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Abstract
Purpose – Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g.
viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of
these properties plays a significant role in modifying transport characteristics while the temperature difference in
the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum
purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical
model, motivated by the last of these applications, to explore the impact of variable viscosity and variable
thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary
layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and
appreciable thermal radiative heat transfer under a static radial magnetic field.

Design/methodology/approach – The Williamson pseudoplastic model is deployed for rheology of the
nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial
differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive
validation with earlier studies in the absence of nanoscale and variable property effects is included.

Findings – The influence of notable parameters such as Weissenberg number, variable viscosity, variable
thermal conductivity, Soret and Dufour numbers on heat, mass andmomentum characteristics are scrutinized
and visualized via graphs and tables.

Research limitations/implications – Buongiorno (two-phase) nanofluid model is used to express the
momentum, energy and concentration equations with the following assumptions. The laminar, steady,
incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in
the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and
hence it is neglected. The Soret and Dufour effects are taken into consideration.

Practical implications – The variable viscosity and thermal conductivity are considered to investigate
the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime
role in many industries such as petroleum refinement, food and beverages, petrochemical, coating
manufacturing, power and environment.
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Social implications – This fluid model displays exact rheological characteristics of bio-fluids and
industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup andwhipped cream.
Originality/value – The outcomes disclose that the Williamson nanofluid velocity declines by
enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle
concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An
increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature
and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter.
Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale
parameter.

Keywords Variable thermal conductivity, Variable viscosity, Magnetohydrodynamics,
Buongiorno nanofluid model, Williamson rheological model

Paper type Research paper

Nomenclature
a = radius of the cylinder [m];
B0 = strength of the constant magnetic field [kgs–2A–1];
C = concentration of the fluid [kgm–3];
C�
f = skin friction coefficient;

(Cp)f = specific heat of fluid [Jkg–1K–1];
(Cp)p = specific heat of particle [Jkg–1K–1];
CS = concentration susceptibility [kgm–3];
CW = concentration at the surface [kgm–3];
C1 = ambient concentration [kgm–3];
DB = Brownian diffusion [m2s–1];
Du = Dufour number;
DT = thermophoretic diffusion [m2s–1];
ga = acceleration because of gravity [ms–2];
Gr = Grashof number;
k0f = constant fluid thermal conductivity [Wm–1K–1];
ke = mean absorption coefficient [m–1];
kf = fluid thermal conductivity [Wm–1K–1];
KT = thermal diffusion ratio [m2s–1];
Ma = magnetohydrodynamic parameter;
NB = Brownian motion parameter;
Nr = species to thermal buoyancy ratio parameter;
NT = thermophoresis parameters;
Nu* = Nusselt number;
Pr = Prandtl number;
Ra = Rosseland conduction-radiation parameter;
Sc = Schmidt number;
Sh* = Sherwood number;
Sr = Soret number;
T = temperature of the fluid [K];
Tm = mean fluid temperature [K];
TW = temperature at the surface [K];
T1 = ambient temperature[K];
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u, v = velocity components in x,y directions [ms–1];
We =Weissenberg number; and
x, y = Cartesian coordinates [m].

Greek symbols
b 1 = coefficient of nonlinear thermal expansion [K–1];
C = material constant;
g * = variable viscosity parameter;
d * = variable thermal conductivity parameter;
m f = dynamic viscosity [kgm–1s–1];
m0f = constant dynamic viscosity [kgm–1s–1];
r 0f = constant density of fluid [kgm–3];
r 0p = constant density of particle [kgm–3];
�0f = constant kinematic viscosity [m2s–1];
s = electrical conductivity of fluid [Sm–1];
sB = Stefan Boltzmann constant [=1.3807� 10–23JK–1];
t = ratio between particle and base fluid
t * = shear stress sensor; and
U = azimuthal coordinate.

1. Introduction
Molecular transport in a binary mixture driven by a temperature gradient is known as the
thermo-diffusion (Soret) effect, whereas energy flux caused by a concentration gradient is
known as the diffusion-thermo (Dufour) effect. Collectively, these cross-diffusion effects are
often neglected because the order of magnitude is smaller than effects expressed by means
of Fourier and Fick laws. The Soret effect is quite important when higher density differences
exist in fluid transport. Dufour effect is ineffective in the mixture of various liquids, but this
effect has a highly notable impact in gasses. Soret and Dufour effects play a major role in a
mixture of gases between very light (Hydrogen, Helium) and medium (Nitrogen, air)
molecular weights as deployed in isotope separation. Heat transfer properties are strongly
coupled with mass transfer properties when double-diffusive (thermo-solutal) convection is
considered with the influence of Soret and Dufour numbers. Soret and Dufour effects are
accounted in various engineering technologies and industrial processes including the
solidification of binary alloys, crystal growth, contaminant transport in groundwater,
pollutant movement, chemical reactors, magmatic geophysical flows, oceanography,
underground treatment of nuclear waste materials and drying technologies (Beg et al.,
2009a, 2009b; Kumar and Sivaraj, 2013; Rashad and Chamkha, 2014; Raju and Sandeep,
2016; Reddy and Chamkha, 2016; Ruhaila et al., 2017; Muthtamilselvan et al., 2018). Sivaraj
et al. (2019) examined the cross-diffusion (Soret and Dufour) effects on Casson fluid flow
with variable fluid properties and observed that higher values of Dufour effect or lower
values of the Soret effect elevate Casson fluid temperature. Makinde and Olanrewaju (2011a)
discussed the time-dependent mixed convective flow over a moving permeable plate with
the influence of Soret and Dufour effects and found that the velocity of the fluid decreases
with an increase in the Soret effect. Pal et al. (2016) used a numerical method to explore the
Soret and Dufour impacts on three different water-based nanofluids over a plate and
deduced that the water nanofluid concentration decays as a result of increasing Dufour
number with decreasing Soret number. Other studies include Beg et al. (2011) on micropolar

Computation
of non-similar

solution

1477



coating flows, Beg et al. (2019a) worked on magnetohydrodynamics ocean generators and
very recently Bhatti et al. (2020) on ferro-magnetic transport properties.

The vast majority of analytical boundary layer flow studies have been confined to constant
thermo-physical properties of the fluid. When there is a high-temperature difference between the
surface and fluid in boundary layer, the thermo-physical properties of fluid can vary notably.
Compared with other thermo-physical properties, the fluid viscosity is highly sensitive with
temperature variations. For instance, in lubricating liquids, heat is produced as a result of internal
frictionwhich causes a change in the viscosity of thefluid. The absolute viscosity of water declines
by 240% because of an increase in temperature from 100°C to 500°C. As a result, it is logical to
consider variable viscosity tomore precisely determine transport characteristics. Varying viscosity
with respect to temperature arises in many branches of modern technology including smart
coating enrobing, drawing of plastic films, surfacial spray deposition, glass fiber production,
petroleum refinement, fabrication of thin film concentrating solar receivers, food processing, gas
turbine film cooling and fluid film tribology (Makinde and Chinyoka, 2012; Kumar and Sivaraj,
2013; Manjunatha and Gireesha, 2016; Sheikholeslami and Rokni, 2017; Astanina et al., 2019;
Salahuddin et al., 2019). Animasaun (2015) reported a numerical study of free convective flow of
Casson fluid over a plate with the cross-diffusion and noticed that higher viscosity parameter
values reduce the Casson fluid temperature. Hayat et al. (2016) analytically investigated the mixed
convective time-dependent flow over an exponential surface in the presence of temperature-
dependent viscosity. Reddy et al. (2018) used a Crank Nicholson scheme to analyze fluid transport
properties and entropy generation of time-dependent viscoelastic polymeric fluid flow with
variable viscosity and observed that varying viscosity parameter enhances total entropy
generation. Mehmood et al. (2019) exhibited the influence of variable viscosity on non-orthogonal
stagnation flow of Cu–water nanofluid for nano-polymeric solar gel coatings application and
found that increasing nanoparticle volume fraction decelerates thefluidflow.

Non-Newtonian fluids are fluids which have viscosity shear-dependence in addition to
shear-thinning/shear-thickening characteristics. These fluids have numerous industrial
applications, including petroleum production, bionic hydrogels in robotics, chemical process
industries, plastic polymers, ferrofluid lubricants, packaging materials for food preservation,
cosmetic products and manufacture of optical fibers. Non-Newtonian fluids have complex
rheological characteristics, so the flow properties of such fluids cannot be elucidated by a single
rheological model. As a result, a diverse range of constitutive models including the Maxwell
upper convected fluid, Williamson fluid, Johnson–Segalman fluid, Cross fluid, FENE-P fluid,
Walter’s B-fluid, PPT fluid, Casson fluid, Eringen micropolar fluid and Carreau fluid models
have been proposed by various researchers. Transport characteristics of various non-
Newtonian fluid models were investigated by several researchers (Makinde et al., 2011b; Gaffar
et al., 2015; Latiff et al., 2016; Durairaj et al., 2017; Khan et al., 2019; Nadeem et al., 2017; Norouzi
et al., 2018; Bisht and Sharma, 2019; Basha et al., 2020b). The Williamson fluid model is a
popular industrial rheological model which is developed originally for analyzing molten plastic
molding (Williamson, 1929). This fluid model expresses the exact behavior of pseudoplastic
fluids which differ from ideal plastics in which there is no real yield value. Because of its shear-
thinning nature, theWilliamson fluid model is used to analyze many other industrial fluids and
biofluids including blood, polymeric suspension, magnetic polymers, etc.

