randomly with its position and velocity. The best position of
the particle represents the best solution in the study. The algorithm allows particles to
move toward its best position at each one of the iterations. This movement depends on the
current velocity and position of the particle. The best position attained is compared with
the previous best position in each step, as the particle remembers its previous best
position and the neighbor’s previous best as well. The main goal of all particles is to
achieve the optimum solution in the multi-dimensional search space. Once the new best
position is attained the personal best (pbest) as well as global best (gbest) positions are
updated. The algorithm terminates the optimization process when, either relatively best
position has been attained or computational limitations (i.e. the maximum number of



iterations) has been reached. The velocity and position of the particle are updated using
the following relations:

Vi=w x V;+cl x randl x (pbest;—X;)+c2 x rand2 x (gbest—X;), 11)

Xi=Xi+ Vi, 12)

where V; and X; represent the velocity and position of ith particle, respectively, c1 and ¢2 are
the cognitive and social components range from 0 to 2, »andl and rand2 are the random
numbers between 0 and 1. The inertia weight w ranges from 04 to 1.4, which controls the
convergence behavior of the PSO algorithm. In the present paper, the value of the inertia
weight linearly decreases with each iteration, from initial value wy,., =09 to final value
Wmin = 0.4 using the relation w = Wmax — Wmax — Wmin) X @le/ite.,), Where ite represents the
iteration number and #te,,,, is used for the maximum number of iterations (Garg, 2013).

3.3 Hybrid bacterial foraging and particle swarm optimization

The BFO and PSO both are the nature-based optimization algorithms. BFO algorithm is based
on the food searching process of E. Coli bacterial elements (Kora and Kalva, 2015) whereas
PSO follows the food hunting process observed in the birds. Here, in this work, a newly
developed hybrid optimization method is proposed. The hybridization of two optimization
algorithms has been done with the objective to achieve the better optimal solution in
competitively less time. The BFO has been selected for the reason that this algorithm performs
equally well in both linear and non-linear optimization problems whereas the PSO controls the
direction of bacteria. The use of PSO with BFO not only offers the optimal solution faster but
also adjusts the bacteria direction toward the better convergence. The working procedure of
the proposed hybrid BFO-PSO evolutionary algorithm is discussed below:

« Step 1: The initialization of BFO and PSO variables as shown in Table III.
« Step 2: The position and direction of bacterial element initialized randomly.

« Step 3: At each chemotaxis step, the fitness value and the movement of the bacterial
element is simulated through swimming and tumbling via flagella. The position of
bacteria element is computed using the following equation:

A@)
VAT A
where ¢(j, k, [) represents ith bacteria at jth chemotactic kth reproductive and /th

elimination-dispersal step. C(i) is the step size taken in the random direction indicated
by a vector (A) whose elements lie in (-1, 1).

CG+1,k1) = 0,k 1)+CG) (13)

« Step 4: in the swarming step, the previous position of bacteria is compared with the
next position and if it is found less than the position of subsequent bacteria is
computed again using Equation (13). Once the new best position is attained the local
best position, as well as the global best position, is updated.

- Step 5: the present position of bacteria is termed as the current position of particle for
PSO. In this step, PSO is used to tune the direction of bacteria and the velocity/
direction of each bacteria/particle is further updated using the Equation (14):

New velocity = w x previous velocity +cl x randl

x (local best position—current position)+c2 x rand2

x (global best position—current position), 14)
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where w, c1, ¢2, rand] and rand?2 are initialized as PSO variables. This new velocity is
termed as the direction of bacteria in BFO (Kora and Kalva, 2015):

Velocity = Direction.

« Step 6: after completion of chemotaxis and swarming loop for all initialized steps then
the reproduction step takes place for shorting the bacterial elements with high fitness
value. The bacterial elements with lower fitness value are dispersed or killed with a
deciding probability of 0.25 and other healthy bacterial elements split into two, which
disperse into a new location.

« Step 7: this whole cycle of the algorithm is repeated until an optimum solution (best
position of bacteria) is not attained or the maximum number of iterations is not produced.

