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Abstract

Purpose — The purpose of this paper is to propose a novel strategy of optimal parameters
configuration and placement for sensitive equipment.

Design/methodology/approach — In this study, clamped thin plate is considered as the foundation
form, and a novel composite system is proposed based on the two-stage isolation system. By means of
the theory of mechanical four-pole connection, the displacement amplitude transmissibility from the
thin plate to precision equipment is derived. For the purpose of performing optimal design of the
composite system, a novel multi-objective idea is presented. Multi-objective particle swarm
optimization (MOPSO) algorithm is adopted as an optimization technique, which can achieve a global
optimal solution (gbest), and selecting the desired solution from an equivalent Pareto set can be avoided.
Maximum and variance of the four transmitted peak displacements are considered as the fitness
functions simultaneously; the purpose is aimed at reducing the amplitude of the multi-peak isolation
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system, meanwhile pursuing a uniform vibration as far as possible. The optimization is mainly
organized as a combination of parameter configuration and placement design, and the traversal search
of discrete plate is performed in each iteration for the purpose of achieving the global optimum.
Findings — An important transmissibility based on the mechanical four-pole connection is derived,
and a composite vibration isolation system is proposed, and a novel optimization problem is also
defined here. This study reports a novel optimization strategy combined with artificial intelligence for
parameters and placement design of precision equipment, which can promote the traditional view of
two-stage vibration isolation.

Originality/value — Two-stage vibration isolation systems are widely applied to the vibration
attenuation of precision equipment, but in these traditional designs, vibration participation of
foundation is often ignored. In this paper, participation of foundation of equipment is considered, and a
coherent new strategy for equipment isolation and foundation vibration is presented. This study shows
a new vision of interdisciplinary including civil engineering, mechanical dynamics and computational
science.

Keywords Artificial intelligence, Mechanical engineering, Industrial engineering,

Simulation modeling, Multi-objective optimization,

Design implementing managing and practicing innovation, Computational mechanics,

Two-stage, Vibration isolation, Sensitive equipment, Thin plate, Composite system

Paper type Research paper

1. Introduction

Growth and development of various engineering and technical industries are often geared
toward improvement, which is typically achieved by focusing on improvements made to the
machining process. This is closely accompanied with the development of a wide variety of
application and innovation of precision and ultra-precision equipment, which is leading the
new era of modern engineering. Vibration is a key problem in the process of utilizing
sensitive equipment, and isolating and attenuating the harmful vibration from the
surrounding environment to the equipment has played a significant role.

Passive methods are commonly utilized for vibration isolation of sensitive
equipment, single-stage system of which is the most primitive method; unfortunately,
the isolation system can not always enter the desired region because of the narrow
frequency band. Subsequently, the two-stage isolation system is proposed, and
descending speed of transmissibility is much faster than the single-stage one when the
excitation frequency is greater than the second resonance frequency, which is very
conducive to perform vibration isolation with this method (Shen and Yan, 1984), and the
merits and ideal isolation effect are also recognized (Petrov, 1989). Meanwhile, with
the fast improvement of advance in sensitive equipment, requirements for isolating the
ultra-low frequency bandwidth are more stringent, and a two- or multi-stage vibration
isolation system should be adopted when a single-stage one cannot meet the desired
level (Nguyen, 1997). Isolation performance is closely related to the parameters
configuration, and appropriate parameters can improve the isolation performance;
otherwise, it will be counterproductive. Therefore, it is very necessary to perform an
optimal design for the two-stage isolation system. Snowdon (1971) performed an
analysis of the sinusoidal vibration of damped mechanical systems by the use of the
four-pole connection, and the parameters that described the bending vibrations of a
Bernoulli-Euler beam and a thin circular plate were also stated. Snowdon (1979)
evaluated both the use and the characterization of the performance of anti-vibration
mountings for the control of noise and vibration, and a discussion was then given about