Nanofluids are very popular in recent years because of their superior thermal conductivity
property (Das et al., 2007). Recently, many researchers have theoretically and experimentally
explored the heat transfer characteristics of various nanoparticles for several industrial
processes, manufacturing processes and renewable energy applications (Mansoury et al., 2019;
Ma et al., 2019; Basha et al., 2019). Nanofluids have been examined with certain volume
fractions to exhibit shear-thinning behavior and other rheological characteristics. Several
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careful experimental studies have confirmed the strong non-Newtonian properties of
nanofluids in a diverse array of applications ranging from thermal engineering systems
(Anoop et al., 2009; Chang et al., 2019) to petroleum drilling fluids (Beg et al., 2018). Laboratory
testing of nanofluid thermal enhancement features with rheological behavior has been
accompanied with several numerical investigations Hussanan et al. (2017) and Kang et al.
(2014). Acharya et al. (2019) addressed the multi-slip impact onWilliamson nanofluid flow from
a sheet and noticed that the rate of heat transfer declines with an increment in velocity and
thermal slips. Basha et al. (2020a) numerically explored the variable fluid property effects on
Williamson nanofluid flow over three different geometries with wall slip mechanisms.
Subbarayudu et al. (2020) used the Williamson nanofluid model to simulate blood flow over a
wedge surface with radiation heat transfer and indicated that higher values of Weissenberg
number (ratio of elastic to viscous forces) accentuate blood temperature.

An inspection of the literature has revealed that most of the computational studies on
external boundary layer flows of nanofluids have analyzed the rheological characteristics by
converting the basic governing equations with boundary conditions into ordinary differential
equations with suitable initial conditions. Furthermore, many studies have ignored the
variation of thermophysical properties and cross diffusion effects. The objective of the current
work is therefore to present a more generalized two-dimensional approach to axisymmetric
nanofluid boundary layer flow from a cylindrical body with thermal radiation. The
Williamson–Buongiorno nanofluid model is considered with the influence of
magnetohydrodynamics, Soret and Dufour effects. Rosseland’s diffusion flux approximation is
used for accounting the radiative heat transfer. These constitute the novelties of the present
work. TheWilliamson nanofluid viscosity and thermal conductivity are considered as variable
because of temperature difference. The steady-state conservation equations are transformed,
rendered non-dimensional and then solved with appropriate wall and free stream conditions by
means of unconditionally stable implicit finite difference Keller box scheme. Extensive contour
plots are drawn to manifest the significance of diverse multi-physical parameters on the fluid
transport characteristics. Verification of the accuracy of the Keller box method with earlier
published works is presented. The simulations are relevant to high-temperature magnetic
nano-polymer coating flow systems (Sheparovych et al., 2006; Hong et al., 2007; Sansom et al.,
2013; Dhumal et al., 2015; Vshivkov and Rusinova, 2017; Beg et al., 2019a).

2. Mathematical formulation
Figure 1 exhibits the schematic view of geometry for the present problem in a two-
dimensional Cartesian coordinate system (x, y). The viscosity and thermal conductivity
variation in natural convective, laminar, time independent, incompressible flow of
electrically conducting Williamson nanofluid (magnetic nano-polymer) over a circular
cylinder is considered. A magnetic field of uniform strength B0 is applied radially. a is the
radius of the cylinder and the coordinates x and y are taken along the circumference of the
cylinder and normal to the cylinder, respectively. Changes in density for the buoyancy terms
are determined by using the Boussinesq approximation. The constant temperature (TW) and
concentration (CW) of the surface are presumed to be greater than the ambient temperature
(T1) and ambient concentration (C1), respectively. The Buongiorno (two phase) nanofluid
model (Buongiorno, 2006) is used to formulate the momentum, energy and nano-particle
concentration equations with the following assumptions:

� The flow equation is accounting the body force.
� The induced magnetic field strength is smaller compared to the external magnetic

field, and hence it is neglected (small magnetic Reynolds number).
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� Hall current, ion slip and Maxwell displacement currents are neglected.
� The circular cylinder is isothermal, iso-solutal and electrically insulated.
� Soret and Dufour effects are taken into consideration.

Based on the aforesaid considerations, the transport equations for the present problem in
Cartesian coordinates (x, y) (Beg et al., 2009b; Animasaun, 2015; Sivaraj et al., 2019; Acharya
et al., 2019) can be shown to take the following form:

@u
@x

þ @v
@y

¼ 0; (1)
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@u
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¼ 1
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@C
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þ DB
KT

Tm

@2T
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: (4)

It is to be noted that in the present formulation, the modified shear term in equation (2) is
based on the extra stress tensor for a Williamson fluid (Williamson, 1929) which is defined

Figure 1.
Physical
configuration of the
problem
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as x = [m1f þ(m0f þ m1f)(1 – t
*K)�1]A1, in which, consider m1f = 0 and t *K < 1 where

the shear stress sensor is given by t � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trac A2

1ð Þ
2

q
;A1 ¼ gradVþ gradV½ �T :

The boundary conditions imposed are as follows:

u ¼ 0; v ¼ 0; T ¼ TW ; C ¼ CW at y ¼ 0;

u ! 0; T ! T1; C ! C1 as y ! 1:

)
(5)

where �0f=
m 0f

r 0f
and t =

r 0p Cpð Þp
r 0f Cpð Þf .

The change in viscosity because of temperature is expressed as follows (Kumar and
Sivaraj (2013):

m f Tð Þ
m 0f

¼ 1� g T � T1ð Þ; (6)

According to Sivaraj et al. (2019), the thermal conductivity variation is considered as a linear
function in temperature.

kf Tð Þ
k0f

¼ 1þ d T � T1ð Þ; (7)

The unidirectional radiative heat flux (qr) is written as follows (Basha et al., 2019):

qr ¼ � 4
3
sB

ke

@T4

@y

 !
¼ � 16

3
sBT3

1
ke

@T
@y

� �
; (8)

The dimensional stream function c is defined according to the famous Cauchy–Riemann
equations as u ¼ @ c j ;hð Þð Þ

@x and v ¼ � @ c j ;hð Þð Þ
@y . In addition, the suitable non-similarity

variables are considered as follows:

j ¼ x
a
; h ¼ Grð Þ14 y

a

� �
; c ¼ j f Grð Þ14�0f ;

T ¼ T1 þ u TW � T1ð Þ; C ¼ C1 þ f CW � C1ð Þ:

9=
; (9)

By implementing the above variables, equations (2)–(4) are transformed to the following
non-similar form in (j ,h ) coordinate system:

1� g �uð Þf 000 þ 2Wej 1� g �uð Þf 000 f 00 �Wej g � f 00ð Þ2u 0 � g �f 00u 0

� f 0ð Þ2 þ ff 00 þ sin j
j

u � Nrfð Þ �Maf 0 ¼ j f 0
@f 0

@j
� f 00

@f
@j

� �
;

(10)

1
Pr

1þ d �uð Þ þ 4
3Ra

� �
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0f 0

þ NT u 0ð Þ2 þ Du f
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@u

@j
� u 0 @f
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� �
;

(11)
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1
Sc

f 00 þ NT

NB
u 00

� �
þ ff 0 þ Sr u 00 ¼ j f 0

@f

@j
� f 0 @f

@j

� �
: (12)

The transformed boundary conditions emerge as following:

f ¼ f 0 ¼ 0; u ¼ f ¼ 1 at h ¼ 0;

f 0 ! 0; u ! 0; f ! 0 as h ! 1:

)
(13)

where Gr ¼ a3 1�C1ð Þgab 1 TW�T1ð Þ
�20f

; We ¼ C�0f
ffiffi
2

p
Grð Þ3=4

a2 ; Pr ¼ m 0f Cpð Þf
k0f

, Ma ¼ sa2B2
0

Grð Þ1=2�0f r 0f

,

Nr ¼ r 0p�r 0fð Þ CW�C1ð Þ
1�C1ð Þr 0f b 1 TW�T1ð Þ, g � ¼ g TW � T1ð Þ, NB ¼ tDB CW�C1ð Þ

�0f
; Ra ¼ kek0f

4sBT31
;

NT ¼ tDT TW�T1ð Þ
�0f T1

; d � ¼ d TW � T1ð Þ, Du ¼ DBKT CW�C1ð Þ
�0f CS Cpð Þf TW�T1ð Þ, Sr ¼ DBKT TW�T1ð Þ

�0f Tm CW�C1ð Þ,

Sc ¼ �0f
DB
.

