
Green-Haar method for fractional
partial differential equations

Muhammad Ismail and Mujeeb ur Rehman
Department of Mathematics, School of Natural Sciences,

National University of Sciences and Technology, Islamabad, Pakistan, and

Umer Saeed
NUST Institute of Civil Engineering, School of Civil and Environmental

Engineering, National University of Sciences and Technology, Islamabad, Pakistan

Abstract
Purpose – The purpose of this study is to obtain the numerical scheme of finding the numerical
solutions of arbitrary order partial differential equations subject to the initial and boundary
conditions.

Design/methodology/approach – The authors present a novel Green-Haar approach for the family of
fractional partial differential equations. The method comprises a combination of Haar wavelet method with
the Green function. To handle the nonlinear fractional partial differential equations the authors use Picard
technique along with Green-Haar method.

Findings – The results for some numerical examples are documented in tabular and graphical form to
elaborate on the efficiency and precision of the suggested method. The obtained results by proposed method
are compared with the Haar wavelet method. The method is better than the conventional Haar wavelet
method, for the tested problems, in terms of accuracy. Moreover, for the convergence of the proposed
technique, inequality is derived in the context of error analysis.

Practical implications – The authors present numerical solutions for nonlinear Burger’s partial
differential equations and two-term partial differential equations.

Originality/value – Engineers and applied scientists may use the present method for solving fractional
models appearing in applications.

Keywords Caputo derivative, Fractional partial differential equations, Green-Haar method,
Haar wavelets, Picard technique

Paper type Research paper

1. Introduction
The fractional calculus and its applications in numerous fields of science and
engineering are considered now an important field of mathematics capable to bring new
incite in the dynamics of non-local complex systems (Hilfer, 2000; Kilbas et al., 2006;
Podlubny, 1999; Samko et al., 1993). As the fractional calculus is a powerful apparatus
to portray physical systems that have a long-term memory, which provides more
options in the fields of mathematics and theoretical physics. Accordingly fractional
differential equations have become famous for modeling many physical phenomena,
such as in signal processing (Calderon et al., 2006), anomalous diffusion (Cosenza and
Korosak, 2014), visco-elasticity (Chen et al., 2014), fluid dynamics (He, 1999), economics
(Baillie, 1996), bio-engineering (Magin, 2006) and continuum and statistical mechanics
(Carpinteri and Mainardi, 1997).
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Exact solutions of fractional partial differential equations seldom appear in the literary works;
the demand to accomplishment few reliable and competent computational techniques is basic
interest. To name a few in the literature, Abdulaziz et al. (2009) achieved estimated exact solutions
for arbitrary real order Korteweg-de Vries equations along with the homotopy perturbation
technique. Kurt and Tasbozan (2015) discussed homotopy analysis method on time-fractional
Whitham–Broer–Kaup equation to obtain its approximate analytical solutions. A modified form
of Adomian decomposition technique was developed by Odibat (2006) to solve fractional
diffusion-wave problems. Non-polynomial quintic spline method used in Amin et al. (2019) for
numerical solution of fourth-order time-fractional partial differential equations.

Latterly, wavelets got attention and attracted many researchers in the area of numerical
approximations because of their extensive use. Wavelets theory is comparatively growing area
in the mathematical application. A detailed survey of previous work can be found in Dahmen
et al. (1997). Some special uses of wavelets in the context of computational technique comprise
numerical integration and solutions of integral equations (Aziz and Siraj-ul-Islam, 2013; Siraj-
ul-Islam and Haq, 2010), ordinary and partial differential equations (Comincioli et al., 2000;
Lepik and Hein, 2014), also fractional partial differential equations (Rehman and Khan, 2013;
Saeed and Rehman, 2015; Wu, 2009). Numerous types of wavelets have been used in various
implementations, for example, B-spline (Dehghan and Lakestani, 2008; Esen and Tasbozan,
2017), Legendre wavelets (Rehman and Khan, 2011), Haar wavelets (Lepik, 2007; Rehman and
Khan, 2012), Daubechies (Diaz et al., 2009), Battle–Lemarie (Zhu et al., 1997) and Chebyshev
(Babolian and Fattahzdeh, 2007). Haar wavelet have been used by a lot of scientists because of
their clarity and good convergence rate. Mathematically, Haar wavelets family consists of
rectangular functions. It also contains the lower member of the Daubechies family of wavelets,
which is appropriate for numerical applications. Lepik (2011) and Celik (2012, 2013) introduced
a numerical technique to obtain numerical solutions for linear and nonlinear partial differential
equations, respectively, by using two-dimensional Haar wavelets. To test the method, Lepik
used the diffusion besides Poisson equations whereas Celik used generalized Burgers–Huxley
equation andmagnetohydrodynamic flow equations.