the two-stage system. Wei et al. (2006) performed parameters optimization for the
two-stage vibration isolation system with a combined method of maximum entropy and
genetic algorithm, and a hybrid numerical method for the two-stage vibration isolation
design was proposed. Utilization of maximum entropy method for processing
non-differentiable optimization was also studied for the two-stage vibration isolation,
and the numerical cases could give inspiration (Chen ef al,, 2001). Song et al. (2010)
presented an implementation of an air-bearing, two-stage system and its control
strategy, and the identification and control design were introduced in detail. In addition,
the results showed that the proposed strategy could achieve a high-speed,
ultra-precision linear motion with a satisfactory performance. Bronowicki et al. (2003)
proposed a two-stage passive isolation approach using isolation first at the
vibration-inducing reaction wheels, and a second isolation layer between the bus portion
of the space vehicle (the backpack) and the optical payload for the space-based optical
instruments. Parameters optimization for a two-stage mounting isolation system was
studied, and in which the maximum entropy approach was also applied (Chen et al,
2001). Moore (2011) derived the equations of motion for generalized two-stage and
two-stage rafted vibration isolation systems using a matrix methodology, and the
supported mass and intermediate masses were assumed to be rigid and supported by
isolators with arbitrary locations and orientations.

Seen from the aforementioned presentations, traditional isolation design is generally
based on the assumption that the foundation is not involved in the vibration of affiliated
equipment; in other words, it is always considered absolutely rigid. However, the vibration
isolation will not reach an ideal level when an external high-frequency stimulus and low
stiffness of foundation exist. Therefore, vibration participation of foundation must be taken
mnto account in engineering practice. Thin plate is a common foundation form of equipment,
which is simply supported for the sake of calculation simplicity in general; however, the
clamped form cannot be ignored for its wide range of applications, such as the floors of
industrial buildings. Amabili ef al (2012) performed a study of large-amplitude forced
vibration of a clamped stainless steel plate excited by centralized harmonic force. Civalek
et al. (2009) performed free vibration analysis of annular Mindlin plates with free inner edge,
and the discrete singular convolution method was used for discretization of equations of
motion. A comparative study of active and passive vibration isolation of clamped thin plate
was conducted, which was aimed at examining piezoelectric materials in active vibration
control (Kozupa and Wiciak). A free vibration problem of clamped thin plate was solved by
using quasi Green function (Li and Yuan, 2012). Arenas (2003) derived a general numerical
expression of clamped thin plate vibration with virtual work principle, in which
simultaneous equations were avoided, and the solutions were easy to be calculated and
programmed; meanwhile, complex symmetric characteristic of the Rayleigh-Ritz method
could be overcome.

In general, the traditional gradient-based optimization requires the computations of
sensitivity factors and eigenvectors at its iteration process. This causes heavy
computational burden and slow convergence. Moreover, there is no local criterion to decide
whether a local solution is also the global solution. Thus, the conventional optimization
methods using derivatives and gradients are generally not able to locate or identify the
global optimum; however, for real-world applications, one is often content with a good
solution, even if it is not the best solution. Consequently, heuristic methods are widely used
for the global optimization problem. Particle swarm optimization (PSO) algorithm was first
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proposed by Eberhart and Kennedy (1995), and it is a novel population-based metaheuristic,
utilizing the swarm intelligence generated by the cooperation and competition between the
particles in a swarm, and has emerged as a useful tool for engineering optimization. Sun ef al.
(2014a) proposed an adaptive particle swarm optimization method (APSO), and this
technique was applied to improve the global optimization performance based on the
hypothesis testing. As an application of PSO, active vibration isolation reducing vibration
transmitted from vibrating base to sensitive equipment was investigated, and the fitness
using [, control criterion was presented as a cost function and then optimized by the PSO
algorithm (Farshidianfar ef al, 2012). This study can be a representative of the rise of PSO
technique in equipment isolations, but such researches are still few.

