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Abstract
Purpose – The purpose of this paper is to optimize the performance for complex repairable system
of paint manufacturing unit using a new hybrid bacterial foraging and particle swarm optimization
(BFO-PSO) evolutionary algorithm. For this, a performance model is developed with an objective to analyze
the system availability.
Design/methodology/approach – In this paper, a Markov process-based performance model is put forward
for system availability estimation. The differential equations associated with the performance model are developed
assuming that the failure and repair rate parameters of each sub-system are constant and follow the exponential
distribution. The long-run availability expression for the system has been derived using normalizing condition.
This mathematical framework is utilized for developing an optimization model in MATLAB 15 and solved
through BFO-PSO and basic particle swarm optimization (PSO) evolutionary algorithms coded in the light of
applicability. In this analysis, the optimal input parameters are determined for better system performance.
Findings – In the present study, the sensitivity analysis for various sub-systems is carried out in a more
consistent manner in terms of the effect on system availability. The optimal failure and repair rate parameters
are obtained by solving the performance optimization model through the proposed hybrid BFO-PSO algorithm
and hence improved system availability. Further, the results obtained through the proposed evolutionary
algorithm are compared with the PSO findings in order to verify the solution. It can be clearly observed from the
obtained results that the hybrid BFO-PSO algorithm modifies the solution more precisely and consistently.
Research limitations/implications – There is no limitation for implementation of proposed methodology
in complex systems, and it can, therefore, be used to analyze the behavior of the other repairable systems in
higher sensitivity zone.
Originality/value – The performance model of the paint manufacturing system is formulated by utilizing
the available uncertain data of the used manufacturing unit. Using these data information, which affects the
performance of the system are parameterized in the input failure and repair rate parameters for each
sub-system. Further, these parameters are varied to find the sensitivity of a sub-system for system
availability among the various sub-systems in order to predict the repair priorities for different sub-systems.
The findings of the present study show their correspondence with the system experience and highlight the
various availability measures for the system analyst in maintenance planning.
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Nomenclature
A, B, C, D, E Full capacity working state
D1, E1 Reduced capacity working

state
a, b, c, d, e Failed state
λ1, λ2, λ3, λ4, λ5 Failure rate parameters of A,

B, C, D and E, respectively
λ6, λ7 Failure rate parameters of D

and E in reduced capacity
state

µ1, µ2, µ3, µ4, µ5 Repair rate parameters of A,
B, C, D and E, respectively

µ6, µ7 Repair rate parameters of D
and E in reduced capacity
state

P0 Probability of full capacity
working state

P1 to P3 Probability of reduced
capacity working state

P4 to P19 Probability of failed state
P 0
i tð Þ First-order derivative of ith

state w.r.t. time t

1. Introduction
System availability is always being considered one of the major problems for the industries as
it affects directly to the overall industrial performance in terms of maximum utilization of
various operating systems. The inaccuracies in the maintenance planning highly influence
the system performance and their effects become magnified with increased complexity of the
system or the number of the sub-systems/machines used is large. The visual inspection is not
enough for the system analyst to predict the perfect system behavior. It is also necessary to
analyze all the factors which cause the system failures. These complex industrial systems are
the main challenges for system analyst in maintaining the availability of various operating
systems for a long period of time without failure. In recent years, evolutionary tools have
become popular optimization methods to solve complex engineering problems of industrial
systems (Garg and Rani, 2013). It predicts not only the system behavior but provides various
availability measures to devise a suitable maintenance policy for better system performance.
Therefore, several evolutionary tools have been applied to the complex engineering problems
for the purpose of getting maximum performance by utilizing existing operating systems.
Different aspects of availability analysis and performance optimization are explored in the
literature. Arabi and Jahromi (2013) used the redundancy technique to improve system
availability. The availability of the system is optimized considering the redundancy and repair
facility allocation. Di Bona, Forcina and Silvestri (2016) applied a new approach based on
integrated factor method for reliability allocation using an aerospace system prototype and
compared with other traditional methods in order to validate the proposed method. Di Bona,
Forcina, Petrillo, De Felice and Silvestri (2016) proposed a new reliability allocation method,
i.e. critical flow method (CFM) for complex systems with series-parallel configuration and the
proposed method is validated using a real case study of a cooling system through
the comparison with conventional methods. (Garg, 2013; Garg and Sharma, 2012) analyzed the
system behavior by utilizing the rough and imperfect data of the complex repairable system.
They have used the Lambda–Tau technique for behavior analysis of the system whereas
Garg and Rani (2013) presented the PSO and IFS technique for reliability analysis of the
industrial system. Gupta et al. (2007) used the matrix method to solve the governing
differential equations to analyze the system reliability and used Runge–Kutta fourth-order
method to solve the same differential equations to verify the solution. Hajeeh (2015) developed
the optimization models to study the perfect behavior of operating systems in order to
maintain the balance between the cost and performance of the repairable system.
Kachitvichyanukul (2012) reported the application of GA, PSO and DE algorithms using the
different optimization problems with the same number of function evaluations. Kajal and
Tewari (2012) proposed the GA approach for performance optimization in the dairy industry.
Kennedy and Eberhart (1995) presented the particle swarm optimization (PSO) technique
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whose mechanics is inspired by the social behavior of the biological population. Khanduja
et al. (2010; Khanduja et al., 2011) developed the performance model in a paper plant and
presented the GA technique for the optimization of system performance. Kora and Kalva
(2015) proposed the hybrid BFPSO technique to detect the bundle branch block for heart
circulatory system. Kumar and Garg (2016) applied the PSO technique to improve the
availability of a repairable system in brewery plant. Kumar and Ram (2013) investigated the
reliability and sensitivity analysis of a coal handling system of thermal power plant. Kumar
et al. (2018) selected the ethanol manufacturing plant to demonstrate the application of PSO
algorithm for performance optimization whereas Kumar and Tewari (2017) used the PSO
technique to optimize the availability of various sub-systems in a beverage plant. Raju et al.
(2018) used a hybrid PSO-BFO algorithm for the optimization of FDM process parameters in
order to improve the mechanical and surface quality of complex objects manufactured
through the 3D printer. Modgil et al. (2013) developed the performance model using Markov
approach for the time-dependent system availability in a shoe industry. Pang (2015) proposed
a new computer network technology based Markov model for failure prediction in a
manufacturing industry. Rabbani et al. (2018) employed the GA and PSO algorithms to obtain
the optimal value of design parameters of a CCHP system. Sharma and Vishwakarma (2014)
described the GA approach for the availability optimization of refining system in the sugar
industry. Yadav and Zhuang (2014) reported the effectiveness of a reliability allocation
approach considering the modified criticality factors. A case example is considered to
demonstrate the proposed approach.

