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Abstract
Purpose – Displacement measurement in large-scale structures (such as excavation walls) is one of the most important applications of close-range
photogrammetry, in which achieving high precision requires extracting and accurately matching local features from convergent images. The purpose
of this study is to introduce a new multi-image pointing (MIP) algorithm is introduced based on the characteristics of the geometric model generated
from the initial matching. This self-adaptive algorithm is used to correct and improve the accuracy of the extracted positions from local features in
the convergent images.
Design/methodology/approach – In this paper, the new MIP algorithm based on the geometric characteristics of the model generated from the
initial matching was introduced, which in a self-adaptive way corrected the extracted image coordinates. The unique characteristics of this proposed
algorithm were that the position correction was accomplished with the help of continuous interaction between the 3D model coordinates and the
image coordinates and that it had the least dependency on the geometric and radiometric nature of the images. After the initial feature extraction
and implementation of the MIP algorithm, the image coordinates were ready for use in the displacement measurement process. The combined
photogrammetry displacement adjustment (CPDA) algorithm was used for displacement measurement between two epochs. Micro-geodesy, target-
based photogrammetry and the proposed MIP methods were used in a displacement measurement project for an excavation wall in the Velenjak
area in Tehran, Iran, to evaluate the proposed algorithm performance. According to the results, the measurement accuracy of the point geo-
coordinates of 8mm and the displacement accuracy of 13mm could be achieved using the MIP algorithm. In addition to the micro-geodesy method,
the accuracy of the results was matched by the cracks created behind the project’s wall. Given the maximum allowable displacement limit of 4 cm in
this project, the use of the MIP algorithm produced the required accuracy to determine the critical displacement in the project.
Findings – Evaluation of the results demonstrated that the accuracy of 8mm in determining the position of the points on the feature and the
accuracy of 13mm in the displacement measurement of the excavation walls could be achieved using precise positioning of local features on images
using the MIP algorithm.The proposed algorithm can be used in all applications that need to achieve high accuracy in determining the 3D
coordinates of local features in close-range photogrammetry.
Originality/value – Some advantages of the proposed MIP photogrammetry algorithm, including the ease of obtaining observations and using local
features on the structure in the images rather than installing the artificial targets, make it possible to effectively replace micro-geodesy and
instrumentation methods. In addition, the proposed MIP method is superior to the target-based photogrammetric method because it does not need
artificial target installation and protection. Moreover, in each photogrammetric application that needs to determine the exact point coordinates on
the feature, the proposed algorithm can be very effective in providing the possibility to achieve the required accuracy according to the desired
objectives.
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1. Introduction

Excavation in the expensive urban lands, to construct
underground structures for optimal use of property even up to a
depth of more than 30 m, is quite popular. Soil nailing and
anchorage are some of the most common ways to stabilize the
excavation walls. The step-by-step bracing of the excavation
wall using the nailing method has some advantages including
higher speed, lower costs and a higher range of reliability
compared to other retaining structures. Because of the
sensitivity of the excavation projects, displacement
measurement and monitoring of the wall behavior during
excavation or afterward are among the main components of
such projects. Mostly, two methods, namely, micro-geodesy
and instrumentation (such as strain gauges), are applied for the
displacement measurement of the excavation walls. These
methods have their own limitations including high cost, time-
consuming observations, limited accuracy, low flexibility, high
dependency on project conditions and the need for specialized
personnel to name but a few. These limitations adversely affect
the control process of the project from a geotechnical point of
view. Close-range photogrammetry has unique properties as an
accurate measurement tool in large-scale structures. The
possibility of fast acquisition of observations, the potential to
achieve the accuracies in the order of sub-millimeters, the
possibility of texture mapping and the real modeling of
the feature, obtaining archival images and converting images to
themap for the future possible use, high density of the acquired
cloud points from the feature, lower cost, high diversity in
measurable feature dimensions, real-time measurements and
many other advantages have led to a drastic increase in the use
of photogrammetric measurement techniques in the field of
large-scale displacementmeasurements.
In the authors’ previous research, Esmaeili et al. (2013)

proposed the close-range photogrammetry method in 2013 for
the measurement of the displacement of excavation walls. It
was demonstrated in this study that a displacement
measurement accuracy of 8 mm can be obtained using the
proposed combined photogrammetry displacement adjustment
(CPDA) [1] method and installing photogrammetric targets on
the structure (Esmaeili et al., 2013, 2019a, 2019b). Li et al.
(2015) measured unsaturated soil deformations during triaxial
testing using a photogrammetry-based method. Xiao et al.
(2010) measured the displacement of a transmission tower
under different loadings with the close-range photogrammetry
method. In this research, to determine the corresponding
targets that represented displacement at a point, a simple
innovative method based on the search for the closest neighbor
after coordinate confirmation was used. Jiang and Jauregui
(2010) measured the deformation in a steel road bridge as a
result of loading using close-range photogrammetry. They
proposed the refined distance constraint (RDC) [2] method for
controlling the close-range photogrammetry network and used
double-sided targets for this purpose (Jiang and Jauregui, 2010;
Jiang, 2005). Feng et al. (2016) measured surface changes in a
scaled-down landslide model using high-speed stereo image
sequences. Ozbek et al. (2010) measured the vibration
frequency of a rotating wind turbine blade using a real-time
photogrammetry system. Alba et al. (2010) presented the
development and the results of a fast method for displacement

