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Abstract
Purpose – The aim of this paper is mainly to handle the fuzzy uncertainties present in structures
appropriately. In general, uncertainties of variables are classified as aleatory and epistemic. The different
sources of uncertainties in reinforced concrete structures include the randomness, mathematical models,
physical models, environmental factors and gross errors. The effects of imprecise data in reinforced concrete
structures are studied here by using fuzzy concepts. The aim of this paper is mainly to handle the
uncertainties of variables with unclear boundaries.
Design/methodology/approach – To achieve the intended objective, the reinforced concrete beam
subjected to flexure and shear was designed as per Euro Code (EC2). Then, different design parameters such
as corrosion parameters, material properties and empirical expressions of time-dependent material properties
were identified through a thorough literature review.
Findings – The fuzziness of variables was identified, and their membership functions were generated by
using the heuristic method and drawn by MATLAB R2018a software. In addition to the identification of
fuzziness of variables, the study further extended to design optimization of reinforced concrete structure by
using fuzzy relation and fuzzy composition.
Originality/value – In the design codes of the concrete structure, the concrete grades such as C16/20, C20/
25, C25/30, C30/37 and so on are provided and being adopted for design in which the intermediate grades are
not considered, but using fuzzy concepts the intermediate grades of concrete can be recognized by their
respective degree of membership. In the design of reinforced concrete structure using fuzzy relation and
composition methods, the optimum design is considered when the degree of membership tends to unity. In
addition to design optimization, the level of structural performance evaluation can also be carried out by using
fuzzy concepts.

Keywords Fuzzy set theory, Membership functions, Fuzzy set operations, Fuzzy relation,
Fuzzy composition, Design optimization, Reinforced concrete

Paper type Research paper

1. Introduction
Uncertainties are usually classified in aleatory (random) and epistemic (fuzzy). Aleatory
uncertainty arises from the inherent randomness in the physical properties and the system
environment (Li et al., 2016; Kiureghian and Ditlevsen, 2009; Pascal, 1975), whereas
epistemic uncertainty originates from a lack of sufficient knowledge and imprecision of
information about a system going to be studied. The type of uncertainty and the way of
dealing with them have been addressed bymany investigators (Marano and Quaranta, 2008;
Du et al., 2006; Brown et al., 1983; Bulleit, 2008; Nikolaidis et al., 2004) to solve problems in
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their respective areas of specialization. The aleatory uncertainty estimation problem is
usually carried out by using probability theory, which requires a large number of samples,
whereas epistemic uncertainty is usually modeled by possibility theory, which requires a
small sample.

Civil engineering structures are complex and usually bulky in nature; hence, they will be
almost impossible to test the prototype rather than checking specific criteria on uncertain
software models and limited numerical methods that are based on human knowledge to
solve a real problem. Usually, uncertainties of parameters in the concrete structure can be
identified (Holicky, 2009) as inherent randomness of variables, statistical model
uncertainties, physical model uncertainties, the vagueness of human knowledge and gross
errors in design, execution and operation along with design life of the structure. In
reinforced concrete structure, there exist numerous amounts of fuzzy uncertainties in
material properties, section properties, applied loads and section capacities.

The human reasoning to counteract these complexities, uncertainties, imprecision and
vagueness of data in professional judgment leads the main motivation to use fuzzy concepts.
To handle this problem, Zadeh(1965) introduced a fuzzy set theory, which holds a
continuum of the degree of membership to model the vagueness. Many researchers proved
that (Fan et al., 2019; Tang et al., 2014; Bagheri et al., 2017; Sarkar et al., 2016; Yeh and Hsu,
1990) the fuzzy theory is an important tool and effectively well-designed for the problems in
structural engineering to perform the reliability analysis and optimal design solution. Fuzzy
concepts resemble human reasoning through providing an easy way of handling with real
problems because of their simplicity and flexibility, easy to handle problems with imprecise
and incomplete data, ability to deal with uncertainty and nonlinearity, cover a wider range
of operating conditions and more readily customizable in natural language terms or
linguistic terms. This paper tried to determine the fuzziness of reinforced concrete material
properties, their membership functions and showed the design optimization and/or section
performance by using the fuzzy relation and fuzzy composition.

2. Literature review
2.1 Fuzziness and fuzzy set theory
Fuzziness means an expression having an uncertain extensional denotation that has
an ambiguous boundary (Zhang, 1998) and also arises from inconsistency or error.
The function of the fuzziness is called a measure of fuzziness. Fuzziness can be
applied in civil engineering discipline with linguistic variables, whose values are not
numbers but words or sentences in a natural or artificial language as (Zimmermann,
2011) very cold, cold, warm, hot and very hot for temperature; low, moderate and high
for corrosion rate; under reinforced, balanced and over-reinforced for reinforced
concrete section; no damage, slight damage, moderate damage, severe damage and
destructive damage for damage assessment of earthquake effect on structures with
unclear boundaries.