Keeping in view the use of different evolutionary algorithms for parameter
optimization in various industries, this paper proposed a new hybrid BFO-PSO
algorithm for performance optimization of the complex industrial system. The main aim of
the methodology presented in the paper is to optimize the performance for a multi-state
repairable system of paint manufacturing unit. For this, a hybrid BFO-PSO algorithm is
applied to obtain maximum system performance by rectifying the uncertain data up to a
desired degree of accuracy. To explain the findings of this study computational results are
presented in two sections. In the first section (4.1), the system behavior is analyzed to find
the sensitivity of each sub-system for system availability. The second section (4.2)
discusses the details of solving performance model through BFO-PSO and PSO
algorithms. In this section, the optimal combinations of failure and repair rate parameters
are obtained for various sub-systems in order to improve the system efficiency. The
obtained results are highly useful for the system analyst in the development of suitable
maintenance scheduling for maximum utilization of various operating systems, which
finally leads to higher system performance.

2. System description
The liquid paint is a composite of mainly three constituents, i.e. pigments, binders and
solvents (thinners). Some other additional additives are also blended in the solution to get
the required properties for specific purposes or applications. Generally, paint is a blend of a
finely divided pigment dispersed in a combination of different constitutes. The paint
manufacturing system comprises following five sub-systems in series and parallel
configuration. The schematic process flow diagram of the paint manufacturing system is
shown in Figure 1:

(1) Sub-system A: it consists of a mixer which is used to achieve homogeneity between
the different constituents. It is a single component and the failure of this component
lead to complete failure of the system.

(2) Sub-system B: it consists of a grinding mill which is used for the grinding of
composite solution in fine particles and also to improve its homogeneity. It is a
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single component and the failure of this component lead to complete failure of
the system.

(3) Sub-system C: it includes another mixer for thinning and dilution, where the solvents
and other additives are added. It is a single component and the failure of this
component lead to complete failure of the system.

(4) Sub-system D: it includes two filling machines which are arranged in parallel. In this
sub-system, the empty containers are filled with the paint (final product). The failure
of one component reduces the productive capacity of the unit. The complete failure
occurs when both components remain in the failed state.

(5) Sub-system E: it consists of two labeling machines which are arranged in parallel. It
is used for labeling the paint containers. The failure of one component reduces the
productive capacity of the unit. The complete failure occurs when both components
remain in the failed state.

The oil heating furnace and filtration/finishing process (Figure 1) never fail. So, it does not
affect the performance of the system. The sub-system A, B and C are subjected to major
failures while the sub-system D and E are subjected to minor failures. The major failures
cause the complete failure of the system while the minor failures can be repaired during the
reduced capacity working state.

2.1 Assumptions
It is difficult to predict the future system behavior as all the collected information represents
the past behavior of the system. Thus in order to find the optimal failure and repair rate

Raw Material
Oil Heating

Furnace

Additives

Mixer (A)

Grinding Mill (B)

Thinning/Dilution (C)

Filling Machine (D) Filling Machine (D)

Labeling Machine (E) Labeling Machine (E)

Packaging

Filtration and Finishing Process

Figure 1.
Schematic process

flow diagram of paint
manufacturing system
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parameters, the following assumptions are made to carry out the performance modeling of
the paint manufacturing system:

• Failure and repair rate parameters of the sub-systems are statistically independent.