measurement based on digital images, which allows a
deformation analysis along the cross-sections of a tunnel via
vision metrology (Alba et al., 2010; Scaioni et al., 2014). Fraser
et al. (2005) measured the changes in the Hobart radio
telescope surface as a result of an antenna angle change in three
modes with respect to the vector model available from its
surface with the close-range photogrammetry method. They
achieved the predetermined precisions in the measurements by
introducing the notion of hyper-redundancy (Fraser et al.,
2005). Fraser et al. (2003) measured the displacement of the
suspended part of the North Atrium structure at Federation
Square in Melbourne, Australia as a result of jacking and glass
installation using the close-range photogrammetry technique
based on coded targets with automatic measurements (Fraser
et al., 2003;Miller, 2009). Lee and Al-Mahaidi (2008) used the
close-range photogrammetry method to investigate the load-
deformations characteristics of reinforced concrete T-beams
strengthened with carbon-fiber-reinforced polymer plates (Lee
and Al-Mahaidi, 2008; Miller, 2009). Fraser (1999) used
close-range photogrammetry to monitor the behavior of an ore
crusher device in a gold mine in the specification of the changes
in the distance between the rotor and stator parts of the motor
as a result of changes in the voltage of the device (Fraser, 2001;
Miller, 2009). Fraser and Riedel (2000) reported multi-epoch
deformation monitoring of a series of super-hot steel beams
with digital close-range photogrammetry. The deformations
resulted from the cooling of the super-hot steel beams, where
the close-range photogrammetry method proved effective for
this purpose (Fraser and Riedel, 2000; Miller, 2009). Li and
King (2002) used the close-range photogrammetry method to
monitor the deformation in the colonnade of the Star Ferry
Cultural and Arts Center structure in Hong Kong as a result of
underground canal excavation (Li and King, 2002). Cerminaro
(2014) used close-range photogrammetry to improve proactive
assessment of retainingwalls along transportation corridors. He
made use of dense surface measurement and surface matching
tomeasure displacement (Cerminaro, 2014). Valença and Júlio
(2017) developed a photogrammetry based method to
monitoring load tests on reinforced concrete framed structures,
with or without masonry wall infill (Valença and Júlio, 2017).
Sundla et al. (2015) proposed an easy-to-use approach using
cubic spline interpolation for providing initial estimations for
digital image correlation grid point locations and rotations on
objects withmajor deflection (Sundla et al., 2015). Scaioni et al.
(2015) organized image-based deformation measurement
applications into threemain categories:
1 photogrammetric coded-target measurements;
2 surface-point tracking to reconstruct dense displacement

fields; and
3 comparison of surfaces obtained from dense image

matching (Scaioni et al., 2015).

Oats et al. (2017) evaluated the failure modes of a
2.43m�2.43 m retaining wall model using three-dimensional
(3D) photogrammetry as a cost-effective quantitative
alternative for retaining wall monitoring. Luo et al. (2017)
measured the effect of pressure on large inflatable structures
using close-range photogrammetry. They measured the
displacements resulting from pressure change on uneven and
irregular surfaces by combining the digital photogrammetry

Precise multi-image pointing

Farid Esmaeili et al.

Sensor Review

Volume 40 · Number 3 · 2020 · 311–328

312



and Delaunay triangulation methods (Luo et al., 2017).
Tsvetkov et al. (2017) used close-range photogrammetry for
deformation monitoring of load-bearing reinforced concrete
beams. They used internet protocol cameras, which transfer
images to the server with wireless technologies (Tsvetkov et al.,
2017). Barazzetti and Scaioni (2010) presented the
development and implementation of three image-based
methods used to detect andmeasure the displacements of a vast
number of points in the case of laboratory testing on
construction materials. They made a comparison between the
modes of using artificial targets and dense marketing without
using targets for measuring the displacement of a concrete
beam under pressure. In both modes, it has been possible to
dynamically measure the displacement of the structure with the
required precisions (Barazzetti and Scaioni, 2010). Table 1
shows a comparison between different parameters and features
in some of the latest research conducted on displacement
measurement of large-scale structures with the close-range
photogrammetrymethod.
According to Table 1, in all of the investigated projects,

concerning to the project structure, close-range
photogrammetry was able to achieve the required accuracy in
displacement measurements (Esmaeili et al., 2019a, 2019b).
The designing flexibility of the close-range photogrammetric
systems to achieve the desired precision makes it possible to
create special constraints and additional observations to
increase the accuracy of measurement in project conditions.
There are some unique advantages for photogrammetric
methods that none of the other methods has such capabilities.
Some of these advantages are listed as follows: there is no need
for direct contact to the structure during the data acquisition, it
allows rapid preparation of feature observations, it gives instant
access to the results by automating the algorithms, it has the
ability to record instantaneous observations of moving features
and it gives the possibility of archiving observations for future
processing, if needed.
Projects regarding displacement measurement of large-scale

structures that apply photogrammetricmethods include four stages:
1 a network design and network control system that

determines the camera positions, camera type and
settings, the base coordinate system and resolving the
scale issue;

2 convergent imaging of the features;
3 calculating and extracting the 3D point coordinates on the

feature for each epoch that includes the following steps:
� feature extraction, which selects salient features in

two images (reference image and input image), such
as corners, blobs and regions

� feature description, which generates feature
attributes (“descriptors” to characterize and match
them) using various image properties such as
intensity, color, texture and edge

� feature matching, which establishes the
correspondence between the features in the two
images using particular similarity measures of their
descriptors and then uses a consistency check process
to remove probable mismatches

� calculating 3D coordinates of the matched points
using the bundle adjustment method based on the
collinearity equation

4 displacement calculation by comparing the point
coordinates in two epochs in one coordinate system.

Because of the sensitivity of displacement projects in terms of
achieving high precision, in all of the aforementioned studies,
photogrammetric targets were used to extract accurate photo-
observations. The retro-reflective photogrammetric targets,
because of their specific geometric shape and high contrast in
the image, make it possible to extract unique and similar points
in convergent images from the features. Therefore, in the
feature detection step, they lead to detailed extraction of photo-
observations and increase measuring displacement accuracy.
Also, the use of coded targets allows for automatic matching of
targets with the help of templatematching algorithms.
Characteristics or image patterns that are uniquely

distinguishable from their neighbors are called “local features”
(Tuytelaars and Mikolajczyk, 2008), and determination of the
corresponding local features or pixels in various images from an
object is called “matching.” Generally, in extraction
algorithms, the following should be considered: local features
(corners, edges, blobs and regions), characters with
repeatability, distinctiveness/informativeness, locality,
quantity, accuracy, efficiency, invariance and robustness. In
most researches conducted in this area, these methods require
the installation of artificial targets for the feature extraction
stage. As stated, one of the main goals of using artificial targets
in close-range photogrammetry projects is to increase the
feature extraction accuracy. For example, knowing the target is
circular, its center of gravity can be extracted as a local feature
using a region-based method. Targets lead to potentially 5–10
times the point positioning accuracy of feature-based
extraction/matching (i.e. 0.05–0.1 pixel versus 0.3–0.4 pixel);
there is no ambiguity about the matching points, so point
“tracking” is more straightforward, and the targeted approach
affords a fully automatic deformation monitoring. One can
achieve very good point correspondences between epochs if
templatematching is used.
However, the use of artificial targets in displacement