Coello et al. (2002) first proposed the multi-objective particle swarm optimization
(MOPSO) algorithm, and the main idea is that by determining the flying direction of the
particles with optimal Pareto sets and non-dominated solutions in the global knowledge base
found before, the particle flying can be guided, and a unique, optimal and global solution can
be obtained by use of a specific algorithm. MOPSO can overcome some disadvantages of
traditional multi-objective methods (such as strength Pareto evolutionary algorithm (SPEA)
and SPEA?2), and a desired solution selected from a group of equivalent Pareto set is solved
(Fonseca and Fleming, 1995). Applications of MOPSO have been extensively performed in
many areas, for example structural vibration control (Marinaki ef al, 2011), power
transmission and transformation (Sun et al, 2014a), active suspension of vehicle system
(Rajagopal and Ponnusamy, 2014), etc. However, the application of MOPSO in vibration
suppression of equipment is rare, and the researches involved in this can be considered as a
prospect.

In this paper, vibration participation of foundation is considered, and a novel
composite two-stage vibration isolation system is proposed, and a key factor —
transmissibility — is derived based on the mechanical four-pole connection. For the
purpose of performing optimal design of the proposed system, a multi-objective
optimization problem is defined, and the MOPSO technique is adopted here;
furthermore, detailed numerical verifications are also presented.

2. Brief introductions to MOPSO

PSO was originated from the predatory behavior of birds, and each solution of the
optimization problem was regarded as a bird in the search space, which could be referred to
as particle. Each particle has its own speed and position vector (determine the direction and
distance of flight), and a current optimum pbest can be found according to fitness
computation. With the ongoing flight, the best position of the entire swarm can be updated,
and a global and optimal value gbest is obtained (gbest is the optimum of pbes?).

In the PSO algorithm, own state of every particle can be described by a group of
position and velocity vectors which, respectively, represent the possible solutions and
motion directions in the searching space. By constantly learning the found global and
optimal solutions and the moving directions, also updating the neighbor optimal
solutions, the desired solution can be obtained. The main steps of MOPSO can be
summarized as follows:

» Step I: Initialize the population, compute the corresponding objective vectors of
particles and add the non-dominated solutions to the external archive.

o Step 2: Initialize the local optimum pbest of particles and the global optimum
gbest.



o Step 3: Amend the velocities and positions of the particles by evaluating the
following equations so as to generate new pbest:

v; = wvit) + cr(pbestt) — xi(t) + corygbestit) — x4t)) )

it + 1) = x(0) + vt + 1) @

where 7 represents the ith particle; j represents the jth dimension of each particle; ¢
represents the fth generation; v;(#) represents the flight velocity vector; x,(f) represents
the flight displacement vector; pbest represents the optimal location component; gbest
represents the optimal position of the entire particle swarm,; ¢;,c, are acceleration factors
or learning factors; and ,,7, are random numbers between (0,1). w is the inertia weight
factor, which plays a key role in the PSO.

e Step 4: Maintain the external archive with the obtained new non-dominated
solution, and select gbest for every particle (the archive determines the selection of
the global optimum).

o Step 5: Whether the maximum iteration is reached; if no, the program will
continue; if yes, terminate the computation, and output the optimal Pareto
solution set and the gbest.

It is important to point out that MOPSO is essentially different with PSO, and the main
difference is focused on the selecting of global optimum and the setting and updating of
external archives; it is worth mentioning that the archives determine the global
optimum. The rule of archive updating is briefly shown in Figure 1.

Parsopoulos and Vrahatis (2002) proposed a MOPSO algorithm based upon target
aggregation, which transferred the multi-objective optimization problem to a
single-objective problem using a fixed and adaptive weight. Fieldsend and Singh (2002)
presented a data structure of dominated tree, by use of which, an elite solution was saved
and the optimal experience of particles was selected. Li (2003) introduced the main idea
of NSGA-2 into PSO for the purpose of accomplishing the multi-objective optimization,
but the result was merely closed to NSGA-2. Pareto dominance is a most direct way to
obtain a desired optimum from a group of continuous solutions, namely, consider all of
the non-dominated solutions in the archive, and determine a “leader”, and then a Pareto
frontier generates, which can be schematically seen in Figure 2. Density measuring
technique is commonly used to determine the global optimum, and the nearest neighbor
density estimation method (Deb ef al., 2002) based on the nearest neighbor congestion