• Failure and repair rate parameters obey the exponential distribution.

• There are no simultaneous failures among the sub-systems.

• Repaired components are considered as good as new.

• Separate maintenance facility is available for each component. So, there is no waiting
time for repair.

• All the components are initially operating and are in working state.

• The system may work as reduced capacity.

Based on the above assumptions and notations performance modeling and state transition
diagram of the paint manufacturing system have been developed.

3. Methodology
3.1 Performance modeling
The performance modeling of the system is carried out using simple probabilistic
considerations and differential equations associated with the transition diagram are
developed according to the mnemonic rule (Khanduja et al., 2011). The performance
modeling of the system is described in diagrammatic form (Figure 2), which is known as
the state transition diagram. The State 0 represents the full capacity working state, the
State 1–3 represents the reduced capacity working state and the State 4–19 represents the
failed state. Probability considerations give the following differential equations
associated with the transition diagram:

P0
0 tð Þþ

X5
i¼1

liP0 tð Þ ¼
X3
i¼1

miPiþ 3 tð Þþm4P1 tð Þþm5P2 tð Þ; (1)

P1
0 tð Þþ

X3
i¼1

liþ
X6
i¼5

liþm4

 !
P1 tð Þ ¼

X3
i¼1

miPiþ 6 tð Þþm5P3 tð Þþm6P10 tð Þþl4P0 tð Þ; (2)

P2
0 tð Þþ

X3
i¼1

liþl4þl7þm5

 !
P2 tð Þ ¼

X3
i¼1

miPiþ 10 tð Þþm4P3 tð Þþm7P14 tð Þþl5P0 tð Þ; (3)

P3
0 tð Þþ

X3
i¼1

liþ
X7
i¼6

liþ
X5
i¼4

mi

 !
P3 tð Þ ¼

X3
i¼1

miPiþ 14 tð Þþ
X7
i¼6

miPiþ 12 tð Þ

þl4P2 tð Þþl5P1 tð Þ; (4)

Pi
0 tð Þþm1Pi tð Þ ¼ l1Pj tð Þ where i ¼ 4; 7; 11; 15 and j ¼ 0; 1; 2; 3; (5)

Pi
0 tð Þþm2Pi tð Þ ¼ l2Pj tð Þ where i ¼ 5; 8; 12; 16 and j ¼ 0; 1; 2; 3; (6)
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Pi
0 tð Þþm3Pi tð Þ ¼ l3Pj tð Þ where i ¼ 6; 9; 13; 17 and j ¼ 0; 1; 2; 3; (7)

Pi
0 tð Þþm6Pi tð Þ ¼ l6Pj tð Þ where i ¼ 10; 18 and j ¼ 1; 3; (8)

Pi
0 tð Þþm7Pi tð Þ ¼ l7Pj tð Þ where i ¼ 14; 19 and j ¼ 2; 3: (9)

The initial conditions are:

Pi 0ð Þ ¼
1; ifi ¼ 0

0; ifia0

(
:

3.1.1 Long-run availability. All the sub-systems must be available for the long duration of
time to achieve higher system performance. So, the long-run or steady-state availability
of the system is computed by substituting steady-state conditions, i.e. (P0) → 0 as the time
t → ∞ for first-order differential Equations (1)–(9) and solving these equations recursively
one gets:

P1 ¼ K2P0 P2 ¼ K3P0 P3 ¼ K4P0

P4 ¼ M 1P0 P5 ¼ M 2P0 P6 ¼ M 3P0

P7 ¼ M 1K2P0 P8 ¼ M 2K2P0 P9 ¼ M 3K2P0

P10 ¼ M 6K2P0 P11 ¼ M 1K3P0 P12 ¼ M 2K3P0

P13 ¼ M 3K3P0 P14 ¼ M 7K3P0 P15 ¼ M 1K4P0
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P16 ¼ M 2K4P0 P17 ¼ M 3K4P0 P18 ¼ M 6K4P0

P19 ¼ M 7K4P0;

where Mi¼ λi/μi i¼ 1, 2, 3, 6, 7 and:

K2 ¼
m5K4

V 1

� �
þ l4
V 1

; K3 ¼
m4K4

V 2

� �
þ l5
V 2

; K4 ¼ K1=T1; K1 ¼
l4l5
V 2

þl5l4
V 1

;

T1 ¼ V 3�
l4m4
V 2

�l5m5
V 1

; V 1 ¼ l5þm4; V 2 ¼ l4þm5; V 3 ¼ m4þm5:

The probability of full capacity working state P0 is obtained using normalizing condition i.e.
the sum of all the state probabilities is equal to one:

X19
i¼0

Pi ¼ 1;

P0 ¼
1þK2þK3þK4þM 1þM 2þM 3þK2 M 1þM 2þM 3þM 6ð Þ
þK3 M 1þM 2þM 3þM 7ð ÞþK4 M 1þM 2þM 3þM 6þM 7ð Þ

" #�1

:

The long-run availability (Av.) of paint manufacturing system may be obtained by the
summation of all the working and reduced capacity state probabilities, i.e.:

Av: ¼ P0þP1þP2þP3 ¼ P0 1þK2þK3þK4ð Þ: (10)

The data collected from the maintenance history sheet is translated into the parameterized
form of failure and repair rate parameters as λ1¼ 0.0049, μ1¼ 0.3, λ2¼ 0.037, μ2¼ 0.5,
λ3¼ 0.005, μ3¼ 0.44, λ4¼ 0.067, μ4¼ 0.4, λ5¼ 0.09, μ5¼ 0.46, λ6¼ 0.077, μ6¼ 0.54,
λ7¼ 0.094, μ7¼ 0.7 for each sub-system, respectively. The long-run availability of the
system is obtained 87.40 percent using these parameters in Equation (10).