measurement projects for the excavation wall has many
limitations. In some projects, it is not possible to use artificial
targets because of the project conditions. Shotcrete coverage of
the target surface during the project, maintenance, the limited
number of targets and the target installation difficulties are
some obstacles in using artificial targets as a base point for the
displacement measurements of the excavation walls by
photogrammetry. However, in some of the conditions
described in the following, local features cannot provide
accuracy and robustness for features in the images as a
photogrammetric target.
The results of local feature extraction algorithms depend on

various parameters in the images. The convergence object
images may have geometric or radiometric differences. In such
cases, the local feature extraction algorithm exhibits different
behavior in terms of its different characteristics, such as
accuracy, efficiency and robustness. Parameters that may
impede the image extraction and matching process include
(Schmid and Mohr, 1997; Tuytelaars and Mikolajczyk, 2008)
the following:
� Geometric differences between images: Convergent images

taken from a feature may be geometrically different from
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one another. The differences can result from differences in
the scale of an image, small imaging angles between the
optical axis direction and the feature, deformation of
the feature because of changed imaging angle and view to
the feature, the existence of concealed areas in an image
that are exposed in another image and displacement caused
by different heights and different perspectives in the images.

� Presence of special conditions in the texture of the features in the
image: In some cases, features across the image exhibit
repetitive and homogeneous textures (e.g. concreted or
nailed excavation wall). Furthermore, positions of
particular objects (e.g. buildings and trees) in front of the
excavation walls create some sort of ambiguities in the
anticipated texture in that area. Also, the presence of
surfaces with a poor texture (e.g. wall of buildings or
excavated surfaces) creates some ambiguities during the
feature extraction process.

� Radiometric changes in the overlapping images taken from the
feature: Radiometric changes such as shadow, luminous
intensity, dust, the noises generated, because of the failure
to properly adjust radiometric parameters of the imaging
camera, and changes in the solar altitude angle can induce
some changes in the images and present some challenges
in extracting the same features from different images.

Among the aforementioned parameters, changing the image
perspective leads to geometric changes in the overlapping
images from the feature. These changes are one of the most
important factors influencing the accuracy of local feature
positioning in the displacement measurement of large-scale
structures using close-range convergent images. In other
words, because for the accuracy of the imaging network, it is
necessary to take images from different angles with respect to
the feature in the form of a convergent network, the features
will show perspective differences in the images. These
perspective differences result in a situation where similar
features in covered images taken from different angles are not
extracted with adequate accuracy. As a result, low-accurate
image coordinates keep us from achieving high accuracy in
displacement evaluation using these extracted features.
Of course, other parameters such as radiometric changes,

displacement because of differences in elevation, shadow and
texture issues in the image contribute to this problem. Because
artificial targets resolve these problems to some extent, they are
used in most displacement measurement projects that apply
close-range photogrammetric techniques. However, as stated,
the use of these targets has many limitations such that
sometimes it is impossible to use the effective close-range
photogrammetric techniques. When a property of local feature
and its extraction algorithm is critical for an application (such
as positioning accuracy), the applicability of the
photogrammetric technique to those applications faces some
difficulties (for example, the displacement measurement for
structures on which targets cannot be installed). In other
words, if a feature with proper position accuracy cannot be
extracted in all convergent images, close-range
photogrammetry can hardly be used to evaluate the
displacement of a feature on which no target can be installed.
This is not just about displacement measurement, but for any
applications that require accurate feature measurements

utilizing photogrammetric methods, accurate feature extraction
from the images is of crucial importance. In this paper, a new
self-adaptive algorithm, known as multi-image pointing (MIP),
is introduced using a set of convergent images from the feature
to increase the local feature extraction accuracy. In the
following, the proposed algorithm is explained, then the
application of the algorithm in some case studies is presented,
and, finally, the results will be discussed.

2. Methodology of the proposed method

In this section, a new strategy and algorithm are proposed to
increase the local feature extractor accuracy using a set of
convergent images taken from the feature by means of
determining the local feature 3D coordinates. This algorithm
was used in measuring displacement in excavation walls. The
main steps in the implementation of the algorithm components
and its main part and the MIP algorithm are presented as a
flowchart in Figure 1.
As shown in Figure 1, in the first step, a set of localized

region-based features are extracted in each of the three visual
image bands based on the nature of the required local features.
Then, a set of primary matching features is determined, and
unwanted and incorrect matches are eliminated using an
innovative method introduced in this research. In the second
step, a set of primary three-dimensional coordinate is
computed for the initial matching points using the bundle
adjustment. The geometric accuracy of the point coordinates is
evaluated. Then, using the proposed MIP algorithm with a
combination of geometric and radiometric properties of the
points, the image coordinates are improved in a repetitive
process. In the third stage, improved image points coordinates
obtained from the MIP algorithm are entered into the
displacement measurement stage using the CPDA method.
The details of the processes for the proposed algorithm are
described below.

