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Abstract

Purpose — This study scrutinized the synergistic effects of lean manufacturing (LM) on lead time reduction
(LR) while investigating the mediating role of manufacturing flexibility (MF) in that relationship within the
context of batch and mass customization manufacturers.

Design/methodology/approach — This cross-sectional survey involved 160 large batch and mass
customization manufacturers in Indonesia. Data were analyzed by using the PLS path modeling approach and
multigroup analysis.

Findings — The positive synergistic direct effects of LM on LR and MF were revealed in both process types. In
mass customization, MF mediates the effect of LM on LR. However, such a mediating effect was not found in the
batch process due to the insignificant effect of MF on LR.

Practical implications — The findings offered theoretical and practical insights supporting the
manufacturers to grasp potential benefits through the holistic LM implementation as well as the suitable
strategies to improve MF and reduce lead time by considering the types of the production process.
Originality/value — This study bridged the gaps regarding the comparison of LM implementation and its
influence on MF and LR in mass customization and batch production.
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Introduction

In today’s globally competitive market, the top priority of businesses is to satisfy customers.
The higher the customer satisfaction, the higher their loyalty, which subsequently could
increase their purchases. To stay competitive, companies should produce at lower costs
without compromising quality. On top of that, manufacturers should deliver their products
quickly on a timely basis, which positively drives customer satisfaction, sales performance,
and financial objectives (Nawanir et al., 2016). As the heterogeneity of customer demand is
inevitable in today’s volatile markets (Metternich ef al, 2013; Wei et al., 2017), manufacturers
are challenged to supply product varieties in a short period. It hints that companies must be
flexible, adaptable, agile, and highly responsive to customer needs (Wei et al, 2017).
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To increase the adaptability to the ever-changing demand while shortening lead time, a
manufacturer should increase its flexibility (Al-Zu’bi, 2015), which is in line with the main
objectives of LM (Hallgren and Olhager, 2009). Manufacturing flexibility (MF) refers to the
capability of a manufacturing system to adapt to external and internal changes, yet continue
to produce a variety of products and volumes without compromising performance
(Swamidass, 2000). Specifically, MF is characterized by quick response to customer
demand (Boyle and Scherrer-Rathje, 2009), because of higher ability to adjust to the changes
in product design/model (product mix flexibility), volume (volume flexibility), and routing
(routing flexibility) (Rogers et al, 2011); besides the flexibility in work assignment to
production workers (worker flexibility) (Mendes and Machado, 2015) and machines
(machines flexibility) (Rogers et al, 2011). These characteristics potentially reduce lead
time. However, the strategies of how manufacturers achieve the appropriate levels of MF in
facing environmental uncertainty are still questionable, besides the studies on the implication
of LM on MF are still limited (Phan et al, 2019). Few studies engaged in LM practices and MF.
Bhamu and Sangwan (2014) and Chauhan and Singh (2013) revealed that manufacturers
could gain benefits from LM implementation in terms of workers and machines’ flexibility.
Thus, the manufacturers are flexible in terms of assigning jobs to workers and machines. Dal
Pont et al. (2008) found a significant effect of LM on product mix and volume flexibilities.
Besides the studies relating LM with MF, several studies have also linked LM with LR. Uhrin
et al. (2017), dos Santos Bento and Tontini (2018), Panwar et /. (2017), Nawanir ef al. (2013),
and Matsui (2007) suggested a positive linkage between LM and LR.

Even though few investigations have connected LM with MF and LR, little efforts have
been made to link the three variables and to investigate how a contextual factor (i.e. types of
the manufacturing process) influences the implementation of LM as well as its effects on MF
and LR. The consideration of the contextual factor is crucial because the application of
manufacturing practices depends on plants’ characteristics (Shah and Ward, 2003).
Manufacturers adopting different processes tend to implement LM in different ways
(Panwar et al., 2017). In such a way, every manufacturer may implement a different set of LM
practices and activities. Consequently, the contributions of the LM on performance among
manufacturers tend to be diverse. This diversity is possibly due to some contingency factors
like types of the manufacturing process. Noticeably, consideration of types of the process still
lacks in the recent literature. Therefore, this study endeavors at scrutinizing synergistic
effects of LM on LR in the context of batch and mass customization processes, while
investigating the mediating role of MF in that relationship. This study bridges the gap of the
inconsistent impact of LM on MF and LR while serving in-depth insights for academicians
and industry executives into the holistic implementation of LM as well as examining its
impact on MF and LR contingent to types of the manufacturing process.

This paper consists of seven sections. After the brief introduction, the second section
provides a literature review and hypotheses development. The third section explains the
research methodology. Subsequently, the results obtained from the structural equation
modeling (SEM) analysis will be presented in the fourth section, highlighting the synergistic
effect of LM on MF and LR in different manufacturing processes. The following sections are a
discussion on the empirical results and implications of the study. Lastly, limitations and
suggestions for future studies are drawn.

Literature review and hypotheses development

Lean manufacturing and practices

Originated from the shop floors of Toyota Motor Corporation in the late 1950s to early 1960s,
Toyota Production System (TPS) received much attention throughout the globe. As an
Americanized version of TPS, Krafcik (1988) invented the term “lean” to articulate a manufacturing
system that expends fewer resources with extraordinary performance. In line with TPS, LM



focuses on doing more with fewer resources (Balzer ef al, 2015) while targeting flexibility, quality,
productivity, customer satisfaction, profitability, lead time, costs, and inventory. Nowadays, LM is
acknowledged as a gold standard of the modern manufacturing system.

Through an in-depth review of the literature, this study generated a bundle of LM
practices. Conceptual and empirical studies were referred to develop the bundle of practices
by considering their significant effects on organizational performance (see Table 1). In
selecting the practices, common practices from previous studies were compiled in a
spreadsheet. They were then regrouped based on their similarities into nine practices, which
are cellular layouts (CL), flexible resources (FR), pull system (PS), uniform production level
(UPL), quick setup (QS), small-lot production (SLP), total productive maintenance (TPM),
quality control (QC), and supplier networks (SN). Even though this study did not comprise
some of the practices discussed in previous studies as separated components, many were
incorporated into related practices.