In this work, a method depended on the two-dimensional Haar wavelet is proposed, called
Green-Haar technique. This method extends the Green-Haar method developed in Rehman
et al. (2019) for the numerical solutions of fractional ordinary differential equations. Green-Haar
technique is used for solving fractional partial differential equations subject to the initial and
boundary conditions. Here we concentrate on linear and nonlinear fractional partial differential
equations. For certain problems this method does not require the use of operational matrices.
However, for some class of problems Green-Haar method is used along with operational
matrices. The convergence of the suggested method has been examined and elaborated in the
context of error analysis. The suggested technique is suitable on account of solving such as
linear/nonlinear fractional partial differential equations. To exhibit the effectiveness and
precision of the suggested method, it is tested for some examples. The outcomes of these test
problems are documented in the tabular and graphical form. Moreover, for comparison the
results have also been documented in tabular form against previous studies.

This article is summarized as: in Section 2, we quoted a few necessary preliminaries,
which help us in the upcoming sections. Section 3 focuses on Haar wavelets, which is the
basic part of this study. Also, the function approximation and Haar wavelet operational
matrices are explained. Green-Haar technique for the fractional partial differential equations
and computational process of the technique for specific problems is discussed in Section 4.
The convergence of the suggested technique is investigated in the context of error analysis
in Section 5. Section 6 comprises results discussion of some applications to investigate the
effectiveness of the suggested technique in graphical and tabular form. Also, we compared
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the outcomes of some tested problems with the previous studies. Finally, Section 7 contains
a discussion and conclusion.

2. Preliminaries
For convenience, in this part, we introduce a few elementary concepts and definitions of
fractional calculus. These preliminaries’ facts are going to help in the upcoming sections.

Definition 2.1. Diethelm (2010) and Podlubny (1999). The partial Caputo fractional
derivative of u(x, t) [ Cn([0, 1]� [0, 1]) of order a [Rþwith respect to x is defined as:

@au x; tð Þ
@xa

¼
In�a
x

@nu x; tð Þ
@xn

; a 2 n� 1; nð �;
@nu x; tð Þ

@xn
; a ¼ n 2 N;

8>><
>>: (2.1)

where n ¼ bac þ 1 and In�a
x are the Riemann–Liouville fractional integral, stated as:

Ia
x g xð Þ ¼

1
C að Þ

ðx
a

x� tð Þa�1g tð Þdt ; a > 0;

g xð Þ; a ¼ 0:

8><
>: (2.2)

Example 2.2. Consider a, m [ Rþ and g(x) = xm . The Caputo fractional derivative of g(x) is
given as:

Da
x g xð Þ ¼ C m þ 1ð Þ

C m � aþ 1ð Þ x
m�a: (2.3)

For the function of one variable, we use the notationDa
x instead of notation

@a

@xa :
We state a few elementary properties (Diethelm, 2010) of fractional integral and

differential operators as:
� Ia

xI b
x f xð Þ ¼ I b

x Ia
x f xð Þ ¼ Iaþb

x f xð Þ.

� Ia
x
@au x;tð Þ
@xa ¼ u x; tð Þ �

Xn�1

i¼0

xi

C i þ 1ð Þ
@iu x;tð Þjx¼0

@xi :

� @au x;tð Þ
@xa I b

x u x; tð Þ ¼ I b�a
x u x; tð Þ:

Definition 2.3. Pang et al. (2018). The Mittag-Leffler function Eg ;b with dependence on two
parameters a and b are stated as:

Eg ;b tð Þ ¼
X1
k¼o

tk

C gkþ bð Þ; g ; b > 0:

As a particular case, when b = 1 we have:

Eg tð Þ ¼
X1
k¼o

tk

C gkþ 1ð Þ ¼ et; g > 0:

Lemma 2.4.Diethelm (2010). For u [R, g > 0 and b > 1, we have:
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Da
t t � að Þb�1Eg ;b u t � að Þg� �

¼ t � að Þb�a�1Eg ;b�a u t � að Þg� �
; (2.4)

and for b = 1 anda = g , we have:

Da
t Ea u t � að Þa� �

¼ uEa u t � að Þa� �
: (2.5)

Lemma 2.5.Wang et al. (2014). Assume that the function @u x;tð Þ
@x is continuous and bounded

on (0, 1) � (0, 1) that is there exist M > 0 j @u x;tð Þ
@x j#M 8 x, t [ (0, 1) � (0, 1), and also

assume that um (x, t) obtained by using Haar wavelet, are the approximations of u(x, t),
then we have:

jum x; tð Þ � u x; tð Þj# Mffiffiffi
3

p 1
m3 :

3. Haar wavelets and function approximations
A class of wavelet {c j, i(t)} where j [ R and i [ R is an orthonormal subclass of the Hilbert
spaceL2 Rð Þ: This function c is called mother wavelet, all function in the wavelet class are
generated from c , which verify the relation given below:

c j;i tð Þ ¼ 2
j
2c 2jt � ið Þ:

The Haar wavelet is step functions over the real line. These functions are restrained to
the values: �1, 0 and 1. Each function that falls in category of Haar wavelets is
essentially stated over t [ [a, b] other than the scaling function conveyed in Lepik and
Hein (2014) as:

hi tð Þ ¼
1; for t 2 j 1 ið Þ; j 2 ið Þ

� �
;

�1; for t 2 j 2 ið Þ; j 3 ið Þ
� �

;

0; otherwise;

8>><
>>: (3.1)

where j 1 ið Þ ¼ aþ b� að Þ k
m ; j 2 ið Þ ¼ aþ b� að Þ 2kþ1

2m ; j 3 ið Þ ¼ aþ b� að Þ kþ1
m : We

define the quantity m = 2j, j = 0, 1, 2, 3, . . ., j and k = 0, 1, 2, 3, . . ., m � 1. Here the
parameter j is used as a representation for the level of wavelet or dilation parameter,
translation is represented by k, while the maximal level of resolution for the Haar
wavelet is represented by j. The connection among the parameters m, k and i is given as
i =mþ kþ 1.

The equation (3.1) is valid for i � 3. It is presumed that the value i = 1 and i = 2
corresponds to the following scaling function andmother wavelet, respectively:

h1 tð Þ ¼ 1; for t 2 a; b½ �;
0; otherwise;

(
(3.2)

and
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h2 tð Þ ¼
1; t 2 a;

aþ b
2

� �
;

�1; t 2 aþ b
2

; b

� �
;

0; otherwise:

8>>>>>><
>>>>>>:

(3.3)

If u(t) [ L2 [0, 1], it can be represented by Haar wavelets as:

u tð Þ ¼
X1
i¼0

cihi tð Þ; (3.4)

where ci = hu(t), hi(t)i. In particular, we can approximate u(t) by truncated series:

u tð Þ ffi um tð Þ ¼
Xm�1

i¼0

cihi tð Þ: (3.5)

A function of two variables u(x, t) can be estimated by Haar wavelet as:

u x; tð Þ ffi um x; tð Þ ¼
Xm�1

j¼0

Xm�1

i¼0

cj;ihj xð Þhi tð Þ ¼ Ht xð ÞCH tð Þ:

The operational matrix Pa for the fractional-order integration of the Haar wavelet is derived
and discussed in Lepik and Hein (2014).

4. Green-Haar method and numerical procedure to fractional partial
differential equations
In this section, we discuss Green-Haar technique for fractional partial differential equations
with initial and boundary conditions and describes the numerical procedure, namely, Green-
Haar technique to approximate the numerical solutions.

4.1 Green-Haar method
The fractional Green’s function is defined, proposed and exploited by Miller and Ross (1993)
applied to fractional differential equations consisting of derivatives of order ka only, where
k [ R. We propose a new technique to obtain the solutions of linear and nonlinear fractional
partial differential equations numerically, called Green-Haar technique. In general, this
method does not require to use the operational matrix for the fractional partial differential
equation. However, for some cases Green-Haar is used along with operational matrix. The
study undertaken reveal that the technique is even more computationally capable against
some of the relevant numerical methods discussed in previous studies. Interestingly,
accuracy is not compromised, rather enhanced by using Green-Haar method for solving
fractional partial differential equations subject to the initial and boundary values.

4.2 Numerical procedure
We apply the Green-Haar technique to estimate the numerical solutions to the linear
fractional partial differential equations with initial and boundary values. Particularly, we
consider the following form:
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@au x; tð Þ
@ta

¼ a xð Þ @
b u x; tð Þ
@xb

� b xð Þ @
gu x; tð Þ
@xg

� d xð Þu x; tð Þ þ g x; tð Þ; (4.1)

with the initial and boundary conditions:

ið Þ u x; 0ð Þ ¼ p1 xð Þ; u x; 1ð Þ ¼ p2 xð Þ or iið Þ u x; 0ð Þ ¼ p1 xð Þ; @u x; tð Þ
@t

jt¼0 ¼ q1 xð Þ;
(4.2)

and

u 0; tð Þ ¼ r1 tð Þ; u 1; tð Þ ¼ r2 tð Þ; (4.3)

where 1 < a # 2, 1 < b # 2 and 0 < g # 1. Firstly, we approximate the term involving
derivative of order b by Haar wavelets as:

@b u x; tð Þ
@xb

¼ Ht xð ÞCH tð Þ: (4.4)

Applying the integral operator on both sides of equation (4.4), we have:

u x; tð Þ ¼ I b
x H

t xð ÞCH tð Þ þ xW1 tð Þ þW2 tð Þ: (4.5)

Using the conditions in equation (4.3), from equation (4.5), we obtain:

W2 tð Þ ¼ r1 tð Þ; W1 tð Þ ¼ �
ð1
0

1� tð Þb�1

C bð Þ Ht tð Þdt
 !