S1
S2 N
> NDs S3 < "
NDs Sq NIDS
NDs <| 8; S1 I S5
Ss
external archive external archive

Note: NDs denotes non-dominated set and s ~s, denotes a group
of solutions
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Figure 2.
Non-dominated set
with Pareto frontier

evaluation of particles is adopted in this paper. Certainly, there are also other similar
methods, such as kernel density estimation method (Goldberg and Richardson, 1987).

3. Composite two-stage vibration isolation system
Schematic of two-stage vibration isolation system for typical sensitive equipment is
shown in Figure 3.

Figure 3(a) shows typical sensitive equipment used in high-resolution microscopy.
Such equipment is widely applied in various areas, including biological and chemical
engineering. This kind of equipment is vibration-sensitive and any small external
disturbance can affect the accuracy and quality.

In Figure 3(b), @ denotes the sensitive equipment, @ denotes the first-stage isolators,
® denotes the intermediate block or platform, @ denotes the second-stage isolators and
® denotes the clamped thin plate foundation. ., is the mass of equipment which is
supported by four isolators mounted on the intermediate mass; the stiffness and
damping of @ can be denoted as %, and ¢;; 7, is the intermediate mass; and the stiffness
and damping of @ can be denoted as %, and ¢,. The geometry of the thin plate is
a X b X h, and the equipment can be simplified as a cuboid (plane size is e X f, and the
size of intermediate block is assumed the same). The centralized harmonic excitation
force on the plate is Fe/*!, F is the amplitude and w is the circular frequency. @~® are
considered as a composite isolation system which can be expressed in Cartesian
coordinates (shown in Figure 4), O is the coordinate origin and A, B, C and D are,
respectively, the four corner installations of sensitive equipment.

Seen from Figure 5, according to the four-pole connection (Snowdon, 1971; Yan,
1985), Systems 1 and 2 can be deemed series, and for each individual system, the
four-pole expression can be written, respectively, as:

S = [klij*][mlij]; S, = [kzg'*][ng'] ®)
where [,;] and [m;] are the four-pole parameters of mass and [%,; "] and [ k,; "] are the

four-pole parameters of the stiffness and damping in parallel; thus, the four-pole
connection of the two systems in series can be derived as:

F FL)?’I
|:X1 ] = SISZ[ij] )

fitness;

\/

fitness;



Sensitive @ m
equipment
(first stage) % k c] + f
Two-stage vibration ® n
isolation system

F
(second stage) @ ky ¢ l

Notes: (a) Physical map of a typical sensitive
equipment; (b) simplified model

Where:
o o]
* 1 —m (.02
R I Y (P I
Lk + i ]
P o]
* 1 —m (1)2
[ss] = ;  [may] = |:0 12 ]
|k, + 100
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Figure 4.
Schematic of the
proposed composite
vibration isolation
system expressed in
Cartesian coordinate
system

Figure 5.
Schematic of
four-pole connection

\/

The following can be derived by transforming equation (4) as follows:
Xl = QZlFend + QZ end (5)

Suppose F,, /X, = Z,, (Z,, denotes the mechanical impedance of sensitive equipment),
and u = my/my, 1y = kylky, 11y = €1/Co, 0,5 = \ Rol My, & = Cof(2m,0,,) and 6 = w,,/ w; then,
by dividing both the sides of equation (5) with X, the displacement transmissibility
can be derived as:

_ Xend _ Cl2 + CZZ
-3 ‘1/\/c32+cz ©




where:

C, = ABJZ, — ABZ, + AB, — ABy,
C, = ABZ, + ABZ, + AB, + ABy
C = AsByZ, — ABy

C, = AB, + AB,

A =n +1— ub%

A, = ny, X 26,0 + 2&,06,
A = mbky, — 1y X 2&,0,00;
Ay = mbky, X 26,0 + ko, X 2,6,

B, = —0% 4+ n, — 1,0 — u6? + ub* — n,(2&,)20%

B, = —2&0° + ny X 260 + n, X 26,0 — ny X 26,0° — u X 2&,0%
By = n, — ny(2€,)°6%

B, = ny X 26,0 + n, X 2§,0.