Fuzzy set theories are suitable tools used for professional decision-making in
structural engineering specialization such as risk assessment, reliability analysis,
design optimization and performance evaluation of the structures. These decisions are
expressed in linguistic terms (e.g. “the structure is ‘slightly damaged” or “the quality
control is not adequate”) with fuzziness which avoids the usual conventional set
representation (Brown et al., 1983). For this reason, fuzziness may be experienced to
solve an ambiguous “how” questions, such as: How severe damage is severe? or How
under reinforced is under?, in general, “How many is many?” questions. This kind of
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question aims for the referential meaning of an expression and has a clear boundary to
answer the question (Zhang, 1998).

2.1.1 Fuzzy sets. The fuzzy sets concept was introduced by its pioneer (Zadeh, 1965) to
represent variables with imprecise or ambiguous boundaries. Therefore, the fuzzy set theory
is used to handle ambiguity, vagueness, imprecision and insufficient level of expert
knowledge on real-life phenomena as a source of uncertainty.

In ordinary set theory (Mazeika et al., 2007), the element that fulfills some defined
conditions by a set is only considered as members of this set. In this case, the degree of
membership is binary, i.e. either zero or one, which indicates that the element belongs to the
set or it does not. Therefore, in ordinary set theory, there are well-defined boundaries to
identify an object belongs to a set or does not.

On the other hand, the fuzzy set theory directly addresses the limitation of a crisp set by
letting membership degree to which extent a variable belongs to a set. A fuzzy set is defined
as that (Zadeh, 1965) is a class of objects with a continuum of grades of membership. In
contrary to the crisp set, a fuzzy set is prescribed by vague or ambiguous properties; hence,
its boundaries are ambiguously specified. The fuzzy set theory is an important tool (Brown
et al., 1983) that handles words and phrases of linguistic variables numerically by using the
membership functions.

According to Holicky and Schneider’s(2002) notion, the fuzzy set will be represented
as a set of ordered pairs of elements; each presents the element together with its
membership value. Usually, a fuzzy set is represented as “~A” whereas a crisp set is
represented as “A”. A fuzzy set can be represented mathematically for both as based
finite and infinite elements. The elements of the discrete fuzzy set ~A can be represented
with its membership function as:

~A ¼ x; m ~A xð Þ� �� �
or ~A ¼

Xn
i¼1

m ~A xið Þ=xi (1a)

For elements of the continuous fuzzy set as:

~A ¼
ð
m ~A xið Þ=xi (1b)

where m ~A is the membership function or grade of membership of x in ~A that maps X to the
membership space, and in the expressions, the symbol “R” or “$” implies not addition or
integration, respectively, but union.

2.1.2 Membership function. In fuzzy set theory, a fuzzy set ~A in the universe of discourse
X is characterized by a characteristic function m ~AðxÞ (Zadeh, 1965), which associates
with each point in the universe of discourse X, a real number in the interval [0, 1], with
the value of m ~AðxÞ at x representing the degree of membership of x in ~A is called
membership function. The universe of discourse X in concrete cases has to be chosen
according to a real problem in a specific situation. The membership function indicates
the transition of an object from not belonging to belonging is gradual, which helps us to
handle impreciseness and vagueness of variables. Mathematically, the degree of
membership can be expressed by:

Reinforced
concrete

structures

1177



m ~AðxÞ ¼
0 < m ~AðxÞ# 1 for x 2 A

0 for x 62 A

(
(2)

in which “0” means complete exclusion from the set ~A, }0 < m ~AðxÞ < 1} means partial
inclusion form the set ~A and “1” means absolute inclusion in the set ~A. Thus, the nearer the
value of m ~AðxÞ to unity, the higher the degree of membership of x in ~A.

Membership functions are the crucial component of fuzzy set theory, i.e. fuzziness in a
fuzzy set is determined by its membership function. Accordingly, the shapes of membership
functions are a useful tool for a particular problem, as they affect a fuzzy inference system. It
was introduced (Zadeh, 1965; Zadeh, 1978) and initially widely accepted, as membership
functions are subjective and based context of the events, latter from measurement view
(Bilgiç and Türks�en, 2000), it is the connection of both subjective and objective to make a
sound decision. There are numerous types of membership functions such as triangular,
trapezoidal, Gaussian, singleton, bell curves, sigmoidal functions. Nevertheless, the only
condition a membership function must really satisfy is that it must vary between zero and
one. To make the best choice, one needs a lot of experience with the given situation. The
frequently applied membership function is the triangular membership functions, which are
formed by using straight lines. These straight-line membership functions have the
advantage of simplicity.

2.1.3 Fuzzy numbers. The fuzzy number is expressed as a fuzzy set defining a fuzzy
interval in the real number <. As the boundary of a fuzzy interval is ambiguous, the interval
is also a fuzzy set. Generally, a fuzzy interval is represented by two endpoints x� 0ð Þ

1 and xþ 0ð Þ
3

and a peak point x 1ð Þ
2
, as shown in Figure 1. Fuzzy numbers are a special case of fuzzy sets

that have to satisfy (Lee, 2004) all the conditions: convex fuzzy set; normalized fuzzy set; its
membership function is piecewise continuous and it is defined in the real number.
Mathematically, fuzzy numbers are expressed as:

X ¼ x; mX xð Þð Þ : x 2 <; mX xð Þ 2 0; 1½ �� �
(3)

where X is the fuzzy number; mX (x) is the membership value of the element x to the fuzzy
numberX and< is the set of real numbers.