3.2 Particle swarm optimization
PSO technique is one of the evolutionary optimization algorithms and is based on social
behavior observed in bird folks and fish colonies (Kennedy and Eberhart, 1995). In PSO,
the population of solutions is known as a swarm and each member of the swarm is called a
particle, which is initialized randomly with its position and velocity. The best position of
the particle represents the best solution in the study. The algorithm allows particles to
move toward its best position at each one of the iterations. This movement depends on the
current velocity and position of the particle. The best position attained is compared with
the previous best position in each step, as the particle remembers its previous best
position and the neighbor’s previous best as well. The main goal of all particles is to
achieve the optimum solution in the multi-dimensional search space. Once the new best
position is attained the personal best (pbest) as well as global best (gbest) positions are
updated. The algorithm terminates the optimization process when, either relatively best
position has been attained or computational limitations (i.e. the maximum number of
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iterations) has been reached. The velocity and position of the particle are updated using
the following relations:

Vi ¼ w� Viþc1� rand1� pbesti�Xið Þþc2� rand2� gbest�Xið Þ; (11)

Xi ¼ XiþVi; (12)

where Vi and Xi represent the velocity and position of ith particle, respectively, c1 and c2 are
the cognitive and social components range from 0 to 2, rand1 and rand2 are the random
numbers between 0 and 1. The inertia weight w ranges from 0.4 to 1.4, which controls the
convergence behavior of the PSO algorithm. In the present paper, the value of the inertia
weight linearly decreases with each iteration, from initial value wmax¼ 0.9 to final value
wmin¼ 0.4 using the relation w¼wmax − (wmax − wmin) × (ite/itemax), where ite represents the
iteration number and itemax is used for the maximum number of iterations (Garg, 2013).

3.3 Hybrid bacterial foraging and particle swarm optimization
The BFO and PSO both are the nature-based optimization algorithms. BFO algorithm is based
on the food searching process of E. Coli bacterial elements (Kora and Kalva, 2015) whereas
PSO follows the food hunting process observed in the birds. Here, in this work, a newly
developed hybrid optimization method is proposed. The hybridization of two optimization
algorithms has been done with the objective to achieve the better optimal solution in
competitively less time. The BFO has been selected for the reason that this algorithm performs
equally well in both linear and non-linear optimization problems whereas the PSO controls the
direction of bacteria. The use of PSO with BFO not only offers the optimal solution faster but
also adjusts the bacteria direction toward the better convergence. The working procedure of
the proposed hybrid BFO-PSO evolutionary algorithm is discussed below:

• Step 1: The initialization of BFO and PSO variables as shown in Table III.
• Step 2: The position and direction of bacterial element initialized randomly.
• Step 3: At each chemotaxis step, the fitness value and the movement of the bacterial

element is simulated through swimming and tumbling via flagella. The position of
bacteria element is computed using the following equation:

yi jþ1; k; lð Þ ¼ yi j; k; lð ÞþC ið Þ D ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT ið ÞD ið Þ

q ; (13)

where θi( j, k, l ) represents ith bacteria at jth chemotactic kth reproductive and lth
elimination-dispersal step. C(i) is the step size taken in the random direction indicated
by a vector (Δ) whose elements lie in (−1, 1).

• Step 4: in the swarming step, the previous position of bacteria is compared with the
next position and if it is found less than the position of subsequent bacteria is
computed again using Equation (13). Once the new best position is attained the local
best position, as well as the global best position, is updated.

• Step 5: the present position of bacteria is termed as the current position of particle for
PSO. In this step, PSO is used to tune the direction of bacteria and the velocity/
direction of each bacteria/particle is further updated using the Equation (14):

New velocity ¼ w� previous velocityþc1� rand1

� local best position�current positionð Þþc2� rand2

� global best position�current positionð Þ; (14)
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where w, c1, c2, rand1 and rand2 are initialized as PSO variables. This new velocity is
termed as the direction of bacteria in BFO (Kora and Kalva, 2015):

Velocity ¼ Direction:

• Step 6: after completion of chemotaxis and swarming loop for all initialized steps then
the reproduction step takes place for shorting the bacterial elements with high fitness
value. The bacterial elements with lower fitness value are dispersed or killed with a
deciding probability of 0.25 and other healthy bacterial elements split into two, which
disperse into a new location.