(Detailed derivation is presented in Appendix.)

Seen from equation (6), 7, is a complex function with multiple variables
U, Ny, Ny, &, Ry, €5, 0, , 4, Z,,. In a specific working condition, w, 7,, Z,, can be regarded
as constants; in addition, 6 is an intermediate variable which can be derived by other
parameters; in the meantime, c,(= 2&,w,,,7,) can be also regarded as a constant; thus, 7,
can be simply referred to as I'(«, 1y, 15, &, k).

4. Proposed solution of clamped thin plate vibration
Based on the virtual work principle, Arenas derived a general form of displacement
solutions of clamped thin plate excited by centralized harmonic force:

SR W, (6, )W (2, ")
X 7
(e, 2 2 BULL, + 2], + L) — puwl; @

where B = ER®/[12(1 — v?)] is the bending stiffness of thin plate; £ is the Young’s
modulus; vis the Poisson’s ratio; p, = p/ is the surface density of thin plate, and p is the
volume density; (x,y) is a random discrete point on the plate; and (x'y') is the position of
external disturbance.

In practice, the infinite series in equation (7) are often truncated into a finite term, and
in this paper, m,n = 1,2, ..., 6.

Modal function WV,,,(x,y) is denoted as:

V,,(%,9) = 0,(0)E,0) ®)

where 6,,(x) = J(B,x/a) — J(B,)/H(B,)H(B,x/a),L,) = J(By/b) — J(B,)H(B,)H(B,y/D).
J(¢) = cosh(¢) — cos(*), H(*) = sinh(*) — sin(*); and B; is the root of the formula
cosh (B)cos (B) = 1.
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M= i = B g = B < o2

(1 + D;)sinh (231-) . )
L= 4 + sinh (8)[2D;sin (B;) — (1 — DiZ)COS (B)]

-1+ Diz)Sin(Bi)COSh B) + @1 - DiZ)Sin (B;)cos (B) + B

_ Df1 + cosh (2Bi)]

5 + Dicos® (B,);
(1 + D)sinh(2B)  D;cosh(2B) (1 — D?)sin (B;)cos (B))
i 4 B 2 a 2
- Di COSZ (Bl) D, ZBz 3D D g([;i))

5. Parameters and placement optimization using MOPSO technique

In traditional studies, the isolated objects are often simplified as a mass dot; however,
size of the equipment in practice cannot be ignored with respect to the foundation. As
shown in Figure 4, transmitted vibration from thin plate to intermediate mass (then to
sensitive equipment) will bring about four different amplitudes which are extremely
unfavorable for the normal use and maintenance of sensitive equipment. Therefore,
transmitted vibration to sensitive equipment must be reduced as far as possible;
meanwhile, the different vibrations should be more uniform. Finally, a multi-objective
problem can be summarized.

In Figure 4, the original displacements of A, B, C and D of thin plate can be denoted
as X, X, X, and X, respectively, and the transmitted displacements to sensitive
equipment can be, respectively, denoted as X, o4 = | Tyul X, X,05 = | Tyl Xp, X0
| Tyl Xe and X, = | T,p| X, and the transmiss1bihty can be derived by use of the
principle described in Section 3.

The two fitness functions can be written as:

ﬁtnessl = max(iXMZA) XmQBv XmZCvaZDI) 9
ﬁtneSSZ Var()(?nzA)Xleb)’ )(77126’ XmZD) ( )

where max (¢) and var () are operations based on MATLAB2010.

Note: max (X) generates the maximum value of X (X is a vector). var (X) computes
the variance of X (X is a sample).

Figure 6 shows the discrete grid of thin plate and the schematic placement of
sensitive equipment.