Complementarity concept of LM. LM was commonly conceptualized as a combination of
practices, which corroborate with each other to target waste elimination. Few studies, such as
Khanchanapong et al (2014), Furlan ef al. (2011b), Nawanir et al. (2018b), Ghobakhloo and
Azar (2018), and Shah and Ward (2003), emphasized the complementarity among the
practices suggesting simultaneous adoption. The simultaneous implementation could
considerably contribute to firms’ performance because of inter-connectivity among the
practices (Furlan et al, 2011a; Nawanir ef al, 2018a). In short, this mutually supportive
relationships tended to support the notion that the synergistic effect of LM helps
manufacturers to leverage performance to a greater height.
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The findings from the previous studies are in line with the theory of complementarity
invented by Edgeworth (1881), which was popularized by Milgrom and Roberts (1990, 1995).
The theory highlighted that isolated practices are powerless to achieve outstanding
performance. Hence, the practices should be adopted holistically, by which one practice may
enhance the contributions of others and vice-versa. However, the complementarity among the
practices depends on the fitness between the practices. As pointed out by Venkatraman and
Prescott (1990), a good fit among the practices would lead to higher benefits on organizations.
Therefore, the concept affords the foundation to comprehend how various practices
corroborate with each other through the explanation of how they contribute to organizational
performance and competitiveness. The theory and findings in previous studies provide
strong support to model LM as a second-order construct consisting of nine LM practices as
first-order constructs. Thus, the following is hypothesized:

Hi. LM is a second-order construct, whereby LM practices have strong positive
correlations with each other.

The synergistic effect of LM on MF. The adoption of LM leads to high MF (Al-Zu’bi, 2015;
Lucherini and Rapaccini, 2017; Metternich et al, 2013; Nawanir et al., 2013). For instance,
LM promotes producing in small lot size (Furlan ef al,, 2011a), which is supported by quick
setups of machines and equipment. Through these practices, a production line becomes
more flexible in terms of product mix. LM also encourages to utilize multi-purpose
machines and equipment (Nawanir et al, 2018a), which can perform several functions.
When one machine fails, other machines can execute similar jobs. Along with this, multi-
skilled workers who can handle several different jobs are also demanded in an LM system
(Khanchanapong et al., 2014). Consequently, a work assignment for workers becomes more
flexible. If a workplace has no demand, workers can be assigned to other workplaces
(Ketokivi and Schroeder, 2004).

On top of that, if a worker is away, other workers can do the same tasks. Besides, the use of
manufacturing cells in cellular layouts also supports MF. With that, the arrangement of
production flow can be adjusted in case of machine failure, the layout of workstations can be
converted to fit the required manufacturing process, and equipment can easily be moved from
one place to another (Nawanir ef al., 2018b; Rogers et al, 2011). In other words, routing
flexibility could be enhanced. Moreover, strong supplier networks leverage supply flexibility,
especially when demand is increasing. Through a partnership with suppliers, demand
fluctuations can be tackled and volume flexibility can be increased without incurring extra-
cost and lowering performance (Khanchanapong et al, 2014; Matsui, 2007). This may also
support the new-product launch and modifications of the existing products (Boyle and
Scherrer-Rathje, 2009). Accordingly, the adoption of all LM practices would synergistically
improve MF, which leads to the following hypothesis.

H2. There is a positive relationship between the second-order construct of LM and MF.

The synergistic effect of LM on LR. Lead time can take on different meanings depending on
the range of activities included in its interpretation. It may apply to particular operations,
individually or collectively. Following Gaither and Frazier (2002), the lead time is defined as
the amount of time to get the materials in from suppliers, to produce all parts and assemblies,
and to deliver to customers. In line with that, Christiansen et al (2003) classified lead times
into three categories; purchasing, manufacturing, and delivery lead times. Purchasing lead
time refers to the time between placing an order to a supplier and receiving purchased items
from the supplier (Jayaram and Vickery, 1998). Manufacturing lead time indicates the time
taken in the production line from its first entrance until its completion (Singh et al, 2010).
Delivery lead time signifies the time taken by finished goods to get delivered to customers
(Angelis et al., 2011; Rogers, 2008). As most of the LM practices are implemented on the shop



floor, assessing its impact on components of manufacturing lead time is essential. This study
divides lead time into four categories; setup, processing, moving, and waiting times. Setup
time is defined as the time to prepare equipment, materials and workstations for an operation
(Fullerton and Wempe, 2009; Zahraee, 2016). Processing time refers to the times for
productive operations (Gaither and Frazier, 2002), waiting time is the time for a part to be
moved to the subsequent operation (Tersine, 1994), and moving time is transportation time
from one storage to another, or between workstations (Cheng and Podolsky, 1993).

LM reduces lead times (dos Santos Bento and Tontini, 2018; Fullerton and Wempe, 2009;
Hofer et al, 2012; Singh et al., 2010) because one of the targeted performances of LM
implementation is to speed up production processes, while increasing its efficiency
(Khanchanapong et al,, 2014). In an LM system, production and material movements are
authorized by kanban through the implementation of the pull system, which are performed
just as needed, in the right quality, right quantity (neither too much nor too little), right time
(neither too early nor too late) and precisely where required based on customer demand
(Forrester et al., 2010). Supported by producing in small lot sizes, the pull system eliminates
inventory (e.g. raw materials, work in process (WIP), and finished goods), which
subsequently speeds up process flows (Chen and Tan, 2011). Anand and Kodali (2009)
stated that shorter lead time could be achieved through the uniform production level through
workload balancing, standardize processes, and mixed-model assembly. More importantly,
as the LM system promotes quick setup through the principle of the single minute of
exchange dies (SMED), internal setup time can be reduced by converting most of them to
external setups (Moxham and Greatbanks, 2001). Also, through the collaborative networks
with suppliers, purchasing lead time can be reduced as the suppliers could react quickly to
respond to the fluctuation of demand (Khanchanapong et al, 2014), besides their ability to
deliver materials in a just-in-time basis (Matsui, 2007). Other practices, such as flexible
resources, cellular layouts, TPM and quality control through quality at the source and poka-
yoke, make sense to contribute to LR. Several studies support this opinion, such as Fullerton
and McWatters (2001), Shah and Ward (2003) and Matsui (2007), who had confirmed the
positive linkage between LM and LR. Based on the argument and evidence provided earlier,
the following hypothesis is formulated:

H3. There is a positive relationship between the second-order construct of LM and LR.