• Step 7: this whole cycle of the algorithm is repeated until an optimum solution (best
position of bacteria) is not attained or the maximum number of iterations is not produced.

4. Results
4.1 Sensitivity analysis
This section reports the results of sensitivity analysis conducted in terms of the effect on the
long-run availability of the system with respect to the various combinations of failure and
repair rate parameters for each sub-system. In this analysis, the input parameters of each
sub-system are varied within a constrained range, keeping the other sub-systems with
constant parameters. Figure 3 provides behavioral plots representing failure and repair rate
parameters along the x-axis and y-axis, respectively from minimum to maximum range as
provided in Table I, while the corresponding variation in availability along the z-axis shows
the system behavior pattern.

It can be observed from the behavior pattern that the long-run availability is highly
affected by the sub-system (B) as compared to the other sub-systems as shown in Table II.
The system availability is reduced by 11.88 percent when the failure rate of the sub-system
(B) is changed from 0.037 to 0.127. Similarly the system availability is increased by
3.79 percent when the repair rate of the sub-system (B) is changed from 0.5 to 1.4 and the
maximum availability can be obtained, i.e. 91.19 percent using the combinations of failure
and repair rate parameters as λ1¼ 0.0049, μ1¼ 0.3, λ2¼ 0.037, μ2¼ 1.4, λ3¼ 0.005, μ3¼ 0.44,
λ4¼ 0.067, μ4¼ 0.4, λ5¼ 0.09, μ5¼ 0.46, λ6¼ 0.077, μ6¼ 0.54, λ7¼ 0.0094, μ7¼ 0.7. This
observation depicts the perfect behavior of the system and helps in predicting the repair
priorities for different sub-systems.

4.2 Optimization modeling
4.2.1 BFO-PSO and PSO variables settings. In order to have uniformity in analyzing results
common variables such as population size and the number of iterations used are kept to be the
same for each algorithm i.e. BFO-PSO and PSO. Population size and the maximum number of
iterations are taken as 80 and 800, respectively. In order to get the optimal results, 30
independent runs have been performed at each step. The algorithm terminates when, either
the best solution has been reached or a maximum number of iterations has been produced.
The optimization modeling has been implemented in Matlab 15. The values of BFO and PSO
variables used in the present study are shown in Table III (Garg, 2013; Kora and Kalva, 2015).

4.2.2 Performance optimization using BFO-PSO and PSO. A large number of trails were
carried out to optimize the system performance by varying the variables (i.e. population size
and number of iterations) one by one with a step size keeping the second variable constant for
each evolutionary algorithm. The effect of number of bacterial elements/ population size on the
system performance (i.e. Availability) using BFO-PSO and basic PSO evolutionary algorithm is
shown in Tables IV and V and represents graphically in Figure 4. At first, the system
performance (i.e. availability) is computed using BFO-PSO. In this analysis, the population size
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is varied from 10 to 80 with a step size of 10 keeping the number of iterations constant at 800.
The system performance is found to be 95.77 percent at a population size 60, it provides the
best possible combinations of failure and repair rate parameters as λ1¼ 0.0052, μ1¼ 0.8835,
λ2¼ 0.0481, μ2¼ 1.0130, λ3¼ 0.0056, μ3¼ 1.0801, λ4¼ 0.0704, μ4¼ 1.2658, λ5¼ 0.0950,
μ5¼ 1.2590, λ6¼ 0.0824, μ6¼ 1.4218, λ7¼ 0.0961, μ7¼ 1.5019 as shown in Table IV.

Sub-system E Availability=0.8846
Failure rate=0.09, Repair rate=1.36

Repair rate Failure rate

Av
ai

la
bi

lit
y

0.89

0.88

0.87

0.86
1.5

1
0.5

0 0.08
0.1

0.12
0.14

0.16
0.18

Sub-system A Sub-system B

Sub-system C Sub-system D

Availability=0.8824
Failure rate=0.0049, Repair rate=0.9

Availability=0.9119
Failure rate=0.037, Repair rate=1.4

Availability=0.8791
Failure rate=0.005, Repair rate=1.04

Availability=0.8844
Failure rate=0.067, Repair rate=1.3

Av
ai

la
bi

lit
y

Av
ai

la
bi

lit
y

Av
ai

la
bi

lit
y

Repair rate Failure rate Repair rate Failure rate

Repair rate Failure rateRepair rate Failure rate
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ai
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bi

lit
y

0.92 0.95

0.9

0.85

0.8

0.75
1.5

1

0.5 0.040.02
0.06 0.08 0.1 0.12 0.14
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0.86
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0.8
1

0.6
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0.8
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×10–3

Figure 3.
Effect of failure
and repair rate
parameters of

different sub-systems
on the system

availability

Sub-systems Failure rate parameters range Repair rate parameters range

A λ1¼0.0049–0.0109 μ1¼ 0.3–0.9
B λ2¼ 0.037–0.127 μ2¼ 0.5–1.4
C λ3¼ 0.005–0.011 μ3¼ 0.44–1.04
D λ4¼ 0.067–0.157 μ4¼ 0.4–1.3
E λ5¼ 0.09–0.17 μ5¼ 0.46–1.36
D1 (reduced state) λ6¼ 0.077–0.167 μ6¼ 0.54–1.44
E1 (reduced state) λ7¼ 0.094–0.174 μ7¼ 0.7–1.6