The basic strategy of multi-objective optimization is organized in Figure 7.

5.1 Numerical example

The basic parameters of thin plate are set as ¢ = 3.0m,b = 6.0m,h = 02m, p =
7.800kg/m?®, v = 033, E = 2.1X10"Pa. The force amplitude is F = 10N; the circular
frequency is @ = 27 rad/s; and the coordinate of external disturbance is z
(0.5454m, 0.9765m). Discretize the thin plate so as to obtain the coordinates (x,y) of all
points on the plate, and the accuracies are, respectively, denoted as Ax, Ay:
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Ax = linspace (0,a, 34),
Ay = hnspace (0, b, round (bla X 22);
(inspace (+), round (-) are respectively the operations based on MATLAB2010)

Note: lnspace (x,,x,,N) equally generates NN spaced points between x, and x,; round(x)
rounds the element of x to the nearest integer.
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Figure 8.
Schematic of thin
plate vibration

The forced vibration of thin plate with discrete grid is schematically shown in
Figure 8, which will cause vibration of sensitive equipment, and the proposed
multi-objective optimization will be performed subsequently based on this.

The mass of sensitive equipment is supposed as m = 50kg; the mechanical
impedance is Z,, = 2000€); and the plane size is ¢ X f = 0.71 X 1.10m (assume that the
size of intermediate mass is equal to the sensitive equipment in this study). For the
two-stage isolators installed at A, B, C and D, the undetermined parameters to be
optimized can be denoted as:

Mass ratio: u;
Two-stage isolators: 7y, 7, &, k(i = 1 ~ 4).

Ty

ey

e o
e A
e e e e

x 10 T e e

e s AN
gyl Ky
1 ""n"!

27177
o LA

-10
x10

oo

o

N

0 0.5 1 15 2 2.5 3
x/m

®)

Notes: (a) Plate vibration with discrete grid; (b) plate
vibration with pseudo-color contour



The dimension of MOPSO algorithm is 17, which is corresponding to:

swarm(l) = u;
swarm(t + 1) = ny; swarm(t + 2) = ny; swarm(t + 3) = &;

swarm(t + 4) = ky[(t = 1,5,9,13).
The searching scope is arbitrarily set as:

[1e-2,1e-2,1e-2,1e-2,11e-2,1e-2,1e-2,1,1e-2,1e-2,1e-2,1,1e-2,1e-2,1e-2,1]~
[1e2,1e2,1e2,1e2,1e6,1e2,1e2,1e2,1e6,1e2 1e2,1e2,1e6,1e2,1e2,1e2,1e6].

The population size is 200; the maximum iteration is 100; and the learning factors are
defined as ¢, = 1.5, ¢, = 1.5. Linear changing strategy is utilized for inertia weight factor
(Shi and Eberhart, 1998), and w,,, = 0.9, o, = 0.4.
In this paper, the presented equipment is non-equilateral, which is aimed at
simulating a general case, and the following two placement conditions are involved.
Case 1, the short size e of equipment is in parallel with the short size @ of thin
plate; and
Case 2, the short size e of equipment is in parallel with the long size b of thin plate.
The optimization results of the presented two cases are listed in Figures 9 and 10.
The gbest solution of Case 1 is:

[64.4275,

52.2822, 38.7865, 29.7434, 9.8448 x 10,
21,5166, 22.7125,9.0775, 1.8513 X 10°,
11.9378, 47.0243, 31.5165, 3.4975 X 10%,
22.6317,48.4077,20.8889, 1.0169 X 10°].

2.5 T T T T T T T

245} 1

2.4} .

235 1

23+

ﬁtness2

225 gbest ° -
2.2} _

215}

2.1 1 1 1 1
. 9.84 9.86 9.88 9.9 9.92

fitness, x 107"
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Figure 9.

Pareto frontier with
gbest solution
(Case 1)
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Figure 10.