Figure 1.
a-cut fuzzy number
(a 0 < a)) (Aa � Aa 0)
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The condition of normalization in the fuzzy set implies that the maximum membership
value is 1.

9x 2 <; m ~A xð Þ ¼ 1

The convex condition of a fuzzy set is that the line by a-cut is continuous and a-cut interval
satisfies the following relation.

Aa ¼ x1 að Þ; x3 að Þ� �
(4)

a0 < að Þ ) x1 a0ð Þ
# x1 að Þ; x3 a0ð Þ � x3 að Þ

� 	

The convex fuzzy set condition may also be written as (Lee, 2004) (a 0< a) )(Aa � Aa 0). If
all the a-cut sets are convex, the fuzzy set with these a-cut sets is convex (Figure 1). In other
words, if a relation is given as:

m ~A xð Þ � min m ~A x1ð Þ; m ~A x2ð Þ� �
(5)

where x ¼ l x1 þ 1� lð Þx2; x1; x2 2 <n; l 2 0; 1ð Þholds the fuzzy set ~A is convex. A fuzzy
variable X with the membership function mX (x) is strongly convex if and only if the event
{x| mX (x)� a} is strongly convex V a « (0.1).

2.1.4 Fuzzy set operations. The pioneer of the fuzzy set concept (Zadeh, 1965) also
induced the combination of membership functions and several properties involving fuzzy
sets which are noticeable extensions of the corresponding definitions for conventional sets.
The membership function is clearly the crucial part of a fuzzy set. It is, therefore, operations
with fuzzy sets are defined through their membership functions. The most widely used
operations are called standard fuzzy set operationswhich are complements, intersections and
union.

� Complement: The complement of a fuzzy set ~A is denoted by~A
0
and is defined by:

m ~A
0 xð Þ ¼ 1� m ~A xð Þ; x 2 X (6)

� Union: The union of two fuzzy sets ~A and ~B with respective membership functions
m ~A xð Þ and m ~B xð Þ is a fuzzy set ~C , written as ~C ¼ ~A [ ~B , whose membership
function is related to those of ~A and ~B by:

m ~C xð Þ ¼ Max m ~A xð Þ; m ~B xð Þ� �
; x 2 X (7)

� Intersection: The intersection of two fuzzy sets ~A and ~B with respective membership
functions m ~A xð Þ and m ~B xð Þ is a fuzzy set ~C , written as ~C ¼ ~A \ ~B , whose
membership function is related to those of ~A and ~B by:

m ~C xð Þ ¼ Min m ~A xð Þ; m ~B xð Þ� �
; x 2 X (8)
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2.2 Operation of fuzzy interval and a-cut interval
The a-cut interval of fuzzy number is crisp set, and the operation of a fuzzy number can be
generalized from that of a crisp interval. SupposeA ¼ x1; x3½ �;B ¼ y1; y3½ �;8x1; x3; y1; y3 2 <
that A and B as numbers articulated as fuzzy interval, the main operations of interval are (Lee,
2004) addition (þ) and subtraction (�) in which the shape of membership function will not be
changed; multiplication (�) and division (/), in which the shape of membership function will be
changed and inverse interval, [x1,x3]

�1 = [1/x1 ^ 1/x3,1/x1 � 1/x3,] excluding the case x1 = 0 or
x3 = 0. In addition to these operations, Minimum: [x1,x3](^) [y1, y3] = [x1 ^ y1,x3 ^ y3] and
Maximum: [x1, x3](�) [y1, y3] = [x1� y1,x3� y3] operations can be used in the fuzzy interval.

The a-cut set is the crisp set of the elements whose degree of membership is greater than
or equal to a, (Lee, 2004; Zimmermann, 2011) i.e. Xa ¼ x; mX xð Þ � a : x 2 <;a 2 0; 1½ �� �
and Xa = {x,mX (x)> a} is strong a-cut set in which Xa is the crisp set at the a-level set and
a is the credibility level. Let us consider the fuzzy set of the concrete strength in N/mm2:

~Fck ¼ 0=20þ 0:2=21þ 0:4=22þ 0:6=23þ 0:8=24þ 1=25þ 0:8=26þ 0:6=27f
þ 0:4=28þ 0:2=29þ 0=30g

This fuzzy set of concrete strength can be set into several a-cut and strong a-cut sets, all of
which are crisp for the arbitrary values of a = 1, 0.8, 0.6, 0.4 and 0.