The effect of MF on LR. Indeed, the more flexible the production line, the shorter the lead
time (Inman et al, 2011; Qrunfeh and Tarafdar, 2013). MF may reduce lead times in several
ways. For example, a flexible production line is characterized by the quick response to
changes in demand (Solke and Singh, 2018), not only in terms of product mix (designs and
model) but also in production volume (Boyle and Scherrer-Rathje, 2009). It could be supported
by quick setups and the use of flexible machines, equipment, tools, jigs and fixtures (Rogers
et al, 2011), which consequently shortens setup and waiting times. More importantly,
flexibility in work assignments to machines and workers may also reduce processing and
moving times (Rogers et al, 2011; Rogers, 2008), because of the ability of machines and
workers to perform multiple jobs and operations. Multi-skilled workers could augment their
ability to familiarize themselves with the whole production process, and therefore, it
facilitates and expedites the new product development process (Mendes and Machado, 2015).
To a greater extent, as the machines and workers are flexible, the production lines should
have a high ability to adjust to changes in production routing in case of machine breakdown
and other production disruption. Several studies highlighted the positive impact of MF on LR
(Mendes and Machado, 2015; Rogers et al.,, 2011; Rogers, 2008; Wei et al, 2017). Based on the
above discussions, this study hypothesizes the following:

H4. There is a positive relationship between MF and LR.
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Indirect effect of LM on LR. Based on the facts, figures, and arguments provided in the
development of hypotheses 2, 3, and 4, there are strong supports that holistic implementation
of LM may affect LR directly and indirectly. Indirectly, the LM tends to improve MF in the
initial stage (Agus and Hajinoor, 2012; Bhamu and Sangwan, 2014; Chauhan and Singh, 2013;
Mackelprang and Nair, 2010), and subsequently the improvement on MF will reduce lead time
(Mendes and Machado, 2015; Rogers et al.,, 2011; Rogers, 2008; Wei et al., 2017). Given that, the
following is hypothesized:

Hb5. The second-order construct of LM has a positive indirect effect on LR through MF as
a mediating variable.

Contingent effect of types of the production process. Besides the complementarity theory,
contingency theory (Lawrence and Lorsch, 1967a, b) also supports the relationships between
the variables of this study. The theory says that the implementation of any practices is
contingent on organizational characteristics (Lawrence and Lorsch, 1967b). In other words,
the practices must fit their context, while different organizations have different
characteristics. It is where the concept of fit comes in. Specifically, the theory puts LM
practices in a pragmatic point of view rather than arguing that the practices are an ideal
approach with universal applications. It also tends to suggest that LM practices are not a
sophisticated method with multiple capabilities, which can work in all situations. It seems
common-sense that the adoption of LM and their impacts on performance might be
contingent on some contextual variables. This perspective is in line with Cua et al. (2001),
Shah and Ward (2003), and Tortorella et al. (2018), who stated that LM practices should be
tailored to suit a particular manufacturing context and environment.

It is well-known that LM applies to all types of industries (White and Prybutok, 2001).
However, the implementation of practices should match with factory characteristics (Cua
et al, 2001), including the type of manufacturing process, which was considered as an
influential factor in the adoption of manufacturing practices (including LM), the extent of the
practices implementation and definitely, its effects on the desired achievement. This study
focuses on the implementation of LM and its impact on MF and LR in mass customization and
batch manufacturing system.

The batch manufacturing system is characterized by producing semi-standardized
products in medium volume (Fogarty et al, 1991). Moderately large batches of the same
product are processed once or repetitively. Thus, it requires multi-functional machines and
equipment with special jigs and fixtures. In this process, the products from one functionally
specialized workstation are pushed to its subsequent workstation in large quantities per
batch (Todorova and Dugger, 2015), regardless of whether it is ready to receive or not.
Consequently, the jobs may be queued up in some workstations, and it causes bottlenecks and
excess work-in-process. As the queue time is longer and work-in-process is high, several
issues may negatively affect the manufacturing system in terms of lower flexibility, longer
lead time and scheduling problem.

Mass customization represents a manufacturing process, which focuses on producing
high varieties of products in high volumes. It refers to the capability to manufacture and
provide varieties of customized products that meet the specific needs of individual customers
through a flexible process in high volumes (Da Silveira et al, 2001; Sandrin ef al, 2018). In this
process, even though the product is manufactured in a wide variety and volume, the quality,
cost, and delivery performance are comparable to mass production (Murat Kristal et al., 2010).
The fluctuation in customer demand inspired the raising of this production paradigm in
terms of variation of products, quality, price, and delivery. This is coherent with a postulation
from Wang ef al (2016) signifying four aspects of mass customization capability:
(1) customizing products while maintaining high volume, (2) customizing products without
considerably increasing costs, (3) quick response to customization demands and



(4) customizing products with consistent quality. To achieve these capabilities, MF is one of
the critical requirements (Suzi¢ ef al, 2018). Therefore, supported with contingency theory,
the following hypothesis was posited.

H6. The relationships between variables differ significantly due to different
characteristics between two groups (i.e., batch and mass customization).

Methodology

Measurement development

This cross-sectional survey used a questionnaire to collect primary data. The questionnaire
was developed through a collaborative process, starting from an extensive review of literature
in LM, MF and FR. The first section of the questionnaire (adopted from Nawanir et al (2018b)) is
aimed to gain information regarding the implementation of LM practices. The second section
depicted measurements of MF and LR to the improvement achieved by the companies during
the last five years. MF was measured by using five indicators (adapted from Rogers (2008)),
with six indicators of lead time (adapted from several sources, such as Fullerton and Wempe
(2009), Stevenson (2012) and Heizer and Render (2011)). In both sections, the respondents were
requested to answer on an interval scale from 1 (strongly disagree) to 6 (strongly agree). The use
of this scale was rationalized by Krosnick (1991) to prevent respondents from answering an
ambiguous response, besides to reduce social desirability bias of answering at a neutral point.
Finally, the last section depicts the respondent profiles.

An initial draft of the questionnaire was pre-tested through a series of the review process
by five scholars in the field to ensure content validity, simplicity, clarity, and
understandability of the measurement. Subsequently, the improved draft was sent to
practitioners from five large discrete process manufacturers to clarify the comprehensiveness
and clarity of the questionnaire. Their feedbacks were then used for further improvement.

Sample and data collection

The data were collected from large manufacturers in Indonesia, which were selected
randomly based on the directory provided by the Indonesian Central Bureau of Statistics. The
selected companies were first telephoned to confirm their formal addresses while ensuring
their qualifications. This step is vital as this study focuses on large manufacturers applying
mass customization or batch production only. A total of 500 questionnaires was sent to top
and middle management (e.g. production manager, head of the production department, and
production director) of the qualified companies. Follow-up contacts with non-response
companies were made to ensure a reasonably acceptable response rate. A total of 160
completed booklets were returned, generating a 32% effective response rate. The
respondents consist of 92 companies implementing batch and 68 adopting mass
customization. This response rate is acceptable when dealing with middle and top
management in manufacturing industries (Latan ef /., 2018). An independent sample /-test
indicated that no significant difference between early and late responses; therefore
non-response bias is not an issue in this study. Table 2 summaries the demographic data
of the respondents.