4. Results

4.1 Sensitivity analysis

This section reports the results of sensitivity analysis conducted in terms of the effect on the
long-run availability of the system with respect to the various combinations of failure and
repair rate parameters for each sub-system. In this analysis, the input parameters of each
sub-system are varied within a constrained range, keeping the other sub-systems with
constant parameters. Figure 3 provides behavioral plots representing failure and repair rate
parameters along the x-axis and y-axis, respectively from minimum to maximum range as
provided in Table I, while the corresponding variation in availability along the z-axis shows
the system behavior pattern.

It can be observed from the behavior pattern that the long-run availability is highly
affected by the sub-system (B) as compared to the other sub-systems as shown in Table I
The system availability is reduced by 11.88 percent when the failure rate of the sub-system
(B) is changed from 0.037 to 0.127. Similarly the system availability is increased by
3.79 percent when the repair rate of the sub-system (B) is changed from 0.5 to 1.4 and the
maximum availability can be obtained, i.e. 91.19 percent using the combinations of failure
and repair rate parameters as A; = 0.0049, u; = 0.3, 15 =0.037, us = 1.4, 43=0.005, 3 =0.44,
A4=0.067, uy= 04, 15=0.09, u5=0.46, 14=0.077, ug=054, 17=0.0094, u;=0.7. This
observation depicts the perfect behavior of the system and helps in predicting the repair
priorities for different sub-systems.

4.2 Optimization modeling
4.2.1 BFO-PSO and PSO variables settings. In order to have uniformity in analyzing results
common variables such as population size and the number of iterations used are kept to be the
same for each algorithm i.e. BFO-PSO and PSO. Population size and the maximum number of
iterations are taken as 80 and 800, respectively. In order to get the optimal results, 30
independent runs have been performed at each step. The algorithm terminates when, either
the best solution has been reached or a maximum number of iterations has been produced.
The optimization modeling has been implemented in Matlab 15. The values of BFO and PSO
variables used in the present study are shown in Table III (Garg, 2013; Kora and Kalva, 2015).
4.2.2 Performance optimization using BFO-PSO and PSO. A large number of trails were
carried out to optimize the system performance by varying the variables (i.e. population size
and number of iterations) one by one with a step size keeping the second variable constant for
each evolutionary algorithm. The effect of number of bacterial elements/ population size on the
system performance (i.e. Availability) using BFO-PSO and basic PSO evolutionary algorithm is
shown in Tables IV and V and represents graphically in Figure 4. At first, the system
performance (i.e. availability) is computed using BFO-PSO. In this analysis, the population size
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Effect of failure
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different sub-systems

e i on the system
—01 availability
Repair rate Failure rate
Sub-systems Failure rate parameters range Repair rate parameters range
A 41 =0.0049-0.0109 u1=03-09
B A2=0.037-0.127 us=05-14
C 43=0.005-0.011 p13=044-1.04 Table L.
D A4=0.067-0.157 Ha= 04-1.3 Ranges for
E 15 =0.09-0.17 s =0.46-1.36 parameterized data
D! (reduced state) 46=0.077-0.167 pne=054-144 collection of paint
E! (reduced state) A7=0.094-0.174 u7;=0.7-1.6 manufacturing system

is varied from 10 to 80 with a step size of 10 keeping the number of iterations constant at 800.
The system performance is found to be 95.77 percent at a population size 60, it provides the
best possible combinations of failure and repair rate parameters as A; = 0.0052, u; = 0.8835,
Ao =0.0481, up,=1.0130, A3=0.0056, us=1.0801, A,=00704, u,= 12658, A5=0.0950,
us=1.2590, 1g=0.0824, ug = 14218, 1, =0.0961, 7 = 1.5019 as shown in Table IV.
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Similarly, the system performance (ie. availability) is computed using PSO. In this

36,7 analysis, the population size is again varied from 10 to 80 with a step size of 10 keeping the
number of iterations constant at 800. The system performance is found to be 95.65 percent
at a population size 40, it provides the best possible combinations of failure and repair rate
parameters as A; =0.0050, u; =0.8891, 1, =0.0370, us=1.3968, 13=0.0052, u3=0.9975,
A=00727, puy= 12315, 15=0.0954, us=1.2436, 1¢=0.0778, ug=1.3743, A7;=0.0955,

1222 7 =1.3874 as shown in Table V.