Thea-cut sets are as follows:

Fck1 = {25} Fck0.8 = {24 25 26} Fck0.6 = {23 24 25 26 27}
Fck0.4 = {22 23 24 25 26 27 28} Fck0.2 = {21 22 23 24 25 26 27 28 29}

Stronga-cut sets are as follows:

Fck0.8 = {25} Fck0.6 = {24 25 26} Fck0.4 = {23 24 25 26 27} Fck0.2 = {22 23 24 25 26 27 28}

The value of a is the threshold for two adjacent data to be thought of as belonging to the
same class in which small a will have the large fuzzy interval and the large a will have a
smaller fuzzy interval.

For a fuzzy number denoted by X and a real number denoted by r0, Figure 2(a) and (b)
show their possible order relations using a-cut. The mathematical notations, mX (r)
represent the membership function of X; m is the mean of X with mX (m) = 1; the vertical
axis denotes the degree of membership; a0, a1 and a2 are three degrees of membership with
the condition a1 < a0 < a2, respectively; a0 is the membership degree of a real number r0,
i.e. a0 = mX (r0), Xa represents the a-cut of X satisfying the condition Xa = {r|mX (r) �a}
(Tang et al., 2014). For each ai « (0.1], Xa = {r | mX (r) �ai} is an interval defined as
x�ai ; xþai½ �, as shown in Figure 2(a) and (b).
We can obtain three important points from Figure 2(a): the equality x�a0 ¼ r0supports;

x�a is larger than r0 when a > a0, such as a2 where a2> a0 and x�a2 > r0 hold; and x
�a is

less than r0 when a < a0, such as a1 where a1 < a1 and x�a1 < r0 hold. Thus, the critical
degree of membership a0 can be used to define the possibility that (Tang et al., 2014) X is
less than r0, i.e. POSS {X # r0} = m0. To illustrate a-cut operations, assume the a-cut
intervalAa and Ba of fuzzy number ~A and ~B, respectively, is given as:

Aa ¼ x1 að Þ; x3 að Þ� �
;8a 2 0; 1½ �; x1 að Þ; x3 að Þ 2 < (9)
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Ba ¼ y1 að Þ; y3 að Þ� �
;8a 2 0; 1½ �; y1 að Þ; y3 að Þ 2 < (10)

Then addition and subtraction operations of the a-cut interval between Aa and Ba can be
expressed, as shown in equations (11) and (12) (Lee, 2004); these operations are also
applicable to multiplication and division.

x1 að Þ; x3 að Þ� �
þð Þ y1 að Þ; y3 að Þ� �

¼ x1 að Þ þ y1 að Þ; x3 að Þ þ y3 að Þ� �
(11)

x1 að Þ; x3 að Þ� �
�ð Þ y1 að Þ; y3 að Þ� �

¼ x1 að Þ � y1 að Þ; x3 að Þ � y3 að Þ� �
(12)

3. Objectives
The present study pictured to develop a relationship between input parameters, i.e.
corrosion rate and an output parameter, i.e. compressive strength of concrete, and area of
reinforcing steel, using triangular membership function in fuzzy set theory. The objective
was to identify the membership function of the compressive strength of the concrete and
effective area of reinforcing steel because of the corrosion of embedded reinforcement bar. It
has further extended to the optimum design or performance evaluation of a reinforced
concrete section using fuzzy membership functions of concrete strength and area of steel
reinforcement that were developed in this paper.

4. Materials and methodology
Nowadays in urban and suburban areas, reinforced concrete structures are very common.
However, the desired strength of concrete can be achieved during material selection, mixing,
transportation, placement and curing because of an aggressive environment the corrosion of
embedded reinforcement bar reduces the strength of concrete and reinforcing steel diameter
significantly.

To illustrate the effect of corrosion, suppose a simply supported rectangular reinforced
concrete beam of effective span 6m, which has direct contact with soil which has the

Figure 2.
Order relation

betweenX and r0
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corrosion current density of 0.75 mA/cm2, is subjected to a design bending moment of 206,71
kNm at the mid-span and shear force of 137. 74 kN at the center of support. Design is carried
out based on EC2 (EN 1992-1-1, 2004) by using materials of concrete grade C25/30 and steel
grade 460N/mm2 of the longitudinal bar, 250N/mm2 for transverse reinforcement (Figure 3).

5. Result and discussions
5.1 Generation of membership function of fuzzy variables
The generation of membership functions for imprecise data (Medasani et al., 1998) is a basic
stage in applications of the fuzzy concepts. The membership function of the fuzzy set can be
generated by using different methods such as heuristics, the probability to possibility
transformations, histograms, nearest neighbor techniques, feed-forward neural networks,
clustering and mixture decomposition methods. However, these methods can be used to
generate membership functions; there are no guidelines or rules to choose the appropriate
membership generation technique because of lack of a consensus on the meaning on the
membership function. The lack of a consensus of membership arises from that, fuzziness is
subjective and decisions made by individuals.