Findings

The data was mainly analyzed with PLS path modeling using SmartPLS 3.2.8. The primary
considerations of selecting this technique are: 1) SEM is superior features over the regressions
in terms of its simultaneous estimation of all parameters in a model (Iacobucci et al, 2007),
2) PLS-SEM enables researchers to conduct group segmentation through partial least
square-multigroup analysis (PLS-MGA) (Henseler, 2012; Matthews, 2017), and 3) PLS-SEM is
able to provide more complete information regarding the extent to which the model is
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Table 2.
Demographic data of
respondents

Mass
Batch customization Total
Count % Count % Count %

Industry

Electronics and instrumentation 8 5.00% 6 3.75% 14 8.75%
Furniture, wood products and plaiting materials 27 16.88% 6 3.75% 33 20.63%
Machinery and equipment 15 9.38% 13 813% 28 17.50%
Textile, tanning, and dressing of leather 35 21.88% 32 20.00% 67 41.88%
Vehicles and transport equipment 7 4.38% 11 6.88% 18 11.25%
Job title

Head of operation/production department 21 13.13% 14 8.75% 35 21.88%
Production director 9 5.63% 7 4.38% 16 10.00%
Production manager 57 35.63% 4 2750% 101 63.13%
Other middle management positions in 5 3.13% 3 1.88% 8 5.00%
production

Number of employees

100-300 26 16.25% 11 6.88% 37 23.13%
More than 300 66 41.25% 57 3563% 123 76.88%
Years working in the company

3-5 years 19 11.88% 14 8.75% 33 20.63%
More than 5 years 73 45.63% 54 33.75% 127 79.38%
Years working in the current position

1-3 years 37 23.13% 31 19.38% 68 42.50%
Less than 1 year 11 6.88% 6 3.75% 17 10.63%
More than 3 years 44 27.50% 31 19.38% 75 46.88%
Grand Total 92 57.50% 68 4250% 160  100.00%

supported by data, such as goodness of fit measures and predictive relevance (Hair ef al.,
2017; Latan ef al, 2018). This study used a consistent estimator through the application of
consistent PLS (PLSc) because of the confirmatory nature of this study. As in CB-SEM, this
estimator provides the consistent model estimates that disattenuate the correlations between
pairs of latent variables (Dijkstra and Henseler, 2015). In general, data analysis follows the
following stages. First, the measurement model was assessed to ensure construct validity.
Second, the assessment of the structural model was done for hypotheses testing. Finally, a
multigroup analysis (PLS-MGA) using a permutation procedure was applied to compare
invariance and path coefficients between the two groups of sub-sample.

Construct validity. Convergent validity, composite reliability, and discriminant validity
were used to assess the construct validity. Outer loadings and average variance extracted
(AVE) indicate convergent validity. The outer loading for each item should be higher than 0.7,
and the AVE of each construct should be above 0.5. However, the outer loading of 0.5 is still
acceptable as long as AVE for the particular construct meets the requirement of 0.5 (Hair et al.,
2017). The AVE of less than 0.5 indicates that the items fail to explain most of the variance of
the construct. Besides the convergent validity, composite reliability (CR) representing the
internal consistency of indicators in measuring a construct was also assessed. The CR of 0.7
indicates sufficient internal consistency (Hair et al, 2017). A repeated indicator approach was
applied to assess the second-order construct of LM. This approach uses all items of first-order
constructs measuring the second-order construct as a combined aggregate indicator for that
second-order construct (Hair et al, 2017). The assessment results for both batch and mass
customization presented in Table 3 confirm that convergent validity and CR requirement are
met for all first and second-order constructs.



Discriminant validity was assessed by using the Heterotrait-Monotrait Ratio of
Correlation (HTMT). This advanced measure is superior in terms of methodological
robustness compared to the criterion of Fornell and Larcker (1981) and cross-loading, besides
this approach can overcome limitations in the previous measures (Henseler ef al, 2015).
Table 4 shows that all the HTMT values are less than the threshold value of 0.90. Thus, there
are no discriminant validity issues for measurement models.

Two criteria were used to test the first hypothesis; outer loadings of all the first-order
constructs (each of LM practices) on the second-order construct (see Table 3) and correlation
coefficients among the practices as presented in Table 5. For the samples implementing the
batch process, the outer loadings of first-order constructs range between 0.591 and 0.893, with
59% AVE of second-order construct LM, whereas for mass customization, the loadings range
from 0.640 to 0.890 with 62% variance explained in the second-order construct LM. Also, the
correlations coefficients among the LM practices range between 0.345 and 0.861 (batch), and
between 0.340 and 0.873 (mass customization), which the majority of them are higher than 0.5,
which according to Cohen (1988) represent strong associations and interdependency. Based
on these criteria, hypothesis 1 stating that LM practices are complementary with each other
tends to be supported for both batch and mass customization.

Common method variance. Common methods variance (CMV) might be introduced in
research due to a single informant data source (Podsakoff et al, 2003), which may influence
the associations among the variables measured by using the same method (MacKenzie and
Podsakoff, 2012). According to Kline (2011), the presence of CMV in a model is indicated by
the inability of the model to achieve discriminant validity. The poor discriminant validity
indicates that all the manifest variables measure only one domain. This study also assessed
CMV by using the technique suggested by Kock (2015). As addressed by Kock (2015), a VIF
value greater than 3.3 projected a sign of pathological collinearity, and also as a symptom that
a model may be affected by CMV. The assessment using SmartPLS 3 suggested that this
research is free of the CMV issue as all the inner VIF values are less than 3.3 for both mass
customization and batch processes.

Structural model assessment. After conforming construct validity and reliability, the next
stage is aimed at assessing the structural model and testing hypotheses. By using the two-
stage approach, goodness-of-fit measures were first assessed for both processes. SRMR value
described the discrepancy between the observed correlations, and the model-implied
correlations should be less than or equal to 0.08 (Hair ef al, 2014). NFI measuring the y* value
of the proposed model relative to the ¥ value of the null model should be more than 0.9 (Hu
and Bentler, 1998). SRMR values of 0.068 and 0.071 were obtained for batch and mass
customization, respectively. Therefore, the assessment of the two structural models suggests
an adequate fit.