At the wall, dimensional forms of skin friction factor (Cf), heat transfer rate (Nu) andmass
transfer rate (Sh) are expressed as follows:

Cf ¼ m f Tð Þ @u
@y

þ C
2

@u
@y

� �2
" #

y¼0

;

Nu ¼
�a kf Tð Þ @T

@y

� �
y¼0

þ qrð Þy¼0

 !

k0f Tw � T1ð Þ ;

Sh ¼
�a

@C
@y

� �
y¼0

Cw � C1ð Þ :

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(14)

Using equations (6)–(9) in equation (14), the non-dimensional skin friction C�
f

	 

, heat transfer

rate (Nu
*) andmass transfer rate (Sh*) are written as follows:

C�
f ¼ 1� g �uð Þf 00 0ð Þj 1þ j

Weffiffiffi
2

p f 00 0ð Þ
� �

;

Nu� ¼ � 1þ d �uð Þ þ 4
3Ra

� �
u 0 0ð Þ;

Sh� ¼ �f 0 0ð Þ:

9>>>>>>=
>>>>>>;

(15)

where C�
f ¼ Cf a2 Gr�3=4ð Þ

m 0f �0f
,Nu* =Nu(Gr�1/4), Sh* = Sh (Gr�1/4).

3. Numerical method
Keller (1971) introduced a novel finite difference method called as Keller box method. This
method is initially applied to solve parabolic problems. Later, this scheme is applied to solve
various problems in laminar and turbulent boundary layer flows. The notable merits of this
scheme are as follows:
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� This scheme is well-organized, simple and flexible to program.
� In this scheme, there is no need to formulate any conditions to compute very close to

the point of boundary layer separation.
� The variations in streamwise coordinate (j -direction) are rapidly admitted.
� The scheme has second-order accuracy and unconditionally stable.
� The non-similar solutions are obtained for boundary layer problems.

The similarity solution merely depends on the free stream velocity for the boundary layer
equations. But the boundary layers may arise from various factors like the variation in wall
temperature, free-stream velocity, suction/injection of fluid at the wall, and buoyancy effect.
The non-similar solution can account these effects in the boundary layer. In addition, there is
no clarity for ignoring certain streamwise derivatives in the similarity solution when
converting the governing equations into dimensionless form. This dilutes the accuracy of
the solutions. In a non-similar solution, only the auxiliary equations are removed from the
fluid transport equations. Thus, the original fluid transport equations with boundary
conditions remain same. Hence, it is expected that the non-similar solutions can provide
more accurate results than the local-similarity solution.

The procedure to obtain the solution by using the Keller boxmethod is given as follows:
� The nth order dimensionless equations are transformed into n first-order

dimensionless equations.
� The transformed n first-order equations are discretized by using central differences

approach.
� The algebraic equations are linearized by means of Newton’s method.

The results are obtained by solving the block matrix system (block tri-diagonal elimination
technique).

Step 1:
A new set of variables u(j ,h ), �(j ,h ),s(j ,h ),t(j ,h ),g(j ,h ) and p(j ,h ) are introduced to

transform the nth order dimensionless equations into n first-order dimensionless equations,
which depends on j and h .

The new set of variables are assumed as follows:

f ¼ f ; f 0 ¼ u; u0 ¼ v; u ¼ s; s0 ¼ t; f ¼ g; g0 ¼ p; (16)

By implementing the above variables, equations (10)–(12) are transformed to:

1� g �sð Þv0 þ 2Wej 1� g �sð Þv0v�Wej g �v2t � g �vt

�u2 þ fvþ B s� Nrgð Þ �Mau ¼ j u
@u
@j

� v
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@j

� �
(17)
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� �
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@g
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� p
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� �
(19)
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with the boundary conditions

h ¼ 0 : u ¼ 0; f ¼ 0; s ¼ 1; g ¼ 1 (20)

h ! 1 : u ! 0; s ! 0; g ! 0

Step 2:
The net point on the (j ,h ) plane is expressed using the following relations:

j 0 ¼ 0; j i ¼ j i�1 þ ki; i ¼ 1; 2; 3 . . . I ; (21)

h 0 ¼ 0; h j ¼ h j�1 þ hj; j ¼ 1; 2; 3 . . . J : (22)

where ki is Dj spacing at the ith node, and hj is Dh spacing at jth node. The following
discretizations are applied:

@ðÞ
@j

� �i�1
2

j�1
2

¼
ðÞij�1

2

�ðÞi�1
j�1

2

ki
;

@ðÞ
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 !i�1
2

j�1
2

¼ ðÞi�
1
2

j �ðÞi�
1
2

j�1

hj

ðÞi�
1
2

j ¼ ðÞi�1
j

�ðÞij
2

; ðÞij�1
2

¼ ðÞij�1
�ðÞij
2

At the midpoint j i; h j�1
2

� �
between the segments (j i,h j–1) (j

i,h j), the following central
difference approximations are deployed:

f 0 ¼ u ) uij�1
2
¼ uij þ uij�1

2
¼

f ij � f ij�1

� �
hj

; (23)

u0 ¼ v ) vij�1
2
¼ vij þ vij�1

2
¼

uij � uij�1

� �
hj

; (24)

s0 ¼ t ) tij�1
2
¼ tij þ tij�1

2
¼

sij � sij�1

� �
hj

; (25)

g0 ¼ p ) pij�1
2
¼ pij þ pij�1

2
¼

gij � gij�1

� �
hj

; (26)

First-order PDE equations (16)–(19) are approximated by centering at j i�1
2; h j�1

2

� �
from the

rectangle points (P1,P2,P3 and P4) and the following equations are obtained:
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vij � vij�1
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� 1þ að Þ uij�1=2

� �2
� Mað Þuij�1=2 þ avi�1

j�1=2f
i
j�1=2 � af i�1

j�1=2v
i
j�1=2 þ B sij�1=2 � Nrgij�1=2

� �

¼ �

vij � vij�1

hj

 !
� g �sij�1=2

vij � vij�1

hj

 !
þ 2Wej vij�1=2

vij � vij�1

hj

 !

�2Wej g �sij�1=2v
i
j�1=2

vij � vij�1

hj

 !
�Wej g �tij�1=2 vij−1=2

� �2
�g � tij�1=2v

i
j�1=2

� �
þ 1� að Þ f i�1

j�1=2v
i�1
j�1=2

� �
þ a� 1ð Þ

ui−1j�1=2

� �2 þ B si−1j−1=2−Nrgi−1j−1=2

� �
− Mað Þui−1j−1=2

2
666666666666664

3
777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(27)

1
Pr

1þ 4
3Ra

� � tij � tij�1

hj

 !
þ d �

Pr
sij�1=2

tij � tij�1

hj

 !

þ d �

Pr
tij�1=2

� �2 þ NB tij�1=2p
i
j�1=2

� �
þ NT tij�1=2

� �2

þDu
pij � pij�1

hj

 !
� aui�1

j�1=2s
i
j�1=2 � af i�1

j�1=2t
i
j�1=2

þati�1
j�1=2f

i
j�1=2 þ 1þ að Þ f ij�1=2t

i
j�1=2

� �
�a uij�1=2s

i
j�1=2

� �
þ asi�1

j�1=2u
i
j�1=2

¼ �

1
Pr

1þ 4
3Ra

� � tij � tij�1

hj

 !
þ d �

Pr
sij�1=2

tij � tij�1

hj

 !

þ d �

Pr
tij�1=2

� �2 þ NB tij−1=2p
i
j−1=2

� �

þNT tij−1=2
� �2 þ Du

pij � pij�1

hj

 !

þ 1� að Þ f i�1
j�1=2t

i�1
j�1=2

� �
þ a ui�1

j�1=2s
i�1
j�1=2

� �

2
666666666666664

3
777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(28)
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1
Sc

pij � pij�1

hj

 !
þ 1
Sc

NT

NB

� �
tij � tij�1

hj

 !
þ Sr

tij � tij�1

hj

 !

þ 1þ að Þ f ij�1=2p
i
j�1=2

� �
� a uij�1=2g

i
j�1=2

� �
þ agi�1

j�1=2u
i
j�1=2

�aui�1
j�1=2g

i
j�1=2 � af i�1

j�1=2p
i
j�1=2 þ api�1

j�1=2f
i
j�1=2

¼ �
1
Sc

pij � pij�1

hj

 !
þ 1
Sc

NT

NB

� �
tij � tij�1

hj

 !
þ Sr

tij � tij�1

hj

 !