Ranges of Decrease in Ranges of Increase in Repair
Sub-system failure rates availability (%) repair rates availability (%) priority
A 0.0049-0.0109 15 0.3-09 0.84 v

Table I B 0.037-0.127 11.88 05-14 379 I

Sensitivity analysis C 0.005-0.011 0.69 0.44-1.04 0.51 \Y%

for the paint D 0.067-0.157 148 04-1.3 1.04 I

manufacturing system E 0.09-0.17 1.07 0.46-1.36 1.06 I
BFO variables Value
Number of chemotactic steps Ne 10
Maximum allowed length of swim Ns 4
Number of reproduction steps Nre 4
Number of elimination-dispersal events Ned 2
Probability of elimination and dispersal Ped 0.25
Number of bacterial elements (i.e. population size) S 80 with a step size of 10
Number of bacteria reproduction (splits) per generation Sr N
Number of iterations (i.e. number of generations) 800 with a step size of 100
PSO variables Value
Cognitive component ¢1 15
Social component ¢2 15

Table II1. Inertia weight (w) 04-0.9

BFO and PSO Number of particles (i.e. population size) 80 with a step size of 10

variables Number of iterations 800 with a step size of 100

Population size

Parameters 10 20 30 40 50 60 70 80

M 0.0072 0.0073 0.0066 0.0054 0.0049 0.0052 0.0053 0.0049
" 0.8073 0.8188 0.6629 0.7864 0.8760 0.8835 0.8818 0.8819
Ao 0.0433 0.0752 0.0723 0.0451 0.0384 0.0481 0.0434 0.0481
Ho 1.2976 0.9902 1.3778 1.3827 1.1197 1.0130 1.1982 1.1236
A3 0.0078 0.0058 0.0060 0.0055 0.0055 0.0056 0.0060 0.0052
u3 0.6984 0.9927 0.8254 1.0238 1.0570 1.0801 1.0480 1.0813
g 0.0720 0.0802 0.0882 0.0690 0.0722 0.0704 0.0705 0.0715
m 1.0431 0.9189 1.1732 1.0942 1.2112 1.2658 1.1782 1.1212
A5 0.0943 0.0943 0.0943 0.0962 0.0935 0.0950 0.0937 0.0941

Table IV. Us 0.9072 1.0785 1.1246 1.1869 1.3352 1.2590 1.2182 1.2802

Effect of population 46 0.1075 0.0848 0.0878 0.0787 0.0844 0.0824 0.0825 0.0839

size on the s L1621 12015 12622 11517 13560 14218 13052  1.3588

availability of paint A7 0.1584 0.0960 0.0958 0.0956 0.0964 0.0961 0.0977 0.0973

manufacturing system u7 0.8012 1.3945 1.368 1.3357 1.4800 1.5019 1.5354 1.394

using BFO-PSO

Availability 0.9399 0.9461 0.9481 0.9523 0.9565 0.9577 0.9570 0.9559




Population size

BFO-PSO

Parameters 10 20 30 40 50 60 70 80 algorithm
M 00063 00093 00053 00050 00051 00057 00054 00053
" 07164 08149 07698 08891 08639 07646 08451  0.7695
o 00387 00372 00374 00370 00378 00380 00370 00375
4o 13573 12632 13295 13968 13859 13672 13762  1.3968
P 00051 00073 00062 00052 00057 00050 00051  0.0052 1223
43 05623 09326 08303 09975 10160 09778 09780 09286
) 00974 00861 00728 00727 00673 00701 00761 00736
s 0.7311 12320 0982 12315 12831 0998 12830  1.2627
s 01034 01143 01080 00954 00939 00921 00931 00954
s 07949 12537 12666 12436 12010  1.1651 13426 12321 Table V.
6 01343 00820 0089 00778 00773 00791 00861 00784  Fffect of population
e 14118 11973 13889 13743 13580 14087 12523 14289 size on the
p 01181 00947 01069 00955 00996 00974 00987 01165  availability of paint
U7 14974 12319 11735 13874 15239 13314 14080 15428 manufacturing
Availability 09375 09438 09490 09565 09560 09529 09551 09544 system using PSO
Availability vs Population Size
0.96
0.955
z
T;;, 0.95 —+— BFO-PSO
= —&- PSO
3‘. 0.945
0.94 Figure 4.
Effect of population
0.935 size on the system
20 40 60 80 100 availability