Table I.
Ranges for

parameterized data
collection of paint

manufacturing system
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Similarly, the system performance (i.e. availability) is computed using PSO. In this
analysis, the population size is again varied from 10 to 80 with a step size of 10 keeping the
number of iterations constant at 800. The system performance is found to be 95.65 percent
at a population size 40, it provides the best possible combinations of failure and repair rate
parameters as λ1¼ 0.0050, μ1¼ 0.8891, λ2¼ 0.0370, μ2¼ 1.3968, λ3¼ 0.0052, μ3¼ 0.9975,
λ4¼ 0.0727, μ4¼ 1.2315, λ5¼ 0.0954, μ5¼ 1.2436, λ6¼ 0.0778, μ6¼ 1.3743, λ7¼ 0.0955,
μ7¼ 1.3874 as shown in Table V.

Population size
Parameters 10 20 30 40 50 60 70 80

λ1 0.0072 0.0073 0.0066 0.0054 0.0049 0.0052 0.0053 0.0049
μ1 0.8073 0.8188 0.6629 0.7864 0.8760 0.8835 0.8818 0.8819
λ2 0.0433 0.0752 0.0723 0.0451 0.0384 0.0481 0.0434 0.0481
μ2 1.2976 0.9902 1.3778 1.3827 1.1197 1.0130 1.1982 1.1236
λ3 0.0078 0.0058 0.0060 0.0055 0.0055 0.0056 0.0060 0.0052
μ3 0.6984 0.9927 0.8254 1.0238 1.0570 1.0801 1.0480 1.0813
λ4 0.0720 0.0802 0.0882 0.0690 0.0722 0.0704 0.0705 0.0715
μ4 1.0431 0.9189 1.1732 1.0942 1.2112 1.2658 1.1782 1.1212
λ5 0.0943 0.0943 0.0943 0.0962 0.0935 0.0950 0.0937 0.0941
μ5 0.9072 1.0785 1.1246 1.1869 1.3352 1.2590 1.2182 1.2802
λ6 0.1075 0.0848 0.0878 0.0787 0.0844 0.0824 0.0825 0.0839
μ6 1.1621 1.2015 1.2622 1.1517 1.3560 1.4218 1.3052 1.3588
λ7 0.1584 0.0960 0.0958 0.0956 0.0964 0.0961 0.0977 0.0973
μ7 0.8012 1.3945 1.368 1.3357 1.4800 1.5019 1.5354 1.394
Availability 0.9399 0.9461 0.9481 0.9523 0.9565 0.9577 0.9570 0.9559

Table IV.
Effect of population
size on the
availability of paint
manufacturing system
using BFO-PSO

BFO variables Value
Number of chemotactic steps Nc 10
Maximum allowed length of swim Ns 4
Number of reproduction steps Nre 4
Number of elimination-dispersal events Ned 2
Probability of elimination and dispersal Ped 0.25
Number of bacterial elements (i.e. population size) S 80 with a step size of 10
Number of bacteria reproduction (splits) per generation Sr S/2
Number of iterations (i.e. number of generations) 800 with a step size of 100
PSO variables Value
Cognitive component c1 1.5
Social component c2 1.5
Inertia weight (w) 0.4–0.9
Number of particles (i.e. population size) 80 with a step size of 10
Number of iterations 800 with a step size of 100

Table III.
BFO and PSO
variables

Sub-system
Ranges of
failure rates

Decrease in
availability (%)

Ranges of
repair rates

Increase in
availability (%)

Repair
priority

A 0.0049–0.0109 1.5 0.3–0.9 0.84 IV
B 0.037–0.127 11.88 0.5–1.4 3.79 I
C 0.005–0.011 0.69 0.44–1.04 0.51 V
D 0.067–0.157 1.48 0.4–1.3 1.04 III
E 0.09–0.17 1.07 0.46–1.36 1.06 II

Table II.
Sensitivity analysis
for the paint
manufacturing system
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Again, the system performance is computed with respect to the variation in number of
iterations for each algorithm. The effect of number of iterations on the system performance
(i.e. Availability) using BFO-PSO and basic PSO evolutionary algorithms is shown in
Tables VI and VII and represents graphically in Figure 5. In this analysis, the number of
iterations is varied from 100 to 800 with a step size of 100 keeping the population size
constant at 60. The system performance is found to be 95.72 percent using BFO-PSO at a
number of iterations 300, it provides the best possible combinations of failure and repair rate
parameters as λ1¼ 0.0053, μ1¼ 0.8586, λ2¼ 0.0461, μ2¼ 1.3356, λ3¼ 0.0056, μ3¼ 1.0471,
λ4¼ 0.0743, μ4¼ 1.2300, λ5¼ 0.0944, μ5¼ 1.2423, λ6¼ 0.0811, μ6¼ 1.3321, λ7¼ 0.0976,
μ7¼ 1.3831, as shown in Table VI.