2.1 Feature extraction algorithm
Based on the nature and type of application, local extraction
algorithms can be divided into three categories. The first group
extracts the features in such a way that according to the
intended application, a specific interpretation can be
considered for them. For example, extracting edges in aerial
imagery can be related to road feature extraction, or extraction
of image blobs can be used to identify non-similar areas with
other areas of the image. Such algorithms can be used to extract
specific features from the image. The second category is the
applications that look at local features as a set of unique highly
informative imagery points. In such applications, it is not of
great importance what the extracted features demonstrate but
the feature precise position and its stability in overlapping
images with rotation, scale, or affine changes are important.
Applications in this category include matching, moving body
tracking, camera calibration, 3D modeling, image registration
and orthophoto production. Finally, in the third category, the
set of local features can be used as image component
representatives. Image features and components can be
identified using these representatives without the need for
image segmentation. The application areas for this category
include image classification, texture analysis, image retrieval,
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Figure 1 Different steps of the proposed strategy and components of the proposed MIP algorithm
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and video mining. In displacement measurements using
photogrammetric methods, the second category is considered
for the extraction of local features.
Common local features include points, blobs and visual

areas. The most important point extraction algorithms are
Harris (Harris and Stephens (1988)), SUSAN (Smith and
Brady, 1997), Harris–Laplace and Harris-Affine (Lindeberg,
1993, 1998; Mikolajczyk and Schmid, 2004) and edge-based
regions (Tuytelaars and Van Gool, 1999, 2004). The most
popular blob extraction algorithms are Hessian, Hessian-
Laplace, Hessian-Affine (Tuytelaars and Mikolajczyk, 2008)
and salient regions (Kadir and Brady, 2001). Also, the most
common image area extraction algorithms include intensity-
based regions (Tuytelaars and Van Gool, 2000, 2004),
maximally stable extremal regions (MSERs) and segmentation-
based methods (Matas et al., 2004). Regarding the
implementation of these algorithms to investigate their
performance and to extract local features from the excavation
walls (Figure 2), as well as the inspiration from the results of
studies by Tuytelaars and Mikolajczyk (2008), their
performance can be ranked according to Figure 3.
According to Figure 3, theMSER algorithm is ranked higher

in terms of the position accuracy for local-feature-extracted
location because of the extraction of high-stability regions.
Moreover, because of the nature of the soil nail excavation
walls, in this study, the MSER algorithm was used as the basic
algorithm for extracting local features required for the
displacement measurement of excavation walls. The accuracy
of the extracted feature utilizing this algorithm is improved
using theMIP algorithm. After the MIP algorithm is applied to
the base extractor results, local features will be ready to be used
in themeasuring displacement process.

2.2 Featurematching
Various algorithms have been defined for local feature
matching on images (Bethmann and Luhmann, 2014; Bulatov
et al., 2011; Zhao et al., 2018). The process of matching in the
proposed algorithm is practically an innovative method to
determine the corresponding nails in convergent images taken

from the excavation walls. In the proposed algorithm,
distinctive image features are extracted from the features in
MSER areas for all images. These unique properties are based
on the weighted image gradients around the center of gravity of
the MSER areas (Lowe, 2004). Then, with a strict threshold
limit, based on the strongest similar properties, the initial
matches between the reference image and other images are
determined. In the reference image, the angle of incidence for
its optical axis bearing is closer to 90° compared to that of the
other images. Initial matches are found using the matching
threshold (representing a percent of the distance from a perfect
match) and ratio threshold (denoting the matching percentage
of the descriptor). These thresholds take different values for
different image sets and should be determined empirically.
Based on the initial matching, the coefficients of a projective

geometric transformation between the reference image and
other images are determined. Initial matching points that do
not conform to the threshold in the projective equations are
eliminated. This mismatch elimination process is inspired by
the M-estimator sample consensus algorithm (Hartley and
Zisserman, 2003; Torr and Zisserman, 2000). Then, using the
projective homography process, all the matched images and
points are projected to the reference image. For the

Figure 2 Implementation of some local feature extractor on soil nail excavated walls and their qualitative performance comparison

Figure 3 Ranking and comparison among accuracy of local feature
extraction algorithms
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transformed matched points on the original image, the closest
extracted point is determined by a strict threshold. Duplicate
matches are eliminated based on the closest positions. Those
features in the original image that have matching in all other
images remain and their image and pixel coordinates, as well as
the corresponding point numbers in all the images, are
determined. This technique helps to conduct proper matching
simultaneously for all images.
In both stages of extraction and matching, the algorithm’s

implementation stages are applied on three sets of images. As
shown in Figure 4, the original image is located on the zero
layer. The first-layer image with a resolution equal to half of the
original image resolution and the image of the 11 layer with a
resolution equal to twice the original image resolution are
generated. In the image production of layers �1 and 11, the
nearest-neighbor interpolation method is used to have the least
change in the nature of the images. The MSER area extraction
is performed on all three image layers. The use of an image
pyramid in the local feature extraction reduces the effect of
noise in the formation of the MSER area. In addition, the use
of all three image pyramids in positioning the center of gravity
of theMSER areas improves point extraction uncertainties and
the accuracy of their geometric position. In other words,
generating different boundaries for target local features, the
pyramid layers enhance the chance of achieving the proper
feature by the MSER algorithm. This is also partly the case in
the application of all of the three bands of RGB.
The homography based matching process is performed on

the original image set (layer 0), and in both layers �1 and 11
from the pyramid, similar points in the extracted positions, if
any, are determined. In fact, the final matchings are obtained
from the common results of extraction and matching processes
in all three sets of image layers. Therefore, if there is no
extraction or there exists a positional difference in two other
layers in an MSER area, then the local feature is eliminated
from thematching candidate list.

2.3Multi-image pointing algorithm
The corresponding point set to the initial positions enters the
main position improvement step with the proposed MIP
algorithm. The steps in this algorithm, according to Figure 1,
can be expressed as follows:

� The raw images along with generated ones in the pyramid
11 and�1 enter the algorithm as input data.

� Image and pixel coordinates of the points related to the
extracted nail points with their corresponding numbers
enter the algorithm.

� Camera calibration parameters enter the algorithm as pre-
calibration input data.

� Initial modeling is performed for the points using primary
coordinates, and the most erroneous point in the most
erroneous image is determined based on the amount of
reprojection error. The point where reprojection error is
maximal is recognized as the most erroneous point, with
the image containing this point considered as the most
erroneous image. Then, sorting the corresponding image
coordinates based on the highest reprojection error is
performed [the reprojection error is the distance between
the point coordinate detected in the image and the 3D
point coordinate being reprojected to the image
(Figure 5)].

� The closest extracted points to the erroneous point in the
erroneous image (because of the fact that the points are
corresponding to each other, these points are the same in
all images) are determined based on the user-entered
threshold (maximum pixel spacing). This step leads to the
local point selection around the erroneous point and local
implementation of theMIP algorithm in the image;

� From neighboring points, those falling in one-fourth of the
highest reprojection error are eliminated.