Population Size

Again, the system performance is computed with respect to the variation in number of
iterations for each algorithm. The effect of number of iterations on the system performance
(Le. Availability) using BFO-PSO and basic PSO evolutionary algorithms is shown in
Tables VI and VII and represents graphically in Figure 5. In this analysis, the number of
iterations is varied from 100 to 800 with a step size of 100 keeping the population size
constant at 60. The system performance is found to be 95.72 percent using BFO-PSO at a
number of iterations 300, it provides the best possible combinations of failure and repair rate
parameters as A; = 0.0053, 1 =0.8586, 1y =0.0461, us=1.3356, 13 =0.0056, u3=1.0471,
Ay=0.0743, puy= 12300, 15=0.0944, pus=12423, 16=0.0811, ug=1.3321, 1;=0.0976,
u7=1.3831, as shown in Table VL.

Similarly, the system performance (ie. availability) is computed using PSO. In this
analysis, the number of iterations is varied from 100 to 800 with a step size of 100 keeping
the population size constant at 40. The system performance is found to be 95.61 percent at a
number of iterations 700, it provides the best possible combinations of failure and repair rate
parameters as A; =0.0051, p; =0.8873, 1, =0.0372, us =1.3952, A3=0.0053, uz=1.0005,
Ay=0.0758, puy= 12922, 15=0.0935, us=1.3516, 16=0.0851, ug=1.3457, 1;=0.1120,
u7=1.5437 as shown in Table VIL

The effectiveness of the proposed algorithm is tested by comparing the results with PSO
as both the techniques follow the deterministic and probabilistic rules from current iteration
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Number of iterations

36,7 Parameters 100 200 300 400 500 600 700 800
P 00052 00053 00053 00054 00057 00052 00052 00051
,41 04852 08263 08586 08289 08628 08809 0883 08647
A 00550 00382 00461 00375 00405 00490 00414 00387
P 12821 12337 13356 10642 10986 10194 13847 12865
1224 P 00075 00059 00056 00054 00065 00061 00056  0.0054
s 08782 09914 10471 10852 10711 10407 10973 10759
A 01239 00735 00743 00682 00755 00736 00745 00723
i 07439 08816 12300 11282 12031 11722 12396 11655
I 01229 00934 00944 00942 00938 00922 00943 00944
Table VL e 10829 09740 12423 12882 12610 12167 12621 12084
Effect of number of 46 01115 00983 00811 00846 00809 00815 00806 00839
terations on the e 12467 11542 13321 12692 13789 13892 13923  1.3793
availability of paint 47 01103 00957 00976 00966 00974 00974 00976 00967
manufacturing system 7 14021 15660 13831 15043 14201 14126 15058 14984
using BFO-PSO Availability 09376 09502 09572 09558 09564 09569 09563 09560
Number of iterations
Parameters 100 200 300 400 500 600 700 800
i 00051 00081 00056 00051 00072 00054 00051  0.005
P’ 08665 07389 07065 08011 08425 0799 08873 08588
A 00387 00383 00377 00391 00372 00372 00372 00378
s 12976 13705 13416 13733 13404 13994 13952  1.3932
A3 00075 00071 00054 00056 00062 00053 00053 00050
P 07166 08687 09813 09391 07519 10185 10005 09830
A 01376 00915 00738 00801 00739 00789 00758 00715
s 08378 07946 12117 11750 09974 11366 12922 11248
As 01660 01339 01305 01070 00976 00973 00935 00928
Table VIL s 10576 08724 12682 09959 12319 12315 13516 13120
Effect of mumber of 46 01171 00958 01551 01063 01301 00777 00851 00792
terations on the e 13608 12482 12042 14067 12065 11262 13457 12133
availability of paint 47 01019 00970 01074 0118 01023 01111 01120 00943
manufacturing system 7 11567 15045 11946 15987 15938 13828 15437 14955
using PSO Availability 09343 09403 09462 09499 09463 09534 09561 09559
Availability vs Number of Iterations
0.96
0.955
5 095
3;5 0,045 —+— BFO-PSO
T‘é . —&- PSO
< 094
Figure 5. 0935
_Effect of number of 0.93
iterations on the ' 200 400 600 800 1,000