Similarly, the system performance (i.e. availability) is computed using PSO. In this
analysis, the number of iterations is varied from 100 to 800 with a step size of 100 keeping
the population size constant at 40. The system performance is found to be 95.61 percent at a
number of iterations 700, it provides the best possible combinations of failure and repair rate
parameters as λ1¼ 0.0051, μ1¼ 0.8873, λ2¼ 0.0372, μ2¼ 1.3952, λ3¼ 0.0053, μ3¼ 1.0005,
λ4¼ 0.0758, μ4¼ 1.2922, λ5¼ 0.0935, μ5¼ 1.3516, λ6¼ 0.0851, μ6¼ 1.3457, λ7¼ 0.1120,
μ7¼ 1.5437 as shown in Table VII.

The effectiveness of the proposed algorithm is tested by comparing the results with PSO
as both the techniques follow the deterministic and probabilistic rules from current iteration

Population size
Parameters 10 20 30 40 50 60 70 80

λ1 0.0063 0.0093 0.0053 0.0050 0.0051 0.0057 0.0054 0.0053
μ1 0.7164 0.8149 0.7698 0.8891 0.8639 0.7646 0.8451 0.7695
λ2 0.0387 0.0372 0.0374 0.0370 0.0378 0.0380 0.0370 0.0375
μ2 1.3573 1.2632 1.3295 1.3968 1.3859 1.3672 1.3762 1.3968
λ3 0.0051 0.0073 0.0062 0.0052 0.0057 0.0050 0.0051 0.0052
μ3 0.5623 0.9326 0.8303 0.9975 1.0160 0.9778 0.9780 0.9286
λ4 0.0974 0.0861 0.0728 0.0727 0.0673 0.0701 0.0761 0.0736
μ4 0.7311 1.2320 0.9862 1.2315 1.2831 0.9986 1.2830 1.2627
λ5 0.1034 0.1143 0.1080 0.0954 0.0939 0.0921 0.0931 0.0954
μ5 0.7949 1.2537 1.2666 1.2436 1.2910 1.1651 1.3426 1.2321
λ6 0.1343 0.0820 0.0839 0.0778 0.0773 0.0791 0.0861 0.0784
μ6 1.4118 1.1973 1.3889 1.3743 1.3580 1.4087 1.2523 1.4289
λ7 0.1181 0.0947 0.1069 0.0955 0.0996 0.0974 0.0987 0.1165
μ7 1.4974 1.2319 1.1735 1.3874 1.5239 1.3314 1.4080 1.5428
Availability 0.9375 0.9438 0.9490 0.9565 0.9560 0.9529 0.9551 0.9544

Table V.
Effect of population

size on the
availability of paint

manufacturing
system using PSO

Availability vs Population Size
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Figure 4.
Effect of population
size on the system

availability

1223

BFO-PSO
algorithm



Number of iterations
Parameters 100 200 300 400 500 600 700 800

λ1 0.0051 0.0081 0.0056 0.0051 0.0072 0.0054 0.0051 0.005
μ1 0.8665 0.7389 0.7065 0.8011 0.8425 0.7999 0.8873 0.8588
λ2 0.0387 0.0383 0.0377 0.0391 0.0372 0.0372 0.0372 0.0378
μ2 1.2976 1.3705 1.3416 1.3733 1.3404 1.3994 1.3952 1.3932
λ3 0.0075 0.0071 0.0054 0.0056 0.0062 0.0053 0.0053 0.0050
μ3 0.7166 0.8687 0.9813 0.9391 0.7519 1.0185 1.0005 0.9830
λ4 0.1376 0.0915 0.0738 0.0801 0.0739 0.0789 0.0758 0.0715
μ4 0.8378 0.7946 1.2117 1.1750 0.9974 1.1366 1.2922 1.1248
λ5 0.1660 0.1339 0.1305 0.1070 0.0976 0.0973 0.0935 0.0928
μ5 1.0576 0.8724 1.2682 0.9959 1.2319 1.2315 1.3516 1.3120
λ6 0.1171 0.0958 0.1551 0.1063 0.1301 0.0777 0.0851 0.0792
μ6 1.3608 1.2482 1.2942 1.4067 1.2065 1.1262 1.3457 1.2133
λ7 0.1019 0.0970 0.1074 0.1182 0.1023 0.1111 0.1120 0.0943
μ7 1.1567 1.5045 1.1946 1.5987 1.5938 1.3828 1.5437 1.4955
Availability 0.9343 0.9403 0.9462 0.9499 0.9463 0.9534 0.9561 0.9559

Table VII.
Effect of number of
iterations on the
availability of paint
manufacturing system
using PSO

Availability vs Number of Iterations
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Figure 5.
Effect of number of
iterations on the
system availability