þ 1� að Þ f i�1
j�1=2p

i�1
j�1=2

� �
þ a ui�1

j�1=2g
i�1
j�1=2

� �
2
6664

3
7775

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(29)

where a ¼ j n�1=2

kn
, B ¼ sin j n�1=2ð Þ

j n�1=2

The boundary conditions become:
f i0 ¼ ui0 ¼ 0; si0 ¼ 1; gi0 ¼ 1; uiJ ¼ 0; siJ ¼ 0; giJ ¼ 0 (30)

Step 3:
The unknowns f ij ; u

i
j; v

i
j; g

i
j; p

i
j; s

i
j; t

i
j

� �
are calculated with the help of following knowns

f i�1
j , ui�1

j , vi�1
j , gi�1

j ; pi�1
j , si�1

j , ti�1
j where 0# j# J and f ij ; u

i
j; v

i
j; g

i
j; p

i
j; s

i
j; t

i
j

� �
�

fj; uj; vj; gj; pj; sj; tj
	 


:

The set of central difference equations are expressed as follows:
uj þ uj�1

2
¼ fj � fj�1

hj
; (31)

vj þ vj�1

2
¼ uj � uj�1

hj
; (32)

tj þ tj�1

2
¼ sj � sj�1

hj
; (33)

pj þ pj�1

2
¼ gj � gj�1

hj
; (34)

vj � vj�1ð Þ � g �

2
sj þ sj�1ð Þ vj � vj�1ð Þ þWej vj þ vj�1ð Þ vj � vj�1ð Þ

�Wej g �

2
sj þ sj�1ð Þ vj þ vj�1ð Þ vj � vj�1ð Þ �Wej hjg �

8
tj þ tj�1ð Þ

vj þ vj�1ð Þ2 þ 1þ að Þhj
4

fj þ fj�1
	 


vj þ vj�1ð Þ
 �� hj

4
1þ að Þ

uj þ uj�1ð Þ2 � g �

4
hj vj þ vj�1ð Þ tj þ tj�1ð Þ � hj

2
Mað Þ uj þ uj�1ð Þ

þahj
2

vi�1
j�1=2 fj þ fj�1

	 
� ahj
2

f i�1
j�1=2 vj þ vj�1ð Þ

þBhj
2

sj þ sj�1 � Nr gj þ gj�1ð Þ � ¼ E1½ �i�1
j�1=2

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(35)
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1
Pr

1þ 4
3Ra

� �
tj � tj�1ð Þ þ d �

2Pr
sj þ sj�1ð Þ tj � tj�1ð Þ

þ d �

4Pr
hj tj þ tj�1ð Þ2 þ NB

4
hj tj þ tj�1ð Þ pj þ pj�1ð Þ

þNT

4
hj tj þ tj�1ð Þ2 þ Du pj � pj�1ð Þ þ 1þ að Þhj

4
fj þ fj�1
	 


tj þ tj�1ð Þ � ahj
4

uj þ uj�1ð Þ sj þ sj�1ð Þ½ �
þahj

2
si�1
j�1=2 uj þ uj�1ð Þ � ahj

2
ui�1
j�1=2 sj þ sj�1ð Þ

�ahj
2

f i�1
j�1=2 tj þ tj�1ð Þ þ ahj

2
ti�1
j�1=2 fj þ fj�1

	 
 ¼ E2½ �i�1
j�1=2

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(36)

1
Sc

pj � pj�1ð Þ þ 1
Sc

NT

NB
tj � tj�1ð Þ þ Sr tj � tj�1ð Þ

þ 1þ að Þhj
4

fj þ fj�1
	 


pj þ pj�1ð Þ
 �� ahj

4
uj þ uj�1ð Þ gj þ gj�1ð Þ½ �

þahj
2

gi�1
j�1=2 uj þ uj�1ð Þ � ahj

2
ui�1
j�1=2 gj þ gj�1ð Þ

�ahj
2

f i�1
j�1=2 pj þ pj�1ð Þ þ ahj

2
pi�1
j�1=2 fj þ fj�1

	 
 ¼ E3½ �i�1
j�1=2

9>>>>>>>>>=
>>>>>>>>>;

(37)

Here E1½ �i�1
j�1=2; E2½ �i�1

j�1=2 and E3½ �i�1
j�1=2 are the known quantities:

E1½ �i�1
j�1=2¼ �hj

vj � vj�1

hj

� �
� g �sj�1=2

vj � vj�1

hj

� �
þ 2Wej vj�1=2

vj � vj�1

hj

� �
� 2Wej g �sj�1=2vj�1=2

vj � vj�1

hj

� �
�Wej g �tj�1=2 vj�1=2ð Þ2 � g � tj�1=2vj�1=2

	 

þ 1� að Þ fj�1=2vj�1=2

� �
þ a� 1ð Þ uj�1=2ð Þ2

þB sj�1=2 � Nrgj�1=2

� �
� Mað Þuj�1=2

2
6666666666664

3
7777777777775

E2½ �i�1
j�1=2¼ �hj

1
Pr

1þ 4
3Ra

� �
tj � tj�1

hj

 !
þ d �

Pr
sj�1=2

tj � tj�1

hj

 !

þ d �

Pr
tj�1=2
	 
2 þ NB tj�1=2pj�1=2

	 

þNT tj�1=2

	 
2 þ Du
pj � pj�1

hj

 !

þ 1� að Þ fj�1=2tj�1=2

� �
þ a uj�1=2sj�1=2ð Þ

2
6666666666664

3
7777777777775
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E3½ �i�1
j�1=2¼ �hj

1
Sc

pj � pj�1

hj

 !
þ 1
Sc

NT

NB

� �
tj � tj�1

hj

 !
þ

Sr
tj � tj�1

hj

 !
þ 1� að Þ fj�1=2pj�1=2

� �
þa uj�1=2gj�1=2ð Þ

2
6666666664

3
7777777775

Linearization and block elimination processes of Keller Box Method scheme is provided in
the Appendix section.

In the present problem, the maximum values of j and h are considered as 1 and 30,
respectively. The difference between the spatial nodes are taken as 0.05 in both
directions for convergence of the solution. It is noteworthy to mention that the
pseudoplastic nanofluid boundary layer regime is meshed with (20� 600) grid points.
To increase the accuracy of the present solution, the convergence criterion has been
fixed as 10�6 at all grid points. Comparison results of Nu* for various values of
streamwise coordinate, j , are provided in Table 1. It is evident that the current Keller
box solutions achieve a very good agreement with the results obtained by Merkin
(1977), Yih (2000) and Prasad et al. (2019) when nanoscale and other effects are
neglected to reduce the current boundary value problem to exactly that considered by
these earlier studies with exactly the same data prescribed. It is witnessed that the
obtained Keller box code is therefore justifiably very high. Tables 2, 3 and 4 documents
the Keller box solutions for skin friction factor, rates of heat and mass transfer with
diverse values in key parameters. These tables provide a useful benchmark for future
researchers to validate alternative numerical computations with supplementary multi-
physical effects. Figure 2 illustrates the Keller box numerical methodology, boundary
layer mesh and Keller box discretization process.

Table 1.
Comparison result of
Nu* for various
values of j with
Pr = 0.71, Ra !1,
Ma = 0.5, Sc = 0.6,
We = Nr = g * = d* =

N
B
= N

T
= D

u
= S

r
= 0

j Nu* = –u 0 (j ,0)

Merkin (1977) Yih (2000) Prasad et al. (2019) Present

0.0 0.4212 0.4214 0.4211 0.4211
0.2 0.4204 0.4207 0.4206 0.4206
0.4 0.4182 0.4184 0.4185 0.4185
0.6 0.4145 0.4147 0.4146 0.4146
0.8 0.4093 0.4096 0.4095 0.4095
1.0 0.4025 0.4030 0.4027 0.4027
1.2 0.3942 0.3950 0.3947 0.3947
1.4 0.3843 0.3854 0.3852 0.3852
1.6 0.3727 0.3740 0.3735 0.3735
1.8 0.3594 0.3608 0.3598 0.3598
2.0 0.3443 0.3457 0.3448 0.3448
2.2 0.3270 0.3283 0.3280 0.3280
2.4 0.3073 0.3086 0.3076 0.3076
2.6 0.2847 0.2860 0.2852 0.2852
2.8 0.2581 0.2595 0.2592 0.2592
3.0 0.2252 0.2267 0.2255 0.2255
p 0.1963 0.1962 0.1961 0.1961
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Table 2.
Impacts of g * and d *

on local skin friction
coefficient C�

f
	 


,
dimensionless local
rate of heat transfer

(Nu*) and
dimensionless local
rate of mass transfer

(Sh*) for various
values of j

Physical Values Physical j CPU
parameters quantities 0 0.5 1 1.5 2 2.5 time(s.)