Before going ahead with hypotheses’ testing, the study assessed whether or not the
multicollinearity is an issue in the structural model. The presence of multicollinearity is likely
to confound the individual effect of exogenous variables on the endogenous variable (Hair
et al, 2017). Variance inflation factor (VIF) of less than 3.3 specifies the absence of
multicollinearity. Table 6 shows that there is no multicollinearity issue in the structural
model. Furthermore, the structural model was evaluated by scrutinizing the coefficient of
determination (R or adjusted R?) and effect size (%) through consistent PLS algorithm
procedure (Dijkstra and Henseler, 2015). R? indicates the contributions of all exogenous
variables on an endogenous variable, inferring the total variance in an endogenous variable
that can be explained by exogenous variables. As a rule of thumb stated by Hair ef al. (2017),
the R values 0.75, 050, and 0.25 reflect substantial, moderate, and weak contributions of
exogenous variables on an endogenous variable, respectively. Based on the analysis results
exhibited in Table 6, in companies implementing batch, 66.10% variance in MF is explained
by LM, and LM explains 65.70% variance in LR as the effect of MF on LR is insignificant. On
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Item Batch Mass customization
27,5 Construct  code Item Loading  AVE CR Loading ~ AVE CR
CL CL1 Machines are close to each other 0.823 0692 0918 0.774 0.713 0925
CL2 The layout of workstations can easily be changed 0.859 0.854
depending on the sequence of operations required
CL3 Families of products determine our factory layout 0.766 0.747
CL4 Machines can easily be moved from one workstation to 0.838 0.962
another
1 824 CL5 We group different equipment into a workstation to 0.872 0.867
process a family of parts with similar requirements
FR FR1 ‘When one machine is broken down, different types of 0.800 0681 0894 0.717 0631 0871
machine can be used to perform the same jobs
FR2 If one production worker is absent, another worker can 0.858 0.697
perform the same responsibilities
FR3 ‘We use general-purpose machines, which can perform 0.711 0.872
several essential functions
FR4 ‘When one machine is stopped, production workers are 0919 0.875
not idle
PS PS1 Kanban system is used to authorize production 0.904 0745 0921 0.857 0.787 0936
PS2 Production at a workstation is performed based on the 0.835 0.962
demand of its subsequent workstation
PS3 ‘We produce an item only when requested by its users 0.773 0.908
PS4 We use a kanban system to authorize material 0931 0.816
movements
QC QC1 We use statistical techniques to reduce process variances 0.857 0.702 0934 0.775 0.650 0918
QC2 We use visual control systems as a mechanism to make 0.810 0.849
problems visible
QC3 Production processes on production floors are monitored 0.805 0.772
with statistical quality control techniques
QC4 Quality problems can be traced to their source easily 0.810 0.813
QC5 Production workers can identify quality problems easily 0.876 0817
QC6 Production workers are authorized to stop production if 0.865 0.810
serious quality problems occur
QS QS1 We converted most of the machine setups to external 0.783 0581  0.847 0.726 0.620  0.867
setup that can be performed while the machine is running
QS2 Production workers perform their own machines’ setups 0.769 0.800
QS3 We aggressively work on reducing machines’ setup times 0.729 0.792
QS4 We can quickly perform our machines’ setup if there is a 0.768 0.827
change in process requirements
SLP SLP1 ‘We produce more frequent but smaller lot size 0923 0.745 0920 0.897 0.780 0934
SLP2 ‘We emphasize producing a small number of items 0.818 0922
together in a batch
SLP3 We strictly avoid the flow of one type of item in large 0973 0.832
quantity together
SLP4 ‘We emphasize producing in small lot sizes to increase 0.716 0.878
manufacturing flexibility
SN SN1 Our suppliers deliver materials to us just as it is needed 0.855 0719 0927 0.788 0724 0929
(on a just-in-time basis)
SN2 We strive to establish long-term relationships with 0.864 0.891
suppliers
SN3 ‘We emphasize to work together with suppliers for mutual 0.821 0.878
benefits
SN4 Werely on a small number of high-performance suppliers 0.889 0.845
SN5 Development programs are provided to suppliers 0.808 0.850
TPM TPM1 We ensure that machines are in a high state of readiness 0.859 0.735 0933 0.891 0649 0902
for production at all the time
TPM2 We dedicate periodic inspection to keep machines in 0.843 0.803
operation
TPM3 ‘We have a sound system of daily maintenance to prevent 0.882 0.767
machine breakdowns from occurring
Table 3. TPM4 We scrupulously clean workspaces to make unusual 0.839 0.852
.1 occurrences noticeable
Convergent Yahdlty TPM5  We have time reserved each day for maintenance 0.862 0.701
and composite activities

reliability assessment .
results (continued)




Effect of lean

Item Batch Mass customization

Construct ~ code Item Loading  AVE CR Loading  AVE CR practlces on
UPL UPLI  We produce more than one product model from day to 0898 0661 0906 0949 0611 0884 lead time
day (mixed model production)
UPL2 We emphasize a more accurate forecast to reduce 0.767 0.735
variability in production
UPL3 Each product is produced in a relatively fixed quantity 0.675 0.650
per production period
UPL4 ‘We emphasize to equate workloads in each production 0.808 0.892 1 825
process
UPL5 Daily production of different product models is arranged 0.895 0.628
in the same ratio with monthly demand
LR LR1 Times it takes for products to get through the factory 0.704 0677 0912 0.777 0746 0936
have reduced
LR2 Machine setup times have reduced 0.773 0.899
LR3 Transportation times of an item between workstations 0.923 0.884
have reduced
LR4 Waiting times for an item to be moved to the next 0.868 0.863
operation have reduced
LR5 Times required to move the finished goods from our plant 0.829 0.890
to customers have reduced
MF MF1 Ability to adjust to changes in product design/model by 0.735 0634 0896 0.824 0715 0926
customer demand has improved
MF2 Ability to adjust to changes in production volume by 0.834 0.782
customer demand has improved
MF3 Ability to adjust to changes in production routing in case 0.869 0.889
of machine breakdown has improved
MF4 Flexibility in work assignments to production workers 0.782 0923
has improved
MF5 Flexibility in work assignments to machines has 0.751 0.801
improved
LM* CL Cellular Layouts 0.794 0663 0946 0.861 0692 0952
FR Flexible Resources 0.835 0.693
PS Pull System 0.712 0.873
QC Quality Control 0.893 0.942
QS Quick Setups 0.890 0.864
SLP Small Lots Production 0.621 0.668
SN Supplier Networks 0.827 0.839
TPM Total Productive Maintenance 0938 0911
UPL Uniform Production Level 0.769 0.794
Note(s): *Second order construct Table 3.