Number of iterations
Parameters 100 200 300 400 500 600 700 800

λ1 0.0052 0.0053 0.0053 0.0054 0.0057 0.0052 0.0052 0.0051
μ1 0.4852 0.8263 0.8586 0.8289 0.8628 0.8809 0.8863 0.8647
λ2 0.0550 0.0382 0.0461 0.0375 0.0405 0.0490 0.0414 0.0387
μ2 1.2821 1.2337 1.3356 1.0642 1.0986 1.0194 1.3847 1.2865
λ3 0.0075 0.0059 0.0056 0.0054 0.0065 0.0061 0.0056 0.0054
μ3 0.8782 0.9914 1.0471 1.0852 1.0711 1.0407 1.0973 1.0759
λ4 0.1239 0.0735 0.0743 0.0682 0.0755 0.0736 0.0745 0.0723
μ4 0.7439 0.8816 1.2300 1.1282 1.2031 1.1722 1.2396 1.1655
λ5 0.1229 0.0934 0.0944 0.0942 0.0938 0.0922 0.0943 0.0944
μ5 1.0829 0.9740 1.2423 1.2882 1.2610 1.2167 1.2621 1.2084
λ6 0.1115 0.0983 0.0811 0.0846 0.0809 0.0815 0.0806 0.0839
μ6 1.2467 1.1542 1.3321 1.2692 1.3789 1.3892 1.3923 1.3793
λ7 0.1103 0.0957 0.0976 0.0966 0.0974 0.0974 0.0976 0.0967
μ7 1.4021 1.5660 1.3831 1.5043 1.4201 1.4126 1.5058 1.4984
Availability 0.9376 0.9502 0.9572 0.9558 0.9564 0.9569 0.9563 0.9560

Table VI.
Effect of number of
iterations on the
availability of paint
manufacturing system
using BFO-PSO
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to next. The comparative study shows that the BFO-PSO algorithm estimated the system
performance with higher accuracy as compared to PSO, although the maximum difference is
0.12 percent only as shown in Table VIII. Thus, the results obtained through BFO-PSO
algorithm contributes to the system analyst and reduces the range of prediction which
finally leads to more sound decisions in maintenance planning. The convergence
characteristic of basic PSO and BFO-PSO is shown in Figure 6.

5. Conclusions
In this paper, the sensitivity analysis has been conducted by utilizing the uncertain data of
system concerned and traced out the best system performance for a paint manufacturing
unit. In the proposed methodology, a Markov process-based performance model has been
constructed to analyze the effect of failure and repair rate parameters of various
sub-systems, more closely, on system performance. In order to increase the system
efficiency and to obtain the optimal combinations of failure and repair rate parameters for

Performance evaluation using

System Markov process
PSO (population size¼ 40,

number of generations¼ 800)
BFO-PSO (population size¼ 60,
number of generations¼ 800)

Paint manufacturing
system

λ1¼0.0049, μ1¼0.3 λ1¼0.0050, μ1¼0.8891 λ1¼0.0052, μ1¼0.8835

λ2¼0.037, μ2¼ 1.4 λ2¼ 0.0370, μ2¼ 1.3968 λ2¼ 0.0481, μ2¼ 1.0130
λ3¼ 0.005, μ3¼ 0.44 λ3¼ 0.0052, μ3¼ 0.9975 λ3¼ 0.0056, μ3¼ 1.0801
λ4¼ 0.067, μ4¼ 0.4 λ4¼ 0.0727, μ4¼ 1.2315 λ4¼ 0.0704, μ4¼ 1.2658
λ5¼ 0.09, μ5¼ 0.46 λ5¼ 0.0954, μ5¼ 1.2436 λ5¼ 0.0950, μ5¼ 1.2590
λ6¼ 0.077, μ6¼ 0.54 λ6¼ 0.0778, μ6¼ 1.3743 λ6¼ 0.0824, μ6¼ 1.4218
λ7¼ 0.094, μ7¼ 0.7 λ7¼ 0.0955, μ7¼ 1.3874 λ7¼ 0.0961, μ7¼ 1.5019

Availability (%) 91.19 95.65 95.77

Table VIII.
Comparison of
performance

evaluation for paint
manufacturing system
using Markov process,

PSO and BFO-PSO

Convergence Characteristic of PSO and BFO-PSO
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various sub-systems, the performance optimization model has been solved through a hybrid
BFO-PSO algorithm and their results are compared with basic PSO findings. The following
observations can be made from the availability results:

• the sensitivity of various sub-systems can be analyzed in more realistic manner using
the proposed methodology;

• it can be easily identified that the sub-system B (Grinding Mill) is more sensitive than
other sub-systems in terms of the effect on system availability;

• the maintenance priorities can be easily set up using the obtained results;

• the availability of the system has been increased up to 95.77 percent using the hybrid
BFO-PSO algorithm;

• in this study, we have observed that the accuracy, frequency of getting optimal
results and convergence speed of the BFO-PSO algorithm is higher than the basic
PSO algorithm;

• a major conclusion of this study is that hybrid BFO-PSO based algorithm performs
well in determining the optimal input parameters so as to increase the efficiency of
the system; and

• the results obtained from the present study can be utilized for further improvement in
the system design as a future course of action.
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