In this paper, heuristic methods, which use predefined shapes for membership
functions, are used to identify the membership of both input variables and output
performance. Frequently used shapes of heuristic membership functions are piecewise
linear functions and piecewise monotonic functions. In piecewise linear functions, the
membership functions may be chosen to be linearly increasing, linearly decreasing or a
combination of these and flat regions, i.e. triangular membership functions and
trapezoidal membership functions. In the case of piecewise monotonic functions,
membership functions have a (piecewise) smooth transition between non-membership
and full-membership regions (Medasani et al., 1998). The linear and piecewise linear
membership functions give a reasonably smooth transition, easily handled by fuzzy
operators and easily implemented.

The membership functions which have been generated from heuristic function have the
following common features (Medasani et al., 1998; Dombi, 1990):

� all membership functions are continuous;
� all membership functions map an interval m [a,b]! [0, 1]; and
� membership functions are either monotonically increasing or monotonically

decreasing or both increasing and decreasing.

The triangular membership function is defined by its lower limit a, its upper limit b and the
modal value,m (if symmetrical), whereas for asymmetrical triangular membership,m is the

Figure 3.
Detail of beam section
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mean value at which a membership degree is a unity, is also applicable, so that a <m < b.
Mathematically, the triangular membership function is given by:

m xð Þ ¼

0 if x#a

x� að Þ= m� að Þ if a# x#m

b� xð Þ= b�mð Þ if m# x# b

0 if x � b

8>>>>><
>>>>>:

(13)

5.1.1 Corrosion rate. Suppose Icorr stands for corrosion current density. Let us classify the
rate of corrosion current density as low, moderate and high of the linguistic variable.
Val et al. (1998) identified the low rate, moderate rate and high rate of corrosion current
density as subset of Icorr with the interval of icorr = 0.1 – 0.5 mA/cm2 for low corrosion rate;
icorr = 0.5 – 1 mA/cm2 for moderate corrosion rate; and icorr > 1 mA/cm2 for high corrosion
rate, in which icorr= 1 mA/cm2 is equal to icorr= 11.6 mm/year.

The classical approach, probability, one way to define the classical set is a low rate.
Suppose low rate, corrosion current density membership of low rate set which belongs to the
universal set icorr such that the member of corrosion current density is between 0.1 and 0.5
mA/cm2. Similarly, the member of corrosion current density belongs tomoderate rate, if it is
between 0.5 and 1 mA/cm2. Moreover, the member corrosion current density belongs to a
high rate set when the corrosion current density is greater than 1 mA/cm2. In the classical
approach, it is obvious that 0.49 mA/cm2 is a low rate according to the definition, while 0.51
mA/cm2 is a moderate rate implying the classical sets have rigid boundaries and because of
this, the expression of data becomes very difficult.

In a fuzzy set, it is very easy to represent them according to their respective membership
degree.

As shown in Figure 4, if the corrosion current density is around 0.25 mA/cm2, it is a low rate;
the corrosion current density is around 0.75 mA/cm2, it is a moderate rate and when the
corrosion current density is around 1.25 mA/cm2, it is high rate. In this sense, the fuzzy sets
have no rigid boundary. Let us consider here, 0.5 mA/cm2 can be simultaneously low rate as
well asmoderate rate, with a fuzzy membership grade of 0.5 (crossover point). When 0.625 mA/
cm2 is considered, it is likely in the category of moderate rate with a membership function of
0.75, whereas the 0.35 mA/cm2 is a with a membership degree of 0.8 in low rate and 0.2 in
moderate rate. In this study, the upper bound of corrosion current density was taken as 2 mA/

Figure 4.
Fuzzy membership

function of corrosion
current density
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cm2 for illustration but its value may be more or less than 2 mA/cm2 in a real problem. This is
how the imprecise data can be categorized in a clear way by using fuzzy sets.

5.1.2 Effect of corrosion on the area of reinforcing steel and compressive strength of
concrete. The effect of corrosion on the reinforcement steel has been investigated by many
researchers (Stanish, 1997; Xia et al., 2013; Zandi Hanjari et al., 2008; Loreto et al., 2011;
Adukpo et al., 2013; Zhou et al., 2014) and found that: reduce load carrying capacity; loss of
diameter or effective cross-sectional area; significantly reduce bond strength; increase crack
width, and strongly reduced elongation of reinforcement steel.

Before corrosion takes place, the structure could mainly be subjected to the applied load.
To prevent the effect of aggressive environment, design codes (EN 1992-1-1, 2004; IS456,
2000) provided respective concrete cover based on the exposure condition of the structural
element. The concrete cover may delay the corrosion initiation time but does not fully
control the corrosion. To consider the effect of corrosion on the serviceability of the
structure, the corrosion initiation time is a very important factor. The corrosion initiation
time depends on the concrete cover, chloride diffusion coefficient, chloride concentration
percentage to the weight of concrete, concrete strength and the expression to determine the
corrosion initiation time was derived by Thoft-Christensen et al.(1996) by using Fick’s law of
diffusion. The corrosion initiation time,Ti, can be obtained from the determining parameters
C, C 0 andDc give in expression (Thoft-Christensen et al., 1996) as:

Ti ¼ C2

4Dc
erf�1 C0 � Ccr

C0


 �� �2

(14)

where C (cm) is the concrete cover thickness, Dc (cm2/year) is the chloride diffusion
coefficient, erf�1 is the inverse of error function computed by MATLAB, C0 (Wt.% of
concrete) is the equilibrium chloride concentration at the concrete surface, and Ccr (Wt.% of
concrete) is the critical chloride concentration.