C*
f 0 0.2284 0.4048 0.4779 0.4482 0.2708

0 Nu* 0.5761 0.5590 0.5271 0.4757 0.4055 0.3013 8.365484
Sh* 0.1523 0.1479 0.1395 0.1261 0.1078 0.0804
C*
f 0 0.2006 0.3612 0.4178 0.4047 0.2421

g* 0.2 Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 8.061629
Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
C*
f 0 0.1667 0.3059 0.3479 0.3433 0.2156

0.4 Nu* 0.5933 0.5701 0.5414 0.4850 0.4186 0.3118 9.043056
Sh* 0.1564 0.1504 0.1430 0.1283 0.1109 0.0830
C*
f 0 0.1466 0.2719 0.3077 0.3046 0.1996

0.6 Nu* 0.5987 0.5728 0.5455 0.4877 0.4221 0.3158 12.654024
Sh* 0.1577 0.1510 0.1439 0.1289 0.1118 0.0839
C*
f 0 0.1962 0.3529 0.4081 0.3948 0.2354

0 Nu* 0.5469 0.5286 0.4996 0.4490 0.3844 0.2839 8.193623
Sh* 0.1400 0.1355 0.1281 0.1154 0.0989 0.0735
C*
f 0 0.2006 0.3612 0.4178 0.4047 0.2421

d * 0.5 Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 8.239927
Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
C*
f 0 0.2045 0.3683 0.4261 0.4132 0.2480

1.0 Nu* 0.6198 0.5993 0.5669 0.5104 0.4384 0.3268 8.099395
Sh* 0.1657 0.1603 0.1518 0.1368 0.1178 0.0880
C*
f 0 0.2077 0.3744 0.4333 0.4206 0.2532

1.5 Nu* 0.6546 0.6332 0.5991 0.5398 0.4642 0.3474 9.210965
Sh* 0.1753 0.1695 0.1606 0.1448 0.1249 0.0935

Figure 2.
Solution approach by
computer, boundary

layer mesh and Keller
box cell
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4. Results and discussion
The current section is aimed to visualize the influence of emerging parameters on velocity
(f0), temperature (u ), concentration (f ), skin friction factor C�

f
	 


, wall heat transfer rate (Nu*)
and wall nanoparticle mass transfer rate (Sh*). The parameters varied and their values are:
Weissenberg number (We = 0.0,0.5,1.0,1.5), magnetic field (Ma = 0.0,0.5,1.0,1.5), variable
viscosity parameter (g * = 0.0,0.2,0.4,0.6), variable thermal conductivity parameter (d * =
0.0,0.5,1.0,1.5), Brownian motion (NB = 0.2,0.4,0.6,0.8), thermophoresis (NT = 0.01,0.1,0.3,1.5),
radiation (Ra= 0.1,0.3,0.5,0.8), Soret number (Sr= 0.4,0.2,0.1,0.075) and Dufour number (Du=
0.15,0.3,0.6,0.8). All used data in the simulations is based on practically viable nano-
materials processing systems which is extracted from Das et al. (2007) and Jaluria (2013).
Figures 3–22 depict the variation in momentum, heat transfer and nanoparticle
concentration characteristics and consistently smooth profiles are achieved in the free
stream, testifying to the prescription of an adequately larger infinity boundary condition. A
further novelty in the current study is that Figures 23–25 have been included to visualize the
3D contour distributions and Figures 26–28 have been provided to illustrate the streamline,
isothermal and iso-concentration distributions. This color contoured visualization has
invariably been omitted in the majority of Keller box numerical studies.

The impact of magnetic field (Ma) on velocity (f0), temperature (u ) and nanoparticle
concentration (f ) are depicted in Figures 3–5. In an electrically conducting fluid (e.g.
magnetic nano-polymer), the magnetic field applied in the transverse direction creates an
orthogonal hydromagnetic retarding force (Lorentz force) which resists the fluid motion.
The magnitude of Lorentz force increases with an increase in the strength of the magnetic
field B0. The implication is that regulation in coating flow of the magnetic nano-polymer is
achieved successfully via a boost in radial magnetic field which permits more homogenous
distribution of the nano-polymer over the cylinder periphery. The classical velocity
overshoot is arising in close proximity to the wall (cylinder surface), and it is progressively
suppressed with greater values of Ma. Maximum acceleration and thickest boundary layer
thickness corresponds to the electrically non-conducting case (Ma = 0). Although a slight

Figure 3.
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switch in the effect of magnetic field on velocity distribution is generated further from the
cylinder surface (approaching the free stream), the dominant effect is retardation. However,
back flow is never instigated because velocities are consistently positive indicating that
even at relatively strong magnetic field (Ma = 1.5), flow separation is avoided. The
evolutions in temperature and nano-particle concentration with magnetic field are displayed

Figure 4.
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in Figures 4 and 5, respectively. Strengthening the magnetic field results in enhancing the
Lorentz force which necessitates greater work expenditure by the nanofluid in dragging
against the action of the magnetic field. This excess work is dissipated as thermal energy
which heats the coating regime and elevates thermal boundary layer thickness. A
consistently monotonic decay in the fluid temperature from the cylinder surface to the free
stream is computed (Figure 4). Simultaneously the nanoparticle diffusion is assisted in the

Figure 6.
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boundary layer, i.e. nanoparticle concentration magnitudes (Figure 5) are boosted for
strengthening the magnetic field. Magnetic field therefore has the dual benefit of flow
control and mobilization of more homogenous migration of nanoparticles; however, it leads
to temperature and concentration elevation.

The response in velocity distribution to variable viscosity parameter (g *) is given in
Figure 6. g * takes positive values to characterize the liquids such as water, crude oil and

Figure 8.
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benzene, whereas it takes negative values to represent the gases such as air, methane and
helium. It is apparent that higher values of variable viscosity parameter initially slightly
increases the Williamson fluid velocity near the cylinder surface (wall); however, the
dominant effect is a deceleration which extends through the majority of the boundary layer
region, and it is attributable to the reduction in momentum diffusion. A similar response has

Figure 10.
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been reported by Kafoussias andWilliams (1995) and Nasrin and Alim (2009), among many
other studies. Figures 7 and 8 exhibit the influence of variable thermal conductivity
parameter d * on nanofluid velocity and temperature. It is evident from these figures that
both characteristics manifest an elevation with higher values of d *. This parameter features
in the augmented thermal diffusion term, (1 þ d *u )u 0 0/Pr in the energy equation (11) and

Figure 12.
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accentuates heat transfer inside the nanofluid. Higher values of thermal conductivity
variation parameter intensify thermal conduction which assists in thermal diffusion and
momentum diffusion. This results in a slight accentuation in hydrodynamic and thermal
boundary layer thicknesses. Evidently, the inclusion of thermal conductivity variation
produces results which more accurately predict the velocity and temperature magnitudes.
Absence of this parameter (d *=0) leads to an under-prediction in both quantities which
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results in lower momentum and lower thermal boundary layer thickness estimates, which
are undesirable in manufacturing operations and can incur expenses, as noted by Jaluria
(2013).

Figures 9 and 10 depict the influence of Rossleand conduction-radiation parameter (Ra)
on fluid velocity and temperature profiles, respectively. Like the thermal conductivity
variation parameter d *, the Rossleand conduction-radiation parameter Ra ¼ kek0f

4sBT31
is an

Figure 16.
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additional feature in the thermal diffusion term, (4/3PrRa)u 00. Although the parameter exists
in denominator, the contribution is still that of thermal conduction heat transfer relative to
radiative heat transfer. As Ra increases, thermal conduction becomes progressively larger
(for Ra < 1 it always dominates thermal radiation), and this causes the flow to decline
(Figure 8). For higher values of Ra, more heat is transferred away from the geometry, and

Figure 18.
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this leads to lower temperature and thinner thermal boundary layer thickness (Figure 9). It
is noteworthy that the Rosseland model assumes that radiative equilibrium is sustained in
the simulations, and the nanofluid is gray, and furthermore that the intensity is the black-
body intensity at the nanofluid temperature. Implicit in this flux approximation is the
requirement that the optical thickness exceeds three for reasonable accuracy as noted by
Modest (1992) and later Beg et al. (2016). Optical thickness and absorption coefficient are
dimensionless quantifications of how much a given medium (nanofluid) retards the passage
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Figure 22.
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of thermal radiation. Radiative intensity falls by an exponential factor when optical
thickness is unity. Physically optical thickness will be a function of absorption coefficient
(ke), medium density and propagation distance. Although the flux model is much simpler
than other algebraic approximations (e.g. P1 Traugott model), it does predict fairly
accurately the influence of radiative flux.

Figure 11 illustrates the effect of thermophoresis (NT) on nanofluid temperature
distribution. In the phenomenon of thermophoresis, the heated nanoparticles are pushed
from a hot surface to a cold area. Thermophoretic body force therefore mobilizes
nanoparticle migration from the cylinder surface and encourages heat diffusion into the
boundary layer away from the wall. This results in an elevation in nanofluid temperature
and a concomitant increase in thermal boundary layer thickness. A similar pattern has been
reported in many other studies including Raju and Sandeep (2016) and Prasad et al. (2019).
The influence of thermophoresis on nanoparticle concentration profiles is illustrated in
Figure 12. It is confirmed that thermophoretic body force promotes the transport of
nanoparticles by moving the nanoparticles from the heated isothermal cylinder wall to the
nanofluid boundary layer regime and therefore enhances nanoparticle concentration
magnitudes. The amplification in magnitudes is considerably greater than temperatures
because thermophoresis is essentially a species diffusion phenomenon which affects thermal
field, as simulated in the quadratic temperature derivative term, NT(u 0)2 in the thermal
boundary layer equation (11). A simultaneous enhancement in nanoparticle concentration
boundary layer thickness is also induced.

The effect of Brownian motion parameter (NB) on Williamson nanofluid concentration is
exhibited in Figure 13. It is known that larger values of Brownian motion parameter NB in
the Buongiorno model correspond to smaller nanoparticle sizes and a reduction in ballistic
collisions which diminish the nanoparticle concentration i.e. there is a depletion in the
volume fraction. In the Buongiorno model, NB arises in a coupled thermal-species diffusion
term, also in the energy equation (11), viz, NBu

0f 0. When this term is magnified, the species
diffusion is reduced. A limitation of this model is that actual nanoparticle types, e.g. metallic
oxides or carbon silicates cannot be simulated because a framework for their properties
cannot be accommodated. This is achievable in the Tiwari–Das model, as noted by
Beg et al. (2019b). However, the Tiwari–Das model does not feature a mechanism for species
diffusion because it omits a concentration balance equation. A possible remedy to this
dilemma is the fusion of both models and this is currently under investigation.