CL FR LR MF PS QC QS SLP SN TPM  UPL

CL -

FR 0.522 -
LR 0644 0577 -
MF 0649 0742  0.708

0627 0525 0528 0758 0721 0713 0488 0605 0682 0537
0488 0467 0452 0575 0648 0332 0489 0527 0436
0.783 0625 0593 0649 0350 0653 0.758  0.532
- 0664 0550 0610 0538 0524 0691  0.605
PS 0555 0549 0519  0.606 - 0738 0696 059 0627 0710 0.628
QC 0617 0649 0660 0744 0478 - 0.742 0435 0834 0874 0647
QS 0647 0683 0715 0655 0525  0.800 - 059 0549 0669  0.625
SLP 0342 0490 0383 0307 0391 0434 039 - 0379 0517  0.645
SN 0580 0592 0718 0749 0557 0714 0567 0499

- 0.798 0543
TPM 0688 0735 0790 0754 0559 0798 0861 0441 0.737 - 0.603
UPL 0522 0646 0610 0446 0488 0548 0635 0583 0425 0620 - Table 4.
Note(s): The values below the diagonal are HTMT statistics of mass customization, whereas the above the HTMT statistics
diagonal are HTMT statistics of batch (HTMT0.90)

the other hand, in the mass customization, 50% of the variance in MF is explained by LM, and
both LM and MF explain 66.70% of the total variance in LR. These figures demonstrate a
reasonable and substantial explanatory power of LM on MF and LR in both batch and mass
customization processes.
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Table 5.
Correlation coefficients
among LM practices

CL FR PS QC QS SLP SN TPM UPL
CL 1 0.631 0.760 0.722 0.715 0.486 0.609 0.683 0.546
FR 0.524 1 0.459 0.576 0.650 0.340 0.493 0.530 0.445
PS 0.556 0.552 1 0.741 0.702 0.595 0.628 0.710 0.644
QC 0.618 0.656 0483 1 0.745 0.438 0.836 0.873 0.659
QS 0.649 0.689 0.523 0.801 1 0.591 0.554 0.668 0.638
SLP 0.345 0.491 0.395 0.440 0.402 1 0.380 0.514 0.639
SN 0.580 0.595 0.554 0.715 0.567 0496 1 0.795 0.555
TPM 0.690 0.738 0.560 0.801 0.861 0.445 0.736 1 0.614
UPL 0.523 0.644 0.493 0.552 0.643 0.583 0.430 0.624 1

Note(s): The values below the diagonal are correlations coefficients for batch process, whereas the above
diagonal values are correlations coefficients for mass customization. All the correlation coefficients are
significant at the 0.05 level (two-tailed)

Table 6.
Structural model
assessment results

Constructs
LM MF LR

Batch Inner VIF 2.950 2.950 -

R - 0.661 0.657

£ 0470 0.020 -

oy - 0.381 0.397
Mass customization Inner VIF 2.000 2.000 -

R - 0500 0667

Ia 0.163 0454 -

@ - 0.316 0438

In conjunction with B2, f? representing the individual effects of the exogenous variable on an
endogenous variable by looking at the R? changes when an individual predictor is included or
excluded into a structural model (Ali et al, 2018). It shows whether the excluded construct has
an essential effect on the endogenous construct (Hair et al, 2017). Cohen (1988) provided a
guideline on interpreting the f the values of 0.02, 0.15, and 0.35 represent small, medium, and
large effects, respectively. As shown in Table 6, within the companies implementing batch,
LM has a large effect ( = 0.470), while MF provides a small effect (* = 0.020) on LR.
However, in the companies implementing mass customization, LM gives a medium effect
(# = 0.163), while MF provides a large effect ( = 0.454). Subsequently, Q representing the
predictability of the structural model was also assessed through a blindfolding procedure. In
a similar vein, it predicts the accuracy of R, in which if the Q?is higher than 0, the model has a
predictive power (Hair ef al, 2017). In both structural models (i.e. mass customization and
batch), Q® values are higher than 0 in both endogenous variables (i.e. MF and LR). Therefore,
the structural models have predictive relevance.

The next step of the data analysis is hypotheses testing. A consistent bootstrapping was
applied using 5,000 bootstrap samples to derive a 95% bias-corrected bootstrap confidence
interval. There is no consensus regarding the number of bootstrap samples that should be
generated, except that more is better (Preacher and Hayes, 2008), and should be larger than
original samples (Hair et al, 2013). The confidence interval affords additional information
regarding the extent to which the true population parameter will fall at a certain level of
confidence (Hair ef al, 2013). Table 7 presents the results.

For the companies implementing mass customization, Table 7 shows that all the direct
and indirect effects in the model are significant at p < 0.05. The results indicate the strong
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Table 8.
MICOM step 2 results

positive effects of LM on both MF (8 = 0.672, t = 7.656) and LR (8 = 0.356, ¢t = 2.289).
Similarly, MF also significantly affects LR (8 = 0.491, ¢ = 3.032). All the p-values have
confidence intervals that do not include zero. Thus, the null hypothesis stating that the
p-values equal to zero should be rejected. On the other hand, for the sample companies
implementing batch, LM significantly affects both MF (8 = 0.760, { = 18.527) and LR
(B = 0.652, t = 3.448), with confidence intervals do not contain zero. However, the analysis
shows an insignificant impact of MF on LR (4 = 0.144, t = 0.674), with a confidence interval of
S-value contains zero. Therefore, except for the direct effect of MF on LR for batch showing
insignificant effect, all the direct effects are significant at p < 0.05. In short, Hypothesis 2and 3
are supported for both manufacturing processes, while Hypothesis 4 was rejected in the batch
process. With regards to the indirect effect, Table 7 shows the significant effect for mass
customization (f = 0.330, ¢ = 3.061) and insignificant for the batch process (6 = 0.109,
t = 0.662). It indicates that there is a positive indirect effect of LM on LR through MF in the
mass customization process Hypothesis 5 is supported). However, the indirect effect does not
exist within the firms implementing batch. With regards to the mass customization process,
MF complementary mediates the effect of LM on FR (Zhao et al., 2010), in which both the
indirect and direct effect does exist and point to the same directions (i.e. positive).

Multigroup analysis (PLS-MGA). In this stage, to test whether the path coefficients differ
significantly between two groups (Hair et al, 2017; Henseler, 2012), a PLS-MGA was applied.
By using this approach, sub-samples based on types of the manufacturing process are
compared by using the permutation test. Before the PLS-MGA, to assess the invariance of
constructs across multiple groups of data, the three steps of measurement invariance of
composite models (MICOM) were followed (Henseler et al., 2016; Matthews, 2017). The three
steps are examining configural invariance, compositional invariance, and assessing equality
of composite mean values and variances. Configural invariance involves assessment of
measurement models for all groups, including a review of the development process of the
survey (Matthews, 2017). As the measurement passed content validity, data screening
including outlier deletion, as well as construct validity, then configural invariance is
established (Henseler et al., 2016; Matthews, 2017). The second step (compositional invariance)
was done through a permutation test. Following Matthews (2017), permutations were set
5,000, one-tailed test, 0.05 significance level, and seven stop criterion. The MICOM
permutation results also include the third step of its procedure (Henseler, 2012).