The time-variant resistance of the concrete section is then determined by considering the
deterioration of the reinforcing steel diameter with reference to the corrosion initiation time.
The reduction of the steel diameter is determined from the expression (Val et al., 1998):

Di tð Þ ¼

Di for t#Ti

Di � rcorr t � Tið Þ for Ti # t#Ti þ Di

rcorr

0 for t � Ti þ Di

rcorr

8>>>>>><
>>>>>>:

(15)

where:
Di(t) = is the ith diameter of the reinforcing bars at a time, t;
Di = is the initial diameter of the ith bar at the time;
n = is the number of the bars; and
rcorr = is the rate of corrosion in mm/year.

Similarly, the time-dependent compressive strength of concrete is given by expression
(Kliukas et al., 2015) as:

fcc tð Þ ¼ acck2 tð Þfck (16a)

In which:
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acc tð Þ ¼ 1� 0:1NG=NEoracc tð Þ ¼ 1� 0:1MG=ME (16b)

k2 tð Þ ¼ 0:85� 1:7r tð Þ and r tð Þ ¼ As tð Þ
Ac

(16c)

where:
NG = is the permanent force;
NE = is the transient force;
MG= is the bendingmoment caused by permanent force;
ME = is bendingmoment caused by permanent and transient loads r (t) is

time-dependent reinforcement ratio.

The baseline values from the reference, (Enright and Frangopol, 1998) taken as chloride
diffusion coefficient Dc = 1.29 cm2/year, Surface chloride concentration C0 = 0.10 Wt.% of
concrete, and critical chloride concentration Ccr = 0.04 Wt.% of concrete, the concrete cover
of 5.8 cm is used for parametric studies. In this study of time-dependent safety analysis of
simply supported reinforced concrete beam, using equation (14) the corrosion initiation time
is 18.41 year. From detailed computation, the input variables and output variables are
represented as shown in Table I.

The time-variant concrete strength and effective area of reinforcement steel because of
moderate corrosion rate were computed, and the result at the design life is shown in Table I.
As shown in Figure 4, the corrosion rate is a fuzzy variable which is considered as an input
variable that deteriorates the strength of concrete, the diameter of reinforcement steel and
however not significant also reduces the yield strength of reinforcement steel. The fuzziness
of the corrosion rate is also propagated to the concrete and reinforcement steel that is also
being fuzzy along with the design life of the concrete structure. Prior to corrosion, the
concrete strength fckwas 25N/mm2, and at the end of the design life, its strength degraded to
20.167N/mm2. Similarly, the area of reinforcement steel was initially 1520.531mm2, and at
the end of the design life, its area is 766.880mm2 as shown in Table I. In design codes of
concrete structure, the concrete grades are such as C20/25, C25/30 and C30/37, in which the
intermediate grades are not recognized. However, the desired grade of concrete is achieved
during construction, due to the aggressive environment the strength of concrete my decrease
along with the design life of the structure and these intermediate strengths can be
recognized by fuzzy set theory with their respective membership degrees.

The fuzziness of the variable is expressed by its degree of membership. To generate the
membership function of the variable, it ranges i.e. the lower limit and upper limit have to be

Table I.
Input and output

variables

Variables Parameter Abbreviation
Database range

Minimum Maximum

Input Corrosion current density (mA/cm2) icorr 0.75
Chloride diffusion coefficient (cm2/year) Dc 1.29
Surface chloride concentration (%) C0 0.10
Critical chloride concentration (%) Ccr 0.04
Concrete cover (cm) C 5.8
Time (year) t 0 50

Output Compressive strength of concrete (N/mm2) fck(t) 20.167 25
Effective area of steel (mm2) Ast (t) 766.880 1520.531
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identified. Also, the range of variables has to be an appropriate limit to handle the variation
of parameters easily and precisely. Therefore, the range of the concrete strength is limited to
the lower and upper bound of the concrete strength of fck = 20N/mm2 and 30N/mm2 from
EC2 (Table III). Similarly, the area of reinforcement steel in a singly reinforced concrete
beam is limited to Ast,min # Ast,prov # 0.02Ac as provided in EC2, in which Ast,min = 0.25
fctmbd/fyk = 189.57 mm2; Ast,prov = 1520.53mm2 and 0.02Ac = 3000mm2. However, the
maximum limit of the steel area in a singly reinforced concrete beam is 0.02Ac ;it should not
be more than Ast,bal =Mbal/(Zbal fyk) =1935.04mm2 in the under reinforced section. Therefore,
the range of the reinforcement steel area is limited from Ast,min -to- Ast,bal. Again, to generate
the membership function the mean or modal value of the parameter, in which its degree of
membership is maximum, which is unity in normalized case, has to be identified. To have
that, the value obtained through the deterministic design procedure (Lu et al., 1994) can be
considered as the mean value of the study parameter. On this basis, the mean value of
concrete strength is 25N/mm2 and that of reinforcement steel area is 1378.56mm2.