Figure 4 Image set generation in layers�1 and11 using the original images

Figure 5 Reprojection error; the distance between point detected in
the image and 3D point reprojected into the image
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� The remaining neighboring points are weighted by the
amount of proximity to the erroneous point. The nearest
points will gain more weights and will have a greater
impact on correcting the erroneous point coordinates.

� For each pyramidal layer, a polynomial is created (by weighted
least squaresmethod) from the points adjacent to the erroneous
one in the erroneous image and the same points in other images
[equation (1)]. The order of the polynomial is determined by
the user based on the number of neighboring points. If there are
more extracted matched points in the neighbor of erroneous
point (according to the threshold), then the user can determine
more polynomial orders. Erroneous points are not considered
in determining the coefficients of this polynomial.

fX ¼ a1 1 a2x1 a3y1 a4x2 1 a5y2 1 a6xy1 a7x3 1 a8y3

1 a9x2y1 a10xy2

fy ¼ b1 1 b2x1 b3y1 b4x2 1 b5y2 1 b6xy1 b7x3 1 b8y3

1 b9x2y1 b10xy2

(1)

The above equation is rewritten in each step between each
image and the erroneous one. x and y are replaced by the
coordinates of the points adjacent to the erroneous one on each
image, fx and fy are set to the coordinates of the same points on
the erroneous image. Then, coefficients a1, a2,. . . and b1, b2,. . .
are determined using the weighted least squares adjustment
method. In fact, a series of polynomial coefficients are
calculated between each image and the erroneous one.
For obtaining the coefficients in the polynomial, observation

equations are formed according to equation (2):
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where i is the number of points adjacent to the erroneous one, L
is the X or Y coordinate matrix of the points adjacent to the
erroneous one on the erroneous image, and A is the x and y
coordinate matrix of the points adjacent to the erroneous one
on each image based on the terms in the polynomial. X is the
coefficient matrix of the polynomial (a1, a2,. . . or b1, b2,. . .),
which is unknown, and is determined with the weighted least
squares adjustmentmethod according to equation (3):

X̂ ¼ ATPAð Þ�1
ATPL (3)

where P is the observation weight matrix, in which a value
between 0 and 1 is inserted for each point based on the image
distance from that point to the erroneous one. Closer points are
more effective in improving the coordinates of the erroneous

point. X̂ is the estimated coefficient of the polynomial. L and A
are the same as in equation (2).
� After calculation of the coefficients in the polynomial

between the points adjacent to the erroneous one between
each image and the same points on the erroneous image,
the erroneous point on each image is projected onto the
erroneous image based on the polynomial formed for it.
That is, x and y are replaced in equation (1) this time by
the coordinates of the erroneous point on each image, and
the coordinates of its projection on the erroneous image,
namely, fx and fy, are obtained using the coefficients
calculated in the previous step.

� This process is performed on all three image pyramids
(the image in layer �1 of pyramidal image minimizes the
effect of regional noise in the image that changes the image
coordinates of the nail center).

� Using the weighted average of the locations of the
erroneous points projected from all the images in all the
pyramid layers onto the erroneous image, the coordinates
are updated on the erroneous image [equation (4)].

XCorr ¼

Xn�1

i¼1
xi L�1ð Þ

n� 1
12

Xn�1
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xi L0ð Þ

n� 1
1

Xn�1

i¼1
xi L1ð Þ

n� 1
4

YCorr ¼

Xn�1

i¼1
yi L�1ð Þ

n� 1
12

Xn�1

i¼1
yi L0ð Þ

n� 1
1

Xn�1

i¼1
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(4)

In the above equation, XCorr and YCorr are the corrected
coordinates of the erroneous point, n is the number of
images, xi L�1ð Þ is the x coordinate of the erroneous point
projected from the ith image onto the erroneous image in
pyramid layer �1, L–1 is the pyramid layer �1, L0 is
pyramid layer 0 and L1 is pyramid layer 1. The effect of
the corrected coordinates from the main pyramid layer (0)
has been increased in the calculation of the final
coordinates of the erroneous point through the inclusion
of coefficient 2.
� The algorithm continues to run until there is not any

improvement of the average reprojection error (ARE) in
an effective MIP cycle in a specific threshold.

After applying MIP algorithm on image observations, it can be
ensured that the effects of the various image conditions
(discussed in Section 1) on erroneous image observations have
been largely overcome, and these observations can be utilized
for the displacementmeasurement process.

2.4 Deformation detection
After improving the positions, the image coordinates that
have been improved individually using the image equations
for each epoch are included in the displacement
measurement step.
In the soil nail walls, according to Federal Highway

Administration laws, the maximum allowable horizontal and
vertical displacement above a nailing wall depends on the wall
height and is estimated by equation (5) (Lazarte et al., 2003):
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d h ¼ d h=Hð Þi �H (5)

where d h is the maximum horizontal displacement at the top of
the wall (Figure 6), H is the wall height and (d h/H)i is the
coefficient determined based on the soil type according to Table
2 (Lazarte et al., 2003). In addition, the horizontal distance
behind the nailing wall, which is affected by the displacement of
the wall, is determined by a factor of the wall height and the
vertical inclination angle using equation (6) (Lazarte et al., 2003):

DDEF ¼ C�H � 1� tanað Þ (6)

where DDEF is the horizontal distance behind the wall, which is
affected by the wall displacement (Figure 6),H and a are the wall
height and the vertical inclination angle, respectively, andC is the
coefficient that according to the soil type is determined from
Table 2 (Lazarte et al., 2003). For example, in this research, for a
perfectly vertical excavation with a height of 25 m and sandy soil,
the maximum allowable displacement at the top of the wall is 5
cm and the distance behind the wall affected by the displacement
will be 20 m. Therefore, determining displacements with an
accuracy of 1–2 cmwill be very valuable.
In conventional measuring displacement techniques such as

micro-geodesy and the use of the global positioning system, the
observations are carefully selected and adjusted in two distinct
epochs to measure changes in the position of the points as a
representative of the feature. Then, the point sets are subjected
to a 3D transformation into a single coordinate system using a
series of observed points that are fixed and not displaced in
both epochs. Finally, the displacement is determined by
comparing the coordinates of the corresponding displaced