Pareto frontier with
gbest solution

(Case 2)

2.05 T T T T T

1.95} o -

1.9 % 4

ﬁtness2

1.8

1.75 .
8.8 9 9.2 9.4 9.6 9.8 10

fitness, x 10"

Then, the stiffness of first-stage isolators can be derived as:

Fy = 51471 X 10°N/m, ky, = 3.9835 X 10°N/m,
ke = 41752 X 10°N/m, by, = 2.3015 X 10°N/m,

and the damping parameters are:

ca; = 6.3775 X 10°N-s/m, cp = 1.5630 X 10°N-s/m,
Cop = 4.8834 X 10°N-s/m, c;; = 5.6814 X 10°N-s/m.

The stiffness of second-stage isolators can be derived as:

Fup = 98448 X 10'N/m, by, = 1.8513 X 10°N/m,
ke = 34975 X 10'N/m, ky, = 1.0169 X 10°N/m,

and the damping parameters are:

Cap = 1.6442 X 10'N-s/m, cp, = 6.8817 X 10°N-s/m,
Cep = 1.0384 X 10*N-s/m, ¢y, = 1.1736 X 10*N-s/m.

After isolation, the peak displacements of A, B, C and D transmitted to sensitive
equipment are, respectively:

Xy = 98792 X 107 m, X, = 5.7295 X 107%m,
KXo = 33022 X 107 0m, X, = 24731 X 10,



and the variance of peak displacements is 1.1042 X 10~'°. Optimal placement of equipment is
obtained simultaneously by traversal searching, and the coordinates are A(0.8181#z, 1.1160m),
B(1.5281m,1.1160m), ((1.5281m, 2.2160m1) and 1X(0.81811, 2.2160m).

The gbest solution of Case 2 is:

[45.8249,

31.8236, 4.1021, 46.0567, 3.3256 X 107,
29,0805, 62.9704, 3.9573, 1.0901 X 10*,
31,5520, 1.5888, 13.6522, 2.7444 X 10",
71.1200, 89.5540, 2.2642, 5.6669 X 10°].

The stiffness of first-stage isolators can be derived as:

Fy = 1.0583 X 107N/m, ky, = 31699 X 10°N/m,
ke = 86592 X 10°N/m, by, = 4.0303 X 10°N/m,

and the damping factors are, respectively:

Cy1 = 2.2762 X 10°N's/m, ¢y = 5.4353 X 10*N-s/m,
co = 7.5073 X 10°N-s/m, ¢, = 3.1889 X 10°N-s/m.

The stiffness of second-stage isolators can be derived as:

Fy = 3.3256 X 10°N/m, ky, = 1.0901 X 10*N/m,
ke = 2.7444 X 10'N/m, by, = 56669 X 10°N/m,

and the damping factors are, respectively:

Cap = 55487 X 10'N-s/m, cp, = 8.6316 X 10°N-s/m,
Coo = 47249 X 10°N-s/m, cp, = 3.5609 X 10°N-s/m.

After isolation, the peak displacements of A, B, C and D transmitted to sensitive
equipment are, respectively:

X = 99459 X 1079, X, = 2.9830 X 10~
chmax = 32833 X 10_10m,XD,maX = 52073 X 10_101’}’2;

and the variance of this sample is 1.0338 X 10~%. Similarly, the optimal placement of
equipment can be obtained as:

A(0.8181m, 1.1160m), B(1.9181m, 1.1160m), C(1.9181m, 1.8260mm), D(0.8181sm, 1.8260m).

Seen from the results, maximum of peak displacements of Case 1 is a little lower than
Case 2, but the variance of former one is higher; all in all, this consideration is often
ignored, but it should be taken into account in practice.
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5.2 Further discussions
In theory, more fine mesh of thin plate can lead to more reasonable placement of sensitive
equipment; however, a moderate accuracy of discrete grid is adopted here from the
standpoint of computation efficiency. In addition, arbitrary installation style can be
considered if the plate is of unlimited fine mesh, namely, the equipment is not requested to be
in parallel with thin plate; but it is quite uneasy to perform this method with general mesh
accuracy, because making the searched placement match the size of equipment well is quite
difficult and the generated error may be large, and it is just ideal for numerical computation.
It is also worth mentioning that the isolated equipment is considered as four-point
supporting here, but the optimization idea will be completely same for other methods
(such as six-point and eight-point).