5.1.3 Application of fuzzy set theory in reinforced concrete design. In structural
engineering, the design parameters are not certain due to different factors. Some
uncertainties can be estimated by preparing sufficient sample data, but human knowledge is
limited to define and handle all uncertainties. The design optimization of the reinforced
concrete structure possesses different constraints and bound of design variables (objectives).
The lower and upper bound of the design variable implies the fuzzy interval of the variables.
Within the fuzzy interval, the specific value of the variable has is the corresponding
membership function. In reinforced concrete structure, the presence of fuzzy uncertainty of
input variables such as material properties, cross-sectional properties, loading uncertainties
and model uncertainties (Fan et al., 2019) also propagates to the output performance of the
structure by the function relationship between the input variables and output performance.
In this paper, the optimum design of reinforced concrete structure based on the membership
degree of input variables (concrete strength and reinforcement steel area) and the
performance of the structure as output variable (flexure) was carried out by using fuzzy
relation and fuzzy composition.

To illustrate the problem, let us consider the same problem used in Section 4 and take
some elements of concrete strength and reinforcement steel with their respective degree of
membership from Figure 5, and the flexural performance of the RC beam section. Let us take
fuzzy sets of steel area as ~Ast ¼

P
m ~Ast

Ast;i
� �

=Ast;i , the compressive strength of concrete

Figure 5.
Membership function
of time-variant
compressive strength
of concrete and area
of reinforcing steel
due to corrosion
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as~Fck ¼
P

m ~F ck
fck;j
� �

=fck;j and flexural resistance of the beam section as
~MR ¼ P

m ~MR
MR;k
� �

=MR;k. The fuzzy relation of steel area and the flexural resistance of
the section is given by:

~R ¼ ~Astx ~MR ¼
Xm
i

Xp
k

mR Ast;i;MR;k
� �

= Ast;i;MR;k
� �

(17)

in which m ~R Ast;i;MR;k
� � ¼ m ~Ast

Ast;i
� � ^ m ~MR

MR;k
� � ¼ min m ~Ast

Ast;i
� �

; m ~MR
MR;k
� �h i

.

Similarly, the fuzzy relation of concrete strength and the flexural resistance of the section is
given by:

~S ¼ ~Fckx ~MR ¼
Xm
i

Xp
k

m ~R fck;j;MR;k
� �

= fck;j;MR;k
� � ¼ min m ~F ck

fck;j
� �

; m ~MR
MR;k
� �h i

(18)

As if ~R and ~S are two fuzzy relations the fuzzy composition, which is used to obtain
optimum design solution and to evaluate the performance of the structure (Brown et al.,
1983), is given by:

~R � ~S ¼ max�min m ~R Ast;i;MR;k
� �

; m ~S fck;j;MR;k
� �h in o

(19)

Let us consider the input variables of concrete strength and area of reinforcement with a-cut
of 0.6 in which the combination of the lower and upper bound of variables to be considered.
From the triangular membership function of concrete strength and area of reinforcement
from Figure 5, let us consider the a-cut of 0.6 for these input variables. The fuzzy sets of
concrete strength, area of reinforcement and the flexural capacity of the section which is
computed from the section for corresponding strength of concrete and area of steel,
respectively, as follows:

~Fck ¼ 0:6=23 0:8=24 1=25 0:8=26 0:6=27f g
~Ast ¼ 0:6=902:96 0:934=1300 1=1378:56 0:934=1415:29 0:6=1601:15f g
~MR ¼ 0:62=141:13 0:94=195:43 1=206:71 0:94=210:03 0:52=237:42f g

All the possible combinations of input variables (concrete strength in N/mm2 and area of
reinforcement in mm2) with their respective membership function and the flexural capacity
in kNm of the reinforced concrete beam section are represented in Table II.

The triangular membership function of the flexural capacity was developed for the lower
bound of 31.89 kNm, which from fck = 20N/mm2 and Ast,min = 189.57mm2, a mean value of
206.71 kNm and upper bound of Mlim = 273.01 kNm from fck = 25N/mm2 and Ast,bal =
1935.04 mm2.