points. However, based on the conducted evaluations (Esmaeili
et al., 2013), such a measuring displacement structure in close-
range photogrammetry does not produce the proper accuracy
in the results of displacement measurements. In other words,
when two epochs having different grid structures and different
errors are adjusted, the accuracy of determining the reference
point coordinates (Figure 3), which are fixed in both epochs,
will be different. When these points are used as reference points
to match the coordinates of the two epochs, the accuracy of the
displacement will be affected by the accuracy differences in the
coordinate determination of these points and their location in
the observed points and consequently unrealistic results will be
obtained. Reference fixed points are considered on fixed
features outside the area affected by displacement according to
equation (6).
Therefore, according to the research carried out by Esmaeili

et al. (2013), simultaneous combined adjustment of both
epochs is proposed with the assumption of joint observations
for the reference points in both epochs and independent
observations in each epoch for displaced points. In this method,
the network generated by the first epoch with the
corresponding interior orientation, along with the network
generated by the second epoch with the interior orientation of
the second network, is simultaneously adjusted. For fixed
points, the coordinates are commonly determined between the
two epochs, and for the displaced points, the corresponding
epoch images are used (Esmaeili et al., 2013). Therefore, as the
output of this method, a set of coordinates for fixed points and
two sets of coordinates for displaced points are all determined
in a common coordinate system. These two coordinate sets of
displaced points are related to the first and second epochs. By
comparing the coordinates of these displaced points, the
amount of displacement in two epochs is obtained. This
method is known asCPDA (Esmaeili et al., 2013).
In this case, scale bars are used to fit the measurements in

actual scale. An important point about the displacement
measurement of the soil nail excavated walls is the continuous
change in the wall surface because of the wall collapse or
shotcrete of the subsequent excavation layers. Therefore,
except the metal plate of the nails, which are first stained and
continuously washed after each shotcrete, other wall sections
are not in constant condition. This makes it impossible to use
surface modeling and comparisons to determine the wall’s
behavior by using the photogrammetric method for
displacement measurement because most changes will be due
to the changes in the shotcrete thickness in different stages of
cementation rather than wall displacements.
All stages of extraction, matching, accuracy improvement

and displacement measurements were specifically designed for
the excavation walls. Therefore, to facilitate the entire work, all
these steps were presented in the form of a user interface called

Figure 6 Deformation of soil nail walls

Table 2 Values of (d h/H)i and C as functions of soil conditions “i”

Variable Weathered rock and stiff soil Sandy soil Fine-grained soil

(dh/H)i 1/1000 1/500 1/333
C 1.25 0.8 0.7
Source: Lazarte et al. (2003)
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Farid excavation deformation detection using MATLAB
software.

3. Experimental results

The performance of the proposed algorithm was evaluated in
the form of a real excavation project. To evaluate the accuracy
of the algorithm results, the displacements measurement was
compared with the displacements measured by micro-geodesy
and target-based photogrammetric methods. In the following,
the results of this project are described.

3.1 Soiled nail excavation project
The project under study was the stabilization of the 35-m-deep
excavation for Behesht-e-Zaferranie commercial complex
project. This project is located on the 13th Velenjak Street,
located in the 1st municipality district of Tehran, Iran. The land
area dimension in this project is 33.5� 58.35 m. The excavation
depth at the northern wall is 35m from the current status before
excavation and from the street level is 25m. In general, the
excavation, where soil nailing is used to reinforce the walls, is
performed step-by-step. At each excavation stage, the nailing
system that has been designed by civil engineers according to the
project conditions is implemented on the walls. Figure 7 shows
two stages of excavation in the project under study.
To investigate and evaluate the results of the proposed

algorithm, the displacement measurement of the excavated wall
in two epochs was performed applying the photogrammetric
method in two different ways: using photogrammetric targets and
using extracted and improved local features utilizing the
proposed MIP algorithm. In addition, to verify the accuracy of
the results, micro-geodesy observations were performed
simultaneously for both epochs. In this method, the distance and
angle observations were made from three fixed stations
positioned on the street opposite to the wall with an allowable
distance away from wall displacements effect, using total station
instrument. It should be noted that in excavation walls reinforced
by soil nailing method, the displacement measurement cannot be
performed using wall surface modeling and observed surface
comparison in different epochs. The main reason is that after
each excavation step, wall shotcrete is performed, and because of
this added shotcrete layers in each step, the wall thickness will
vary in different parts. These changes are different from changes

because of wall displacement and wall surface cannot be used for
displacementmeasurement.
Close-range photogrammetry imaging was performed across

a convergent networkusing 20–25 images per epoch. For this
purpose, a Fujifilm Digital Camera FINEPIX HS20EXR was
used and the images were taken at a focal length of 5mm
(Figure 8). Considering limitations in the project space, the
average distance between imaging stations and feature was
58m and the average scale of the images was 1:12,000, making
up a ground sample distance of about 16mm.
According to the empirical equation of error propagation, the

accuracy of estimation of ground points in each epoch is
predicted to be within 4mmby equation (7).

s c ¼ q
k1=2

Ss ! s c ¼ 0:7ffiffiffi
2

p � 12000� 0:5� 1:38� 10�6

¼ 0:004 m

(7)

In this equation, s c is the average standard deviation of
associated error with XYZ coordinates of object points and q is
the design factor or geometrical robustness coefficient of the
network. In this project, the value of q was assumed as 0.7. The
parameter k denotes the average number of images taken per
imaging station, which was 2 in this project. S refers to the
average scale of images, which is 1:12,000 in this project. s
represents the average xy coordinate error of image points,
which was herein considered as 0.5 pixel. Each pixel on the
sensor has a dimension of 0.00138mm.