Figure 14 exhibits the modification in velocity profiles with Weissenberg rheological
number. It is known that Weissenberg number is the ratio between the fluid stress

Figure 25.
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relaxation time and specific process time. This parameter is a measure of the elastic force in
a fluid to the viscous hydrodynamic force. It can be regarded as the product of shear rate
and relaxation time and is generally obtained via scaling the evolution of the stress, based
on a careful selection of shear or elongation rate, and the length-scale. Weissenberg number
features strongly in the terms, 2Wej (1 – g *u )f000f00 – Wej g * (f00)2u 0 in the momentum
equation (10). A weak flow deceleration is induced near the cylinder surface, whereas further
into the boundary layer, transverse to the cylinder, a weak acceleration is observed. The
pseudoplastic fluid experiences strong tensile stresses near the wall which prohibit
momentum diffusion. These forces are relaxed with greater distance from the wall (cylinder
surface) and manifest in a slight enhancement in velocities. These findings are corroborated
with other investigations including Malik et al. (2016). Figure 15 shows the influence of
Weissenberg number on temperature profiles. Higher values of Weissenberg number
enhance the fluid relaxation time, as a result, momentum diffusion is encouraged. Although

Figure 26.
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We does not feature in the energy equation (11), the velocity–temperature coupling terms

which include the convective terms, j f 0 @u@j � u 0 @f
@j

h i
, and fu 0 result in an indirect effect of

elasticity on the temperature field. This results in a weak elevation in nanofluid temperature
with an increase in Weissenberg number and a slight thickening in thermal boundary layer
external to the cylinder.

Figures 16–18 are portrayed to display the influence of Soret and Dufour numbers on
nanofluid velocity, temperature and nanoparticle concentration distributions, respectively.
Williamson nanofluid velocity and temperature distributions (Figures 16 and 17)
consistently increase with increment in Dufour number and simultaneous decrement in
Soret number. The Dufour diffuso-thermal concentration gradient term, Duu

0 0 in the energy
equation (11) clearly assists in thermal diffusion whereas the Soret thermo-diffusion term,
Sru 0 0 in the nanoparticle concentration equation (12) opposes thermal diffusion. Effectively

Figure 27.
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thermal boundary layer thickness is boosted with greater Du values and depleted with
greater Sr values. The modification in velocity is via coupling of the energy and nanoparticle
concentration equations to the momentum equation (10) in numerous terms, but notably the
dual buoyancy (thermo-solutal) term, Sinjj u � Nrfð Þ. The contrary behavior is computed in
Figure 18, wherein an increase in Dufour number with a reduction in Soret number is
observed to depress nanoparticle concentration. Stronger Soret effect (thermo-diffusion) is
therefore assistive to migration of nanoparticles, whereas stronger Dufour effect (diffuso-
thermal) is inhibitive.

Figures 19 and 20 show the impact of Brownian motion parameter on Nusselt and
Sherwood numbers at the cylinder surface. A substantial suppression in Nusselt number is
induced with increasing values of Brownian motion, but the reverse behavior is exhibited
(i.e. a strong elevation) in Sherwood numbers. In both plots, the maximum rates of heat and
mass transfer at the wall are computed at j = 0 (lower stagnation point) and progressively

Figure 28.
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decrease with increasing streamwise coordinate, j . It is to be noted that greater Brownian
motion clearly encourages heating in the nanofluid (elevation in temperature) by drawing
heat away from the cylinder surface which leads to a plummet in Nusselt number.
Conversely, higher Brownian motion effect (smaller nanoparticles) produces a reduction in
nanoparticle concentration values in the nanofluid such that greater translocation of
nanoparticles to the boundary (cylinder surface) is mobilized, which explains the
considerable magnification in Sherwood number.

Figure 21 illustrates the influence of Soret and Dufour numbers on the skin friction
factor, i.e. dimensionless shear stress at the cylinder surface. Skin friction factor vanishes at
j = 0, a characteristic of stagnation point flow, i.e. the flow is brought to rest here, and no
shear stress can be generated. With increasing streamwise coordinate j , there is generally a
monotonic increase in shear stress which is associated with boundary layer growth along
the cylinder periphery, as eloquently noted by Glauert and Lighthill (1955) based on an
exceptionally rigorous asymptotic analysis. Figure 22 displays the influence of Soret and
Dufour numbers on the Sherwood number. An increase in Dufour number with a
concomitant decrease in Soret number is observed to markedly increase the rate of mass
transfer. A consistently monotonic decay in Sherwood number is computed i.e. the
maximum nanoparticle mass transfer to the cylinder surface arises at the stagnation point
and progressively diminishes with increasing streamwise coordinate j . This behavior is
clearly computable with two-dimensional axisymmetric models (j , h ) which are easily
simulated with the Keller box scheme. Equations (10)–(12) at the stagnation point, j � 0,
clearly contract to ordinary differential equations, implying that single-spatial variable
models (h ) lack the physical rigor for realistic simulations of axisymmetric heat transfer
from curved bodies.

It is to be noted that the numerical domain is meshed with 25� 25 grid points for
visualizing 3D and contour plots. Figure 23 reveals that skin friction factor is strongly
augmented with increasing streamwise coordinate j until a critical point at which it peaks
(j � 2); thereafter, it descends steadily with further streamwise distance, as characterized
by the parabolic-type topology. Figures 24 and 25 show that Nusselt number is greatly
suppressed with higher Ma and NT values, i.e. heat transfer rate to the wall is a decreasing
function of magnetic field and thermophoresis. This corroborates the earlier computations
which have shown that temperature is elevated with stronger magnetic field and
thermophoretic body force. Because the pseudoplastic nanofluid is heated with both effects,
there is an associated decrement in rate of heat transfer to the cylinder surface (boundary)
i.e. lower Nusselt numbers. It is noticed from these figures that the lower Lorentz force and
lower thermophoresis have a high rate of heat transfer at the stream coordinate (j � 1).
Furthermore, increasing values of the Lorentz force and thermophoresis promotes
pseudoplastic nanofluid temperature which leads to reduce heat transfer rate.

Figures 26–28 illustrate the streamlines, isothermal and iso-concentration distributions
for various values of streamwise coordinate j , magnetic field Ma and buoyancy ratio
parameter Nr. Figure 26 shows that the streamlines are denser near the wall (cylinder
boundary). It is to be noted that increasing the streamwise coordinate j , from 0.5 to 1.5
serves to intensify the streamlines density whereas a subsequent increment in this
coordinate from 1.5 to 2.5 manifests in a relaxation in streamlines. Moreover, higher values
of magnetic field and buoyancy ratio parameter (progressively stronger species buoyancy,
although for Nr < 1 thermal buoyancy is dominant) tend to reduce the density of
streamlines, which expand in a fan-like manner in the transverse direction (h ). Figures 27
and 28 indicate that an increase in the streamwise coordinate j , magnetic field and
buoyancy ratio parameter, inflate the thermal and mass boundary layer thickness.
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Strengthening the magnetic field amplifies the Lorentz force which triggers the electrical
conductivity particles in the pseudoplastic nanofluid and tends to increase the fluid
temperature and concentration in the pseudoplastic nanofluid, thus increases the heat and
mass boundary layer thickness. Generally, Nr is expressed as the ratio of nanoparticle
concentration to the thermal buoyancy force. Nr occurs in terms of sin j

j u � Nrfð Þ in the
momentum boundary layer equation. Therefore, nanofluid temperature and nanoparticle
concentration are strongly coupled in the nanofluid momentum equation. Hence, thermal
and mass boundary layer thickness rise slightly for rising values of Nr. Also, higher values
of magnetic field and buoyancy ratio parameter generate an enhancement in heat and mass
transfer to the wall, as testified by the lateral fanning in isotherms and iso-concentrations.

5. Conclusion
Motivated by simulating high-temperature magnetic nano-polymer coating flow transport
phenomena, a detailed mathematical study has been presented to investigate the
thermosolutal (combined natural convection heat and mass transfer) characteristics in
radiative pseudoplastic nanofluid boundary layer flow external to a circular cylinder under
radial static magnetic field, with variable viscosity, variable thermal conductivity, Soret and
Dufour effects. The nanoscale transport is modeled by using the Buongiorno two-
component model and the rheological behavior is accommodated by using the Williamson
model. Non-similar variables are used to transform the dimensional mass, momentum,
energy and nanoparticle concentration (volume fraction) equations into dimensionless form.
This nonlinear coupled boundary value problem is solved with the implicit finite difference
Keller box method under appropriate wall and free stream boundary conditions. Extensive
validation of the solutions with earlier published results is included. The transport
properties of the fluid are studied for variation in all thermophysical parameters and
visualized as graphs versus transverse coordinate, three-dimensional surface plots, contour
plots, streamlines, isothermal and iso-concentration plots. The main findings of the current
study are summarized as follows.