The fuzzy relation of the area of reinforcement and flexural capacity of the section is
obtained by the cross product of the column vector of the area of reinforcement and row
vector flexural capacity by using equation (17). Similarly, the fuzzy relation of concrete
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strength and flexural capacity of the section is obtained by the cross product of a column
vector of concrete strength and row vector flexural capacity by using equation (18). Then
finally, from equation (19), the design optimization can be decided from the fuzzy
composition of two relations. Using a similar procedure of fuzzy concepts, the level of time-
dependent performance of the structure can also be evaluated:

~R ¼ ~A
0

stx ~MR ¼

0:60 0:60 0:60 0:60 0:52

0:62 0:934 0:934 0:934 0:52

0:62 0:94 1:00 0:94 0:52

0:62 0:934 0:934 0:934 0:52

0:60 0:60 0:60 0:60 0:52

2
6666664

3
7777775
;

~S ¼ ~F
0

ckxM
~
R ¼

0:60 0:60 0:60 0:60 0:52

0:62 0:80 0:80 0:80 0:52

0:62 0:94 1:00 0:94 0:52

0:62 0:80 0:80 0:80 0:52

0:60 0:60 0:60 0:60 0:52

2
6666664

3
7777775

~D ¼ ~R � ~S ¼

0:60 0:60 0:60 0:60 0:52

0:62 0:80 0:80 0:80 0:52

0:62 0:94 1:00 0:94 0:52

0:62 0:80 0:80 0:80 0:52

0:60 0:60 0:60 0:60 0:52

2
6666664

3
7777775
! is fuzzy composition

Table II.
Membership
function, the fuzzy
interval of input
variables and the
section capacity

Material
Membership
function Interval

Flexural capacity
interval of section

Membership function
of flexural capacity

Concrete 0.6 [23, 27] [141.13, 230.81] [0.62, 0.62]
Steel 0.6 [902.96, 1601.15] [143.23, 237.42] [0.64, 0.52]
Concrete 0.6 [23, 27] [194.21, 208.58] [0.93, 0.96]
Steel 0.934 [1300,1415.15] [198.56, 213.74] [0.95, 0.89]
Concrete 0.6 [23, 27] [204.06, 208.96] [0.98, 0.95]
Steel 1 [1378.56, 1378.56]
Concrete 0.8 [24, 26] [141.72, 232.67] [0.63, 0.60]
Steel 0.6 [902.96, 1601.15] [142.77, 235.97] [0.63, 0.54]
Concrete 0.8 [24, 26] [195.43, 210.03] [0.94, 0.94]
Steel 0.934 [1300,1415.15] [197.60, 212.60] [0.95, 0.90]
Concrete 0.8 [24, 27] [205.44, 208.96] [0.99, 0.97]
Steel 1 [1378.56, 1378.56]
Concrete 1 [25, 25] [206.71, 206.71] [1, 1]
Steel 1 [1378.56, 1378.56]

Note: In concrete steel combination, the interval of section capacity and membership function the first row
and the second row of each combination rather than a membership grade is unity which was determined by
considering the lower bound and the upper bound of concrete strength, respectively
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As shown from the membership function of input variables and fuzzy composition matrix
are closely related. When the degree of membership approaches to unity the design is good
and the degree of membership approaches to zero (0) design becomes poor. For a single a-cut,
there is one lower bound and one upper bound of both input variables and output variables
except for a = 1, which has a single value. If a-cut approaches to zero (0), the lower bound of
the input variable is insignificant and the performance of structure becomes unsafe, for
example, 0.6/23 of the concrete strength and 0.6/902.96 of area of the steel has the capacity of
the section is 141.13 kNm which is very small compared with demand of the section i.e.
206.71 kNm. Whereas, if the upper bound of large then no doubt the performance of the
section will be safe but it leads to over-strength deign and the economy would be under
question. For example, the 0.6/27 concrete strength and 0.6/1601.15 area of steel of input
variables the capacity of the section becomes 237.42 kNm, whose membership is 0.52, which
is significantly larger than the demand of the section; consequently, the section becomes
uneconomical. Rather than the membership degree of the core value of the structural
performance, the other membership degrees have both lower and upper bounds of the section
capacity. However, the degree of membership of the lower bound approaches to unity, the
capacity is less than the demand of the section but the structure will not collapse because the
reinforced concrete structure fails after attaining its possible plastic mechanisms.

6. Conclusion
The fuzzy uncertainty in which partial belonging of the parameter has been treated to
handle imprecise information and vagueness of expert’s knowledge. From the detailed
analysis the following conclusions were drawn:

� In the case of corrosion rate, 0.5 mA/cm2 corrosion current density can be either low
rate ormoderate rate in conventional set theory because it has no clear boundary for
the linguistic terms. In fuzzy set theory, it can be handled wisely recognizing its
membership grade as 0.5 for both low andmoderate rates and the other intermediate
rates can be recognized by their respective membership grades.

� The concrete strength was deteriorated from fck = 25 N/mm2 to about 20 N/mm2 in
its design life which lost its degree of membership to almost zero (0), but this zero
degree of membership does not mean to that the concrete has no strength instead its
strength totally dropped to the next lower grade which has been provided in EC2.

� In optimum design, the combination of concrete strength with membership degree
0.6 and steel area with membership degree of unity (1) both the lower and upper
bounds of flexural capacity are close to the demand of the section. This implies and
strengthens the principle that the capacity of a singly reinforced section is governed
by steel and wise consideration of fuzzy interval for a reasonable solution. In
general, it can be concluded as the fuzzy set theory is applicable in design
optimization or performance evaluation of reinforced concrete structure in which
both safety and economy of the structure can be satisfied when the membership
function of input variables approaches to unity.
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