3.2 Extracting image points
The displacement measurement of the excavated walls was
performed by using photogrammetric targets and using the
local region-based features, which was extracted by the MSER
algorithm and improved with the proposed MIP algorithm.
Using theMIPmethod, the initial extraction of image points in
the form of nails extraction was performed using the MSER
algorithm. The MSER areas were extracted with appropriate

Figure 7 Progress of the project under study in two epochs

Figure 8 Technical characteristics of the used camera
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thresholds. Then, an ellipse was fitted to these regions of pixels
and the central point of this ellipse was extracted as an image
point. Because of the radiometric differences of the nail plate,
the extraction of the MSER areas occurred in all three RGB
bands, and the common extracted positions with a threshold
were considered as the final points in each image. Figure 9
shows an example of the extracted regions for all three image
bands. Also, to reduce the effect of image noise and increase the
stability of the final point positions derived from the MSER
areas, as described in section 2.2, the area extraction was
performed in all three layers from the image pyramid.
In the target-based approach, two photogrammetric sets

of reflector targets were used. The first set was installed on
the wall for tracking with a diameter of 14 cm and an

average of 30 m from the camera positions. The second set
was installed on the building wall behind the excavation
wall (32 m away from the wall), which was located far from
the distance affected by displacements (minimum distance:
20 m) according to equation (6) [Figure 10(d)]. The target
diameter was 16 cm and placed at an average distance of 80
m from the camera positions. The extraction of the image
coordinates of these target centers was performed using the
regional segmentation algorithm based on region growth.
Figure 10(a) illustrates an example of these targets and
their central coordinate extraction. To prevent targets from
being covered with shotcretes, they were covered with
nylon in the early stages [Figure 10(c)]. Also, micro-
geodesy targets were installed along with some

Figure 9 Extraction of the MSER areas and central points

Figure 10 (a) S sample of photogrammetry target used and its center point extraction. (b) Micro-geodesy targets installed along with photogrammetric
target. (c) Meshing, drainage and shotcrete of a part of the wall and temporary covering of photogrammetric targets with nylon to prevent the cement
spray on them. (d) Base targets
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photogrammetric targets to verify the amount of
displacement [Figure 10(b)].

3.3Matching points
After the points were extracted, the nail matching was
carried out according to the strategy described in section
2.2. Figure 11(a) depicts densematching with noise elimination
between two images of the acquired converging image collection.
Figure 11(b) and 11(c) illustrates the homographic images
generated from property-based matching results. Figure 12

depicts the final results of nail matching between two
samples from a convergent image set of the feature in two
epochs.

3.4Multi-image Pointing algorithm implementation
To improve the accuracy of image coordinates and prepare the
extracted corresponding points for displacement measurement,
MIP algorithmwas introduced and implemented. According to the
algorithm described in Section 2–3, after determining the initial
point coordinates, the observations were sorted according to the

Figure 12 (a) Sample of nail extraction and matching in the first epoch’s images; (b) sampling and nail sampling in the second epoch’s image

Figure 11 Extraction of MSER areas and central points
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reprojection error value were entered individually into the MIP
algorithm in each cycle. The process continued to the point where
the MIP’s effective cycle could not improve the results of the 3D
point coordinates based on a predefined threshold. Also, in some
cycles, when the process of changing the image coordinates of the
erroneous points through the MIP algorithm did not improve, the
effect of applied changes was removed and that algorithm cycle was
eliminated as an ineffective repetition of the process.
Since bundle adjustment was performed using the least-

squares method, therefore, each time the process was executed,
the mean error would be different from the previous one. But
what in all program executions could be noticed is the reduction
of the mean value for the reprojection error in effective MIP
cycles. Figure 13 shows the geometric accuracy of the feature-
based photogrammetric network in both epochs in the Velenjak
project observations in both cases including scenarios of without
using theMIP algorithm and also using theMIP algorithm.
As shown in Figure 13, the geometric accuracy of the network

increases with the use of theMIP algorithm by correcting the image
observation positions at each step and replacing them with the
previous observations. This increase in accuracy in the ARE
parameters can be detected in the first epoch observations to 0.2
pixels and the second epoch observations to 0.6 pixels. This increase
in precision is directly related to the precision of determining the
location of 3D point coordinates and consequently will result in an
increase in the displacementmeasurement accuracy between the two
effective epochs. Figure 14 illustrates the final 3D coordinates of the
first epoch points in the last effective repetition of theMIP algorithm
aswell as the exterior orientationparameters of the camera.

3.5 Displacementmeasurement using the combined
photogrammetry displacement adjustment method and
evaluating the results
After improving the image coordinates accuracies of the
extracted points using the MIP algorithm, observations were
ready to enter the measuring displacement phase. As noted in
Section 4.2, for the displacement measurement between the
two epochs, both sets of observation epochs were adjusted
simultaneously using the CPDA method. This simultaneous
measuring displacement was performed using the MIP-based

photogrammetry and target-based photogrammetry as well as
micro-geodesy methods. The interior orientation parameters of
the imaging camera (Fujifilm Digital Camera
FINEPIXHS20EXR9) were determined by the pre-calibration
method in a test-field appropriate to the feature scale at the
project location. The estimation precision of point geo-
coordinates and their mean value in the photogrammetric
network, which was adjusted using the CPDAmethod, inX, Y
and Z directions are presented in Table 3.
According to Table 3 for the target-based photogrammetry

method, the Precision of the network is about 3mm and 8mm
for the MIP-based photogrammetry method, respectively.
According to equation (7), the accuracy of the estimation of
ground points in each epoch was predicted to be 4mm. So,
according to Table 3 and equation (7), the accuracy of
estimation of ground points in the target-based
photogrammetry network adjusted by the CPDA method
(3mm), is approximately the same as the predicted one. But in
the MIP-based photogrammetry network, because of the non-
use of targets, the accuracy obtained is slightly different from

Figure 13 Diagram showing the variation in ARE in two states: using MIP and not using the MIP algorithm

Figure 14 Refined 3D points and camera positions using seven images
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the predicted accuracy but is acceptable with respect to the
amount of displacement.The precision of the micro-geodesy
network was about 4mm considering the network created in
the opposite street and the coordinate differences in a fixed
point set in several epochs. To determine and evaluate the
accuracy of the results, the average point displacement on the
wall between two epochs was determined by applying different
methods. These results are shown inTable 4.
In Table 4, the absolute average differences (AAD) between

the measured displacement of the common points using two
methods of micro-geodesy and photogrammetry (target-based
photogrammetry or MIP-based photogrammetry) is presented
using equation (8).