� Nanofluid temperature and nanoparticle concentration magnitudes are elevated
significantly with increasing magnetic field strength.

� Flow deceleration is induced with larger values of the variable viscosity parameter.
� Higher values of the thermal conductivity parameter enhance velocity and

temperature magnitudes.
� An enhancement in Dufour number with a simultaneous decrement in Soret number

generates marked flow acceleration and heating, i.e. greater temperature magnitudes.
� An increase in Weissenberg number (i.e. stronger elastic forces relative to viscous

forces and greater relaxation time of the pseudoplastic fluid) and thermophoresis
parameter increases the nanofluid temperature.

� The density of streamlines is reduced with increasing the magnetic field and
buoyancy ratio parameter.

� Higher values of magnetic field and buoyancy ratio parameter boost the isotherms
and isoconcentration.

The present study has ignored nanoparticle types, e.g. metallic oxides. This can be
considered using the Tiwari–Das formulation in future investigations. Furthermore,
ferromagnetic effects may be considered by including magnetic dipoles which also feature in
magnetic nano-materials processing systems.
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Appendix
To linearize the nonlinear system of equations using Newton’s method, we introduce the following
iterates:

v f nð Þ
j ¼ f nþ1ð Þ

j � f nð Þ
j ;

vu nð Þ
j ¼ u nþ1ð Þ

j � u nð Þ
j ;

vv nð Þ
j ¼ v nþ1ð Þ

j � v nð Þ
j ;

vs nð Þ
j ¼ s nþ1ð Þ

j � s nð Þ
j ;

v t nð Þ
j ¼ t nþ1ð Þ

j � t nð Þ
j ;

vg nð Þ
j ¼ g nþ1ð Þ

j � g nð Þ
j ;

vp nð Þ
j ¼ p nþ1ð Þ

j � p nð Þ
j

Implementing the above expressions in equations (30)–(36) and neglecting higher-order terms of v ,
leads to:

v fj � v fj�1 � hj
2
vuj � hj

2
vuj�1 � e1ð Þj ¼ 0 (A.1)

vuj � vuj�1 � hj
2
vvj � hj

2
vvj�1 � e2ð Þj ¼ 0 (A.2)

vsj � vsj�1 �
hj
2
v tj �

hj
2
v tj�1 � e3ð Þj ¼ 0 (A.3)

vgj � vgj�1 � hj
2
vpj � hj

2
vpj�1 � e4ð Þj ¼ 0 (A.4)

a1ð Þjvvj þ a2ð Þjvvj�1 þ a3ð Þjv fj þ a4ð Þjv fj�1 þ a5ð Þjvuj þ a6ð Þjvuj�1 þ a7ð Þjvsj

þ a8ð Þjvsj�1 þ a9ð Þjv tj þ a10ð Þjv tj�1 þ a11ð Þjvgj þ a12ð Þjvgj�1 � e5ð Þj�1=2 ¼ 0;

(A.5)
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b1ð Þjv tj þ b2ð Þjv tj�1 þ b3ð Þjv fj þ b4ð Þjv fj�1 þ b5ð Þjvuj þ b6ð Þjvuj�1

þ b7ð Þjvsj þ b8ð Þjvsj�1 þ b9ð Þjvpj þ b10ð Þjvpj�1 � e6ð Þj�1=2 ¼ 0
(A.6)

c1ð Þjvpj þ c2ð Þjvpj�1 þ c3ð Þjv fj þ c4ð Þjv fj�1 þ c5ð Þjvuj þ c6ð Þjvuj�1

þ c7ð Þjvgj þ c8ð Þjvgj�1 þ c9ð Þjv tj þ c10ð Þjv tj�1 � e7ð Þj�1=2 ¼ 0;
(A.7)

where

a1ð Þj ¼ 1� g �sj�1=2 þ 2Wej vj�1=2 � 2Wej g �vj�1=2sj�1=2

þ hj �Wej g �vj�1=2tj�1=2 � g �

2
fj�1=2 þ 1þ að Þ

2
fj�1=2 � a

2
f n�1
j�1=2

� �
;

a2ð Þj ¼ � 1� g �sj�1=2 þ 2Wej vj�1=2 � 2Wej g �vj�1=2sj�1=2
	 


þ hj �Wej g �vj�1=2tj�1=2 � g �

2
fj�1=2 þ 1þ að Þ

2
fj�1=2 � a

2
f n�1
j�1=2

� �

a3ð Þj ¼ hj
1þ að Þ
2

vj�1=2 þ a

2
vn�1
j�1=2

� �
;

a4ð Þj ¼ a3ð Þj;

a5ð Þj ¼ hj � 1þ að Þuj�1=2 � 1
2

Mað Þ
� �

;

a6ð Þj ¼ a5ð Þj;

a7ð Þj ¼ � g �

2
vj � vj�1ð Þ �Wej g � vj � vj�1ð Þvj�1=2 þ

B
2
hj;

a8ð Þj ¼ a7ð Þj;

a9ð Þj ¼ hj �Wej g �

2
vj�1=2ð Þ2 � g �

2
vj�1=2ð Þ

� �
;

a10ð Þj ¼ a9ð Þj;
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a11ð Þj ¼ �B
2
hjNr;

a12ð Þj ¼ a11ð Þj;

b1ð Þj ¼
1
Pr

1þ 4
3Ra

þ d �sj�1=2

� �

þ hj
d �

Pr
tj�1=2 þ NB

2
pj�1=2 þ NTtj�1=2 þ 1þ að Þ

2
fj�1=2 � a

2
f n�1
j�1=2

� �
;

b2ð Þj ¼ � 1
Pr

1þ 4
3Ra

þ d �sj�1=2

� �

þ hj
d �

Pr
tj�1=2 þ NB

2
pj�1=2 þ NTpj�1=2 þ 1þ að Þ

2
fj�1=2 � a

2
f n�1
j�1=2

� �
;

b3ð Þj ¼ hj
1þ að Þ
2

tj�1=2 þ a

2
tn�1
j�1=2

� �
;

b4ð Þj ¼ b3ð Þj;

b5ð Þj ¼ hj �a

2
sj�1=2 þ a

2
sn�1
j�1=2

� �
;

b6ð Þj ¼ b5ð Þj;

b7ð Þj ¼
d �

2Pr
tj � tj�1ð Þ þ hj �a

2
uj�1=2 � a

2
un�1
j�1=2

� �
;

b8ð Þj ¼ b7ð Þj;

b9ð Þj ¼ hj
NB

2
tj�1=2

� �
þ Du;

b10ð Þj ¼ hj
NB

2
tj�1=2

� �
� Du
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c1ð Þj ¼
1
Sc

þ hj
1þ að Þ
2

fj�1=2 � a

2
f n�1
j�1=2

� �
;

c2ð Þj ¼ � 1
Sc

þ hj
1þ að Þ
2

fj�1=2 � a

2
f n�1
j�1=2

� �
;

c3ð Þj ¼ hj
1þ að Þ
2

pj�1=2 þ a

2
pn�1
j�1=2

� �
;

c4ð Þj ¼ c3ð Þj;

c5ð Þj ¼ hj �a

2
gj�1=2 þ a

2
gn�1
j�1=2

� �
;

c6ð Þj ¼ c5ð Þj;

c7ð Þj ¼ hj �a

2
uj�1=2 � a

2
un�1
j�1=2

� �
;

c8ð Þj ¼ c7ð Þj;

c9ð Þj ¼
1
Sc

NT

NB
þ Sr;

c10ð Þj ¼ � c9ð Þj;

e5ð Þj�1=2 ¼ vj�1 � vjð Þ 1� g �sj�1=2 þ 2Wej vj�1=2 � 2Wej g �vj�1=2sj�1=2
 �

þ Wej g �hjtj�1=2 vj�1=2ð Þ2 � 1þ að Þhjfj�1=2vj�1=2 þ hj 1þ að Þu2j�1=2

þ Mað Þhjuj�1=2 þ g �hjvj�1=2tj�1=2 � ahjvn�1
j�1=2fj�1=2 þ ahjf n�1

j�1=2vj�1=2

� Bhj sj�1=2 � Nr gj�1=2ð Þ
 �þ E1ð Þi�1

j�1=2;

(A.8)

e6ð Þj�1=2 ¼
1
Pr

tj�1 � tjð Þ 1þ 4
3Ra

þ d �sj�1=2

� �
� d �

Pr
hj tj�1=2
	 
2 � NBhjtj�1=2pj�1=2

� NThj tj�1=2
	 
2 � 1þ að Þhjfj�1=2tj�1=2 þ hjauj�1=2sj�1=2 � ahjsn�1

j�1=2uj�1=2

þ ahjun�1
j�1=2sj�1=2 þ ahjf n�1

j�1=2tj�1=2;�ahjtn�1
j�1=2fj�1=2 þ Du pj�1 � pjð Þ

þ E2ð Þi�1
j�1=2;

(A.9)

HFF
31,5

1514



e7ð Þj�1=2 ¼
1
Sc

pj�1 � pjð Þ � 1þ að Þhjfj�1=2pj�1=2 þ hjauj�1=2gj�1=2 � ahjgn�1
j�1=2uj�1=2

þ ahjun�1
j�1=2gj�1=2 þ ahjf n�1

j�1=2pj�1=2 � ahjpn�1
j�1=2fj�1=2 þ 1

Sc
NT

NB
þ Sr

� �
tj�1 � tjð Þ

þ E3ð Þi�1
j�1=2:

(A.10)

The boundary conditions (29) emerge as following:

v f0 ¼ 0; vu0 ¼ 0; vsn0 ¼ 0; vg0 ¼ 0;
vuJ ¼ 0; vsJ ¼ 0; vgJ ¼ 0; f n0 ¼ un0 ¼ 0;
sn0 ¼ 1; gn0 ¼ 1; unJ ¼ 0; snJ ¼ 0; gnJ ¼ 0

Step 4: The block-elimination method is used to compute the linearized difference equations (A.1)–
(A.10) as outlined by Cebeci and Bradshaw (1984) using the matrix-vector form:

Av ¼ e

where

A ¼

A1½ � C1½ �
B2½ � A2½ � C2½ �

. .
.