6. Conclusions
In this paper, theoretical research of clamped plate vibration is combined with isolation
system of sensitive equipment, and a novel composite system based on two-stage vibration
isolation is proposed, which is aimed at simulating the micro vibration disturbed by
surrounding environment. A novel multi-objective optimization tool — MOPSO —is adopted
here, and a unique gbest solution is obtained. Lower amplitude and more uniform vibration
of the multi-peak system are defined as the objectives, and this strategy is validated
numerically. Complex expression of transmissibility is derived based on the theory of
mechanical four-pole connection, which plays a key role in the proposed system.

This study provides a broader idea for traditional isolation, and it also has certain
significance in practical design of industrial manufacturing. Especially, the artificial
intelligence combined with traditional isolation technique can give a lot of inspiration.
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Appendix
Equation (6) can be derived in detail as follows:

1 1 m o’
Q, = — + — — - -
by +icw Ry ticw (k) + joo)ky + je,w) Al
kst Ry F a0 F 0 — umyw® (A1)
k2 + jikeCyw + Jhopiatom — nytiw?
The numerator and denominator of equation (A1) are, respectively, divided by 2,
_ nlwnzz + wnZZ + jnZw X (262“"112) +] X 252(1)712(1) - uwz (A2)
_nlkzwnzz + ke X 28,5 + jRiw X 260, — n,0* X (26,0,)c,
The numerator and denominator of equation (A2) are, respectively, divided by w,,*
n + 1 — ub? + jn, X 26,0 + j X 2£,0 A3
Mbky — 1y X 28,00 + jnk, X 26,0 + jhon, X 2€,0 (A3)
Denote:
A =n +1— ud%
A, = ny, X 260 + 2&,6,
Ay = mbky, — ny X 26,6,00;
Ay = mky X 28,0 + kony X 2€,6.
Myw? mw? Myw?
QZZ e e— + ]. I a— 1 I —
by + icw by + jow ky + jeyw
— = Moko? — JMsCow® + Mk F 1 ReCow F JokoCyw — Moty 0> (A4)

— by 0® — RN’ — umok,w® — jumsc,w® + umltw*

k2 + JikoCow + otk — nytlw?

The numerator and denominator of equation (A4) are, respectively, divided by 2,



2

_ 2 _ ;3 4 2 : 2
W7W,5 Jw® X 26w, + Mo,y + jow,’ X 25w, + 00,

X 260, — M0 X (260, — uw’o,? — juw® X 2650, + uw'

n1w1124 + jnlwwnZZ X (2§2w122) + jnzw X 2§2wn3 - ”2“’2 X (2%2(1)}12)2

The numerator and denominator of equation (A5) are, respectively, divided by w,,*:

AlBSZm - ZmAzB4 + AaBl - A4Bz + j(AlBALZm + AzB:;Zm + A4Bl + AaBz)

—0% + ny — m0% — ub? + ub* — n, X (25)°0% — j2£,0° + jn,
X 26,0 + jn, X 26,0 — jn, X 26,0° — ju X 2£,0°

0y — my X (26207 + jn, X 26,0 + jn, X 26,0

= =02+ n, — n,0% — ub® + ud* — n, X (2£)°0%

= 260° + my X 260 + ny X 260 — 1y X 26,0° — u X 26,0%
= — ny X (26107

=1, X 260 + 1y X 260,

Ay +jA, B, +jB, _

021;n+922:A3+jA4m Bg+jB4_

Denote:
B,
B,
By
B,
In summary:
Denote:

AsBy — AB, + j(A:B, + BA,)

G = AByZ, — 2,A.B, + AsB, — A,B;;
C, = ABZ, + A,BZ, + AB, + A,B,;
G = ABy — ABy;
C, = A,;B, + BA,

Then the equation (6) is obtained.
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