AAD ¼
Xn

i¼1
jd x; y; zð Þi � d�ðx; y; zÞij

n
(8)

where d(x, y, z)i is the displacement vector length defined for
the ith point between two epochs in the micro-geodesy
method. d0 x; y; zð Þi is the displacement vector length defined
for the ith point between two epochs by the
photogrammetric method; n is the number of points on the
wall, where the displacement measurement was carried out.
According to Table 4, if the displacement value determined
by the micro-geodesy method between the two epochs is set
as the basis, the displacement determined using
photogrammetric targets differs by a 3mm compared with
that of the micro-geodesy method. The displacement
determined by the simple point extraction without using the
MIP algorithm is 3 cm with respect to the micro-geodesy
method. However, in the case of using the proposed MIP
algorithm for correcting and improving the image
coordinates of the extracted points, the displacement
differences compared with that of the micro-geodesy
method were 9mm. The mean difference between measured
point displacements in target-based photogrammetric
method and micro-geodesy was about 8mm. The average
difference between measured point displacements using the
proposed MIP algorithm and micro-geodesy was about 13

mm. The results indicate that although the use of
photogrammetric targets has yielded more accurate results,
if these targets are not used, the proposed MIP algorithm
can greatly cope with the required accuracy in such projects
using local features on the structure. Given the excavation
wall height in the second epoch,H = 20m, and the dominant
soil type as sandy ((d h/H)i = 1/500 according to Table 2),
based on equation (5) and Table 2, the maximum expected
allowable displacement is equal to:

d h ¼ d h=Hð Þi � H ! d h ¼ 1
500

� 20 ¼ 0:04m ¼ 4 cm

(9)

According to equation (9), if displacements between two
epochs are greater than 4 cm, the project becomes out of the
normal condition and some preventive measures must be
considered such as truss construction, shortening nail spacing,
increasing nail length or using other auxiliary methods such as
the reciprocal support or the use of anchoring. These
preventive actions need to be carried out during the project
progress to prevent the wall collapse. This amount of critical
displacement, 4 cm, can be easily determined using the
proposed measuring displacement method, MIP algorithm.
Therefore, the proposed method was able to provide the
required accuracy for displacement measurement in the
project.
If there is a possibility of accessing to the cracks created by

the wall movement, one of the traditional methods of
monitoring the cracks is to plaster on the part of the crack
created behind the wall and put the date on it. If the cracking
diameter increases in the wall, the plaster will also slot on it. By
measuring the created gap, the amount of displacement created
in the structure will be determined. Figure 15 shows the crack
plastering in this project.
According to the results of this method between the two

measurement epochs, the average wall displacement of
approximately 3 cm was confirmed with the plastering
method.

Table 3 Network proration precision between two epochs for displacement monitoring using the CPDA method (units in m)

Mrthod/
Precision Target-based photogrammetry MIP-based photogrammetry Micro-geodesy

Precision (X) 0.003 0.006 0.003
Precision (Y) 0.004 0.007 0.003
Precision (Z) 0.002 0.011 0.005
Overall 0.003 0.008 0.004

Table 4 Results of determining the average displacement of the wall between two epochs by micro-geodesy methods, target-based photogrammetry,
photogrammetry without using the MIP method and the proposed method of MIP photogrammetry (units in m)

Mean of
displacement on the
wall (micro-geodesy)

Mean of
displacement on the
wall (target-based
photogrammetry)

Mean of displacement on
the wall (simple points
extraction – no usage of

the MIP algorithm)

Mean of
displacement on

the wall (MIP-based
photogrammetry)

AAD between
micro-geodesy

and (target-based
photogrammetry)

AAD between
micro-geodesy
and (MIP-based
photogrammetry)

0.031 0.034 0.061 0.040 0.0077 0.0128
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4. Conclusions

The displacement measurement of large scale structures, such
as excavated walls is of great importance because of providing
structural behavior monitoring and consequently the
prevention of accidents. Applying commonly used methods,
such as micro-geodesy and instrumentation, have limitations
such as high cost, difficulty in implementation and time-consuming
observations. Photogrammetric methods that use the local
features on the structure as the reference point displacement
measurements, requires high accuracy in the point extraction
andmatching. Some Limitations of photogrammetry include:
parallax, poor feature texture and radiometric differences
between images cause that the position of the corresponding
local features extracted in the images does not have the
appropriate geometric accuracy to be used as the basis for the
displacement measurement. Therefore, in this paper, the new
MIP algorithm based on the geometric characteristics of the
model generated from the initial matching was introduced,
which, in a self-adaptive way, corrected the extracted image
coordinates. The unique characteristic of this proposed
algorithm was that the position correction was accomplished
with the help of continuous interaction between the 3D
model coordinates and the image coordinates and had the
least dependency on the geometric and radiometric nature of
the images. After the initial feature extraction and
implementation of the MIP algorithm, the image coordinates
were ready for use in the displacement measurement process.
The CPDA algorithm was used for displacement
measurement between two epochs. Micro-geodesy, target-
based photogrammetry and the proposed MIP methods were
used in a displacement measurement project for an
excavation wall in the Velenjak area in Tehran, Iran to
evaluate the proposed algorithm performance. According to
the results, the measurement accuracy of the point geo-
coordinates of 8mm and the displacement accuracy of 13mm
could be achieved using theMIP algorithm. In addition to the
micro-geodesy method, the accuracy of the results was
matched by the cracks created behind the project’s wall.
Given the maximum allowable displacement limit of 4 cm in
this project, the use of the MIP algorithm produced the
required accuracy to determine the critical displacement in
the project. Some advantages of the proposed MIP
photogrammetry algorithm, including the ease of obtaining
observations and using local features on the structure in the

images rather than installing the artificial targets, make it
possible to effectively replace micro-geodesy and
instrumentation methods. In addition, the proposed MIP
method is superior to the target-based photogrammetric
method as it does not need artificial target installation and
protection. Moreover, in each photogrammetric application
that needs to determine the exact point coordinates on the
feature, the proposed algorithm can be very effective in
providing the possibility to achieve the required accuracy
according to the desired objectives.

Notes

1 Combined photogrammetry displacement adjustment.

2 Refined distance constraint.

3 Finite Element Method.
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