In the second step of the MICOM procedure (see Table 8), Matthews (2017) guided that the
original correlations should be equal and higher than 5% quantile correlations. Thus,
compositional invariance is not a problem in all the constructs. In the third step, the
constructs’ equality of mean values and variances across groups was evaluated. Table 9
shows the mean original difference falls between the lower (5%) and upper (95%) boundaries
as suggested by Matthews (2017) and Henseler (2012). In the second portion of MICOM step 3,
Table 9 also shows that the values of variance original differences are the numbers within the
95% confidence interval for all the constructs. As the values are within the 5 and 95%
boundaries, it shows the full measurement invariance for the constructs (Henseler, 2012).
Thus the measurement models of the two groups can be examined using the pooled data.

After establishing the full measurement invariance, this study tests whether or not
the path coefficients differ significantly between two groups (ie. batch and mass

Original correlation Correlation permutation mean 5% Permutation p-Values
LM 0.999 1.000 0.999 0.122
LR 1.000 1.000 0.999 0.585
MF 1.000 0.999 0.999 0.669
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Table 10.
Permutation test path
coefficient results

customization). Table 10 shows the outputs of the permutation procedure. Referring to the
table, the direct effect between MF and LR and the indirect effect of LM to LR through MF
indicate the significant differences between batch and mass customization, as evident by
path coefficient original difference values that fall within the lower and upper boundaries
for the 95% confidence intervals (Matthews, 2017). It is also supported by permutation p-
values of 0.090 and 0.100, respectively, which are less than or equal to the threshold of 0.10
(Henseler, 2012; Matthews, 2017). These indicate that Hg was partially supported.

Discussion

The outcomes of this study exhibit the significance of the holistic adoption of LM practices in
predicting FR and LR in the context of mass customization and batch manufacturing
processes. The results show that all the LM practices complement each other and corroborate
in a mutually supportive nature, which suggests the simultaneous adoption (supporting
Hypothesis 1). It implies the synergistic relationship between the practices, which are
valuable for achieving MF and LR. The results provide further confirmation of previous
studies (Furlan et al., 2011a, b; Nawanir ef al, 2013; Shah and Ward, 2003), which supports the
notion of holistic implementation of LM practices, rather than piecemeal, as suggested by
complementarity theory (Milgrom and Roberts, 1990, 1995). According to Lee et al. (2010), two
business units (can be equated with manufacturing practices or activities) may appreciate
super-additive value synergies if their combined value is more than the total of their separate
values. In short, the value (a, b) is higher than value (a) + value (b). Thus, firms gaining
outstanding achievement through the holistic adoption of organizational practices (or
activities, assets, etc.) are expected to obtain higher advantages over long periods. The
finding of this study, consequently, recommends that companies should invest in all the LM
practices simultaneously, rather than picking up one over the other. Additionally, this study
conveys a message that the partial adoption of LM practices may fail to enhance the ultimate
achievement.

This study also extends the findings of dos Santos Bento and Tontini (2018) by comparing
the implementation of LM within two different types of the manufacturing process. The
study reveals that samples adopting the mass customization manufacturing process
implement LM practices to a greater extent than batch, with a slightly different focus. Mass
customization focuses on QS, besides TPM, PS, and FR, whereas the batch emphasizes TPM,
QC, SN, and FR. Both put less emphasis on SLP; however, its implementation in mass

B-Original f-Permutation
p-Original  B-Original difference mean difference Permutation
(batch) M™MC) (Batch-MC) (Batch-MC) 5% 95% p-Values
LM 0.652 0.356 0.297 —0.007 -0.371  0.369 0.101
-LR
LM 0.760 0.672 0.088 —0.001 —0.168 0.178 0.235
N
MF
MF 0.144 0.491 —0.348 0.006 —0438 0429 0.090
—LR
LM 0.109 0.330 —0.221 0.006 —0285 0.291 0.100
N
MF
—LR

Note(s): # = path coefficient, MC = mass customization




customization higher than in batch. This is consistent with the characteristics of the mass
customization system that needs higher flexibility level (Da Silveira ef al.,, 2001; Sandrin ef al,
2018), which must be supported by quick setup process, sound maintenance system on
machines and equipment, extensive implementation of pull and kanban system (Rogers et al.,
2011), as well as more flexible resources in terms of machines, equipment, workers, and
production lines. All these components are critical in a mass customization process to
accommodate the fluctuations and variations of customer demand.

The present study demonstrates the synergistic effect of all the nine LM practices in the
form of second-order construct LM on MF and LR. Even though the degrees of LM
implementation within the two processes are slightly different, LM positively associates with
MF and LR (supporting Hypothesis 2 and 3). The more extensive the implementation of LM,
the more flexible the manufacturing system (Fullerton and Wempe, 2009; Khanchanapong
etal,2014), and the lower the lead time (dos Santos Bento and Tontini, 2018; Khanchanapong
et al., 2014; Matsui, 2007).

Interestingly, even though LM positively affects MF and LR in both manufacturing
processes, with regards to the effect of MF on LR, there is a difference between batch and
mass customization. The insignificant effect of MF on LR was found in batch (leading to
rejection of Hypothesis 4), which is conversely found in mass customization. This also leads
to the absence of the significant indirect effect of LM on LR through MF, which, therefore,
implies the rejection of Hypothesis 5. Nevertheless, in the sample companies implementing
mass customization, the positive significant indirect effect was found, which supports
Hypothesis 5. It suggests unique direct and indirect effects of LM on LR. MF plays a role as a
mediating variable in this relationship. It indicates that MF is a critical variable in mass
customization (Suzi¢ et al., 2018) to shorten the lead time successfully. To support this fact, the
researchers were interested in extending the investigation by applying the importance-
performance map analysis (IPMA) using SmartPLS 3.2.8. Figure 1 shows the importance-
performance maps (indicators, standardized effect) of both batch and mass customization.
The figures (a and b) indicate that MF is vital in mass customization and contributes
significantly to LR.

This finding is in line with the opinion from Wang ef al. (2016), who postulated key
capabilities of mass customization, including quick response to a variety of customer demand
and the ability to customize products while upholding high volume and consistent quality
without incurring high costs. To achieve these capabilities, MF is one of the critical
requirements (Suzic et al., 2018). However, flexible workers only would not be sufficient to
cater to the requirements and challenges of the mass customization manufacturing process;
technology flexibility in terms of machines, equipment, tools, jigs, and fixtures could be a
critical element (Brown et al.,, 2005; Da Silveira et al, 2001). These capabilities may not be
available in the batch manufacturing process. Hence, even though LM implementation in a
batch manufacturing process leads to higher MF, the MF itself is unable to offer a significant
reduction in lead time.