. .
.

. .
.

BJ�1
 �

AJ�1
 �

CJ�1
 �

BJ
 �

CJ
 �

2
66666666666666664

3
77777777777777775

;

v ¼

v 1½ �
v 2½ �

..

.

v J�1½ �
v J½ �

2
666666666666664

3
777777777777775

; e ¼

e1½ �
e2½ �

..

.

eJ�1½ �
eJ½ �

2
666666666666664

3
777777777777775

:

The elements of the matrices are as follows:
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A1½ � ¼

0 0 0 1 0 0 0

� hj
2

0 0 0 � hj
2

0 0

0 � hj
2

0 0 0 � hj
2

0

0 0 � hj
2

0 0 0 � hj
2

a2ð Þ1 0 a10ð Þ1 a3ð Þ1 a1ð Þ1 0 a9ð Þ1
0 b10ð Þ1 b2ð Þ1 b3ð Þ1 0 b9ð Þ1 b1ð Þ1
0 c2ð Þ1 c10ð Þ1 c3ð Þ1 0 c1ð Þ1 c9ð Þ1

2
66666666666664

3
77777777777775
;

AJ
 � ¼

� hj
2

0 0 1 0 0 0

�1 0 0 0 � hj
2

0 0

0 �1 0 0 0 � hj
2

0

0 0 �1 0 0 0 � hj
2

a6ð Þj a12ð Þj a8ð Þj a3ð Þj a1ð Þj 0 a9ð Þj
b6ð Þj 0 b8ð Þj b3ð Þj 0 b9ð Þj b1ð Þj
c6ð Þj c8ð Þj 0 c3ð Þj 0 c1ð Þj c9ð Þj

2
66666666666666664

3
77777777777777775

; 2# j# J

BJ
 � ¼

0 0 0 �1 0 0 0

0 0 0 0 � hj
2

0 0

0 0 0 0 0 � hj
2

0

0 0 0 0 0 0 � hj
2

0 0 0 a4ð Þj a2ð Þj 0 a10ð Þj
0 0 0 b4ð Þj 0 b10ð Þj b2ð Þj
0 0 0 c4ð Þj 0 c2ð Þj c10ð Þj

2
666666666666664

3
777777777777775

; 2# j# J

CJ
 � ¼

� hj
2

0 0 0 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
a5ð Þj a11ð Þj a7ð Þj 0 0 0 0
b5ð Þj 0 b7ð Þj 0 0 0 0
c5ð Þj c7ð Þj 0 0 0 0 0

2
666666666664

3
777777777775
; 1# j# J � 1
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v 1½ � ¼

vv0

vp0

v t0

v f1

vv1

vp1

v t1

2
66666666666664

3
77777777777775
; v j½ � ¼

vuj�1

vgj�1

vsj�1

v fj

vvj

vpj

d tj

2
666666666666664

3
777777777777775

; 2# j# J

and ej½ � ¼

e1ð Þj� 1=2ð Þ
e2ð Þj� 1=2ð Þ
e3ð Þj� 1=2ð Þ
e4ð Þj� 1=2ð Þ
e5ð Þj� 1=2ð Þ
e6ð Þj� 1=2ð Þ
e7ð Þj� 1=2ð Þ

2
6666666666666664

3
7777777777777775

; 1# j# J

Table A1.
Impacts ofMa and
Du and Sr on local

skin friction
coefficient C�

f
	 


,
dimensionless local
rate of heat transfer

(Nu*) and
dimensionless local
rate of mass transfer

(Sh*) for various
values of j

Physical Values Physical j CPU
parameters quantities 0 0.5 1 1.5 2 2.5 time(s)

C�
f 0 0.2521 0.4667 0.5634 0.5959 0.4613

0.0 Nu* 0.6688 0.6499 0.6256 0.5798 0.5282 0.4504 8.757743
Sh* 0.1758 0.1710 0.1646 0.1527 0.1391 0.1188
C�
f 0 0.2006 0.3612 0.4178 0.4047 0.2421

Ma 0.5 Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 9.832399
Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
C�
f 0 0.1681 0.2968 0.3344 0.3061 0.1558

1.0 Nu* 0.5206 0.5009 0.4666 0.4089 0.3318 0.2136 10.132770
Sh* 0.1385 0.1334 0.1245 0.1095 0.0893 0.0581
C�
f 0 0.1463 0.2554 0.2837 0.2521 0.1206

1.5 Nu* 0.4744 0.4549 0.4195 0.3614 0.2835 0.1692 9.951370
Sh* 0.1274 0.1223 0.1132 0.0981 0.0778 0.0473

0.15 C�
f 0 0.1974 0.3552 0.4109 0.3977 0.2374

& Nu* 0.5919 0.5722 0.5411 0.4867 0.4172 0.3087 8.980526
0.4 Sh* 0.1391 0.1347 0.1276 0.1152 0.0992 0.0742
0.3 C�

f 0 0.1988 0.3577 0.4137 0.4006 0.2393
Du&Sr & Nu* 0.5913 0.5716 0.5405 0.4860 0.4166 0.3086 12.504586

0.2 Sh* 0.1465 0.1418 0.1342 0.1210 0.1041 0.0776
0.6 C�

f 0 0.2006 0.3612 0.4178 0.4047 0.2421
& Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 14.960204

0.1 Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
0.8 C�

f 0 0.2019 0.3634 0.4204 0.4073 0.2439
& Nu* 0.5774 0.5582 0.5279 0.4750 0.4075 0.3029 9.496180

0.075 Sh* 0.1584 0.1532 0.1450 0.1306 0.1122 0.0836
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Table A2.
Impacts of Nr and Ra

on local skin friction
coefficient C�

f
	 


,
dimensionless local
rate of heat transfer
(Nu*) and
dimensionless local
rate of mass transfer
(Sh*) for various
values of j

Physical Values Physical j CPU
parameters quantities 0 0.5 1 1.5 2 2.5 time (s)

C�
f 0 0.3210 0.5917 0.6793 0.6852 0.4260

0.1 Nu* 0.6997 0.6749 0.6419 0.5792 0.5055 0.3873 9.280738
Sh* 0.1838 0.1774 0.1688 0.1523 0.1330 0.1020
C�
f 0 0.2631 0.4797 0.5531 0.5481 0.3359

Nr 0.3 Nu* 0.6478 0.6256 0.5934 0.5348 0.4631 0.3503 9.395184
Sh* 0.1704 0.1647 0.1563 0.1409 0.1222 0.0926
C�
f 0 0.2006 0.3612 0.4178 0.4047 0.2421

0.5 Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 8.220380
Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
C�
f 0 0.0941 0.1652 0.1909 0.1746 0.0967

0.8 Nu* 0.4480 0.4344 0.4093 0.3677 0.3102 0.2203 7.504675
Sh* 0.1211 0.1176 0.1112 0.1004 0.0854 0.0614
C�
f 0 0.2287 0.4134 0.4791 0.4674 0.2867

0.1 Nu* 1.4922 1.4514 1.3847 1.2702 1.1242 0.9021 12.398441
Sh* 0.2309 0.2229 0.2116 0.1910 0.1657 0.1259
C�
f 0 0.2103 0.3791 0.4388 0.4261 0.2570

Ra 0.3 Nu* 0.7667 0.7420 0.7026 0.6341 0.5467 0.4123 12.864155
Sh* 0.1828 0.1766 0.1673 0.1507 0.1299 0.0974
C�
f 0 0.2006 0.3612 0.4178 0.4047 0.2421

0.5 Nu* 0.5839 0.5645 0.5338 0.4802 0.4118 0.3056 16.059574
Sh* 0.1542 0.1492 0.1411 0.1272 0.1093 0.0814
C�
f 0 0.1922 0.3457 0.3998 0.3867 0.2300

0.8 Nu* 0.4651 0.4496 0.4252 0.3823 0.3276 0.2414 14.713669
Sh* 0.1257 0.1220 0.1158 0.1049 0.0907 0.0681
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