system availability

Number of Iterations



to next. The comparative study shows that the BFO-PSO algorithm estimated the system
performance with higher accuracy as compared to PSO, although the maximum difference is
0.12 percent only as shown in Table VIII. Thus, the results obtained through BFO-PSO
algorithm contributes to the system analyst and reduces the range of prediction which
finally leads to more sound decisions in maintenance planning. The convergence
characteristic of basic PSO and BFO-PSO is shown in Figure 6.

5. Conclusions

In this paper, the sensitivity analysis has been conducted by utilizing the uncertain data of
system concerned and traced out the best system performance for a paint manufacturing
unit. In the proposed methodology, a Markov process-based performance model has been
constructed to analyze the effect of failure and repair rate parameters of various
sub-systems, more closely, on system performance. In order to increase the system
efficiency and to obtain the optimal combinations of failure and repair rate parameters for

BFO-PSO
algorithm
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Performance evaluation using
PSO (population size = 40, BFO-PSO (population size = 60,

System Markov process number of generations = 800) number of generations = 800)

Paint manufacturing
system

21-0.0049, p; 0.3

220,037, pp =14
5= 0,005, 15 =044
24=0.067, 1y =04
25=0.09, yis = 0.46
26=0.077, g =054
J7=0.094, 7 = 0.7

41=0.0050, g, —0.8891

2= 0.0370, yo = 1.3968
5= 0.0052, 5 = 0.9975
24=00727, uy=12315
25=0.0954, s = 1.2436
26=0.0778, yig = 1.3743
27=0.0955, 7 = 1.3874

41=0.0052, 1, —0.8835

2= 0.0481, yp = 1.0130
3= 0.0056, 15 = 1.0801
4= 00704, g = 1.2658
25=0.0950, 5 = 1.2590
6= 0.0824, yig = 1.4218
27=0.0961, y7 = 1.5019

Table VIII.
Comparison of
performance
evaluation for paint

manufacturing system
using Markov process,

Availability (%) 91.19 95.65 95.77 PSO and BFO-PSO
Convergence Characteristic of PSO and BFO-PSO
—0.944 T T : T : '
! PSO
BFO-PSO
—-0.946 ;
—-0.948
E 0.95
3 .
@
2
Z -0.952
-0.954
-0.956 Figure 6.
Convergence
characteristic of PSO
-0.958 and hybrid BFO-PSO
0 100 200 300 400 500 600 700 800 algorithms

Iteration




IJQRM various sub-systems, the performance optimization model has been solved through a hybrid
36,7 BFO-PSO algorithm and their results are compared with basic PSO findings. The following
observations can be made from the availability results:

« the sensitivity of various sub-systems can be analyzed in more realistic manner using
the proposed methodology;

1226 « it can be easily identified that the sub-system B (Grinding Mill) is more sensitive than
other sub-systems in terms of the effect on system availability;

- the maintenance priorities can be easily set up using the obtained results;

« the availability of the system has been increased up to 95.77 percent using the hybrid
BFO-PSO algorithm;

. in this study, we have observed that the accuracy, frequency of getting optimal
results and convergence speed of the BFO-PSO algorithm is higher than the basic
PSO algorithm,

« amajor conclusion of this study is that hybrid BFO-PSO based algorithm performs
well in determining the optimal input parameters so as to increase the efficiency of
the system; and

« theresults obtained from the present study can be utilized for further improvement in
the system design as a future course of action.
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