Implications of the study

Theoretical implications

This study considerably subsidizes to the body of knowledge through seeking to the
determinants of organizational performance, specifically MF and LR, in the context of mass
customization and batch manufacturing processes. From the complementarity theory point
of view, this study further shows the mutually collaborative nature of LM practices. The
results of the study demonstrated positive interactions among the LM practices in both mass
customization and batch manufacturing (Hypothesis 1). It implies that investing in
complementarity practices simultaneously would offer superior results rather than either
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emphasizing on one kind of practice at once or adopting them in isolation (Milgrom and
Roberts, 1995). According to the complementarity theory, the return of the collection practices
of LM might be higher than deploying each practice individually (Furlan ef al, 2011b). As
such, consistent with complementarity theory, by which the synergistic effect of LM practices
brings better improvement on MF (Hypothesis 2) and LR ( Hypothesis 3) in both mass
customization and batch processes. This finding coincides with the studies by Sahoo and
Yadav (2018), Wickramasinghe and Wickramasinghe (2017), Furlan et al (2011a), Furlan et al.
(2011b), Nawanir et al. (2016), and Shah and Ward (2003), who highlighted the importance of
LM bundles towards firms’ performance.

This study also provides evidence on the importance of MF in mediating the effect of LM
implementation in mass customization manufacturing on LR (Hypothesis 5). It implies that
MEF is one of the critical factors in mass customization manufacturers to enhance lead time
performance as well as perhaps other performance indicators, such as productivity, costs
reduction, inventory minimization, sales, customer satisfaction, profits, and business
sustainability. This finding is consistent with the characteristics of a mass customization
system, in which the companies should be able to cater for fluctuations and variabilities of
demand in the current dynamic market (Da Silveira et al, 2001; Sandrin et al., 2018; Suzic et al.,
2018; Wang et al, 2016). This finding might be slightly different from the batch
manufacturing system. Even though LM can significantly improve the MF, it does not
subsequently improve LR (Hypothesis 4 and 5). It entails that MF is less critical in batch, as
the system is not targeted to be very flexible as in the mass customization. Therefore, this
finding supports the contingency theory (Lawrence and Lorsch, 1967a, b) suggesting that
different manufacturing practices and performance measures could fit different companies
with different characteristics (Cua et al, 2001; Latan et al, 2018; Shah and Ward, 2003;
Tortorella et al., 2018). More importantly, the relationship between the variables may vary
based on the context of the study. This context-dependent property suggests to consider
specific contexts and situations (e.g. product variety and complexity, production volume,
types of process, technology, etc.) at which the manufacturing practices work effectively to
leverage organizational performance. Therefore, types of a production process can be a
decisive factor in understanding how the LM leads to organizational performance,
specifically MF and LR.

Practical implications

The statistical analysis results provide essential insights. First, the strong associations
among the LM practices lumped together in a second-order construct recommend the
practitioners to implement LM practices simultaneously and holistically to secure the
excellent benefits of LM. The practices should not be considered as independent practices;
instead, they are dependent on each other (Furlan ef al, 2011a, b; Sahoo and Yadav, 2018;
Wickramasinghe and Wickramasinghe, 2017). Thus, both types of the manufacturing
process should implement LM holistically to leverage their flexibility and lead time
performance. Second, the implementation of LM practices and the targeted performance
measures should be designed with a specific context in mind in order to avoid their
mismatch with organizational characteristics. In other words, they must be tailored
depending on the specific organizational context. Third, the mass customization
manufacturers should give priority on LM implementation to enhance MF, because LM
is the pre-cursor of MF (Ghobakhloo and Azar, 2018), which would lead to other
performance measures. Manufacturers should emphasize flexibility enhancement in terms
of volume, product mix, routing, machines and technology, and workers (Rogers et al,
2011). Forth, even though this study reveals no effect of MF on LR in batch manufacturing,
to sustain, the manufacturers should also undertake their efforts towards flexible
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manufacturing as in the mass customization system. It is important because customer
demand changes over time; besides, flexibility tends to be a pre-requisite for other
performance achievements.

Fifth, to enhance the flexibility of manufacturing systems; besides the initiatives of
implementing LM practices comprehensively, the manufacturers should consider investing
in advanced manufacturing technology (AMT). It is in line with the studies from
Khanchanapong et @l (2014) and Ghobakhloo and Azar (2018), who suggested supporting
LM with AMT. Khanchanapong et al. (2014) revealed that LM and AMT were mutually
supportive of each other in leveraging manufacturing performance dimensions (e.g. quality,
lead-time, flexibility, and cost). On the other hand, Ghobakhloo and Azar (2018) assigned
AMT as a determinant of LM and agile manufacturing, which subsequently lead to
marketing, operational, and financial performances. Even though both studies assigned
AMT in different positions, AMT was considered critical for manufacturers to be
concurrently implemented with LM. Even, Suzi¢ ef al (2018) highlighted that technology is
one of the enablers of mass customization. Ghobakhloo and Azar (2018) also regarded AMT
as one of the critical infrastructures for the successful development of LM and flexible
manufacturing system, as the value of AMT is truthfully changed to performance
improvement when AMT practices, activities and tools are appropriately utilized in
manufacturing systems.

Lastly, manufacturing firms must advance their flexibility performance while adopting
LM and other collaborative manufacturing strategies (such as flexible manufacturing
systems, smart manufacturing systems, etc.) due to the current competitive market with
changing customer demand and high uncertainty. This would not only support
manufacturers to cope with the ever-changing demand of customers but also would help
them to augment their business sustainability performance to the greater height.

Limutations and suggestions for future vesearch

It is necessary to unveil the limitations of the study. Thus they could be deliberated when
understanding the results and before taking any possible arrangements based on the
outcomes of the study. Firstly, while LM is a long-term initiative (Sahoo and Yadav, 2018),
its benefits could not be realized in the short-term. Thus, as an alternative to the cross-
sectional study, a longitudinal study could be considered to enhance the accuracy of the
inference. Secondly, in this survey, one respondent’s company was represented by the
response from a single key person (either manufacturing director, manager, or head of a
department), which might be influenced by several factors such as work situation, personal
point of view, knowledge, etc. Therefore, even though the validity and reliability
assessments were satisfactory, which was also supported by the absence of CMV, the
respondents’ answers may be diverse from the actual conditions of their plants. To obtain
more accurate results and resounding inferences, future studies are suggested to consider
evidence from several respondents representing a single company, besides combining
perceptual and objective measures (such as from annual reports, operational reports, etc.).
This may help to confirm the convergence or divergence among different sources of data.
Thirdly, this study focused on mass customization and batch manufacturing system,; thus,
it may restrict the results to this contextual condition. Further investigations in other
contexts (such as repetitive, job shop, and even continuous process) could be considered.
Lastly, as discussed in the previous section, LM adoption might be supported by its other
collaborative strategies (such as AMT, flexible manufacturing, smart manufacturing, etc.)
that future studies can take into account. Thus, a more comprehensive point of view could
be produced.
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