CH tð Þ þ r2 tð Þ � r1 tð Þ:

Therefore, equation (4.5) will become:

u x; tð Þ ¼ I b
x H

t xð ÞCH tð Þ � x
ð1
0

1� tð Þb�1

C bð Þ Ht tð Þdt
 !

CH tð Þ þ x r2 tð Þ � r1 tð Þð Þ þ r1 tð Þ;

¼
ðx
0

x� tð Þb�1

C bð Þ Ht tð ÞdtCH tð Þ � x
ðx
0

1� tð Þb�1

C bð Þ þ
ð1
x

1� tð Þb�1

C bð Þ

 ! 

Ht tð ÞdtÞCH tð Þ þ x r2 tð Þ � r1 tð Þð Þ þ r1 tð Þ: (4.6)

Thus, we have:

u x; tð Þ ¼ �
ð1
0
G1 x; tð ÞHt tð Þdt

 !
CH tð Þ þ x r2 tð Þ � r1 tð Þð Þ þ r1 tð Þ; (4.7)
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the functionG1(x, t ) in equation (4.7) given by:

G1 x; tð Þ ¼
1

C bð Þ � x� tð Þb�1 þ x 1� tð Þb�1
� �

; if 0# t < x;

x
C bð Þ 1� tð Þb�1

; if x# t # 1;

8>>><
>>>:

(4.8)

is called the Green’s function for boundary value problem equations (4.4) and (4.2[i]). The
graph for the functionG1(x, t ), for a = 2 and j= 5, is shown in Figure 1.

We approximate this Green’s function by Haar wavelets as:

G1 x; tð Þ ¼ Ht xð ÞĜt
1H tð Þ: (4.9)

Equation (4.7) becomes:

u x; tð Þ ¼ �Ht xð ÞĜt
1CH tð Þ þ x r2 tð Þ � r1 tð Þð Þ þ r1 tð Þ: (4.10)

By using the orthogonality (Babolian and Shahsavaran, 2009) of the sequence {hi(t)} on
[0, 1], we have:

ð1
0
H tð ÞHt tð Þdt ¼ Im�m; (4.11)

where Im�m is an identity matrix of orderm. Applying @g

@xg on equation (4.6), we get:

Figure 1.
Green function for

fixed values of j= 5
and for a = 20
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@gu x; tð Þ
@xg

¼ I b�gHt xð ÞCH tð Þ � x1�g

C 2� gð Þ
ð1
0

1� tð Þb�1

C bð Þ Ht tð Þdt
 !

CH tð Þ

þ x1�g

C 2� gð Þ r2 tð Þ � r1 tð Þð Þ;

¼
ð1
0
G2 x; tð ÞH tð Þdt

 !
CH tð Þ þ x1�g

C 2� gð Þ r2 tð Þ � r1 tð Þð Þ;

(4.12)

where

G2 x; tð Þ ¼
1

C b � gð Þ x� tð Þb�g�1 � x1�g

C 2� gð ÞC bð Þ 1� tð Þb�1
; if 0# t < x;

� x1�g

C 2� gð ÞC bð Þ 1� tð Þb�1
; if x# t # 1:

8>>><
>>>:

Similarly, we have:

G2 x; tð Þ ¼ Ht xð ÞĜt
2H tð Þ: (4.13)

Now, the equation (4.12) becomes:

@gu x; tð Þ
@xg

¼ Ht xð ÞĜt
2CH tð Þ þ x1�g

C 2� gð Þ r2 tð Þ � r1 tð Þð Þ: (4.14)

Putting equations (4.4), (4.10) and (4.14) into equation (4.1), we obtain:

@au x; tð Þ
@ta

¼ a xð ÞHt xð ÞCH tð Þ � b xð ÞHt xð ÞĜt
2CH tð Þ þ d xð ÞHt xð ÞĜt

1CH tð Þ

� b xð Þx1�g

C 2� gð Þ r2 tð Þ � r1 tð Þð Þ � xd xð Þ r2 tð Þ � r1 tð Þð Þ � d xð Þr1 tð Þ þ g x; tð Þ:

(4.15)

For simplification, we use some convenient notations:

s x; tð Þ ¼ � b xð Þx1�g

C 2� gð Þ r2 tð Þ � r1 tð Þð Þ � xd xð Þ r2 tð Þ � r1 tð Þð Þ � d xð Þr1 tð Þ þ g x; tð Þ; y x; tð Þ

¼ �x r2 tð Þ � r1 tð Þð Þ � r1 tð Þ þ t p2 xð Þ � p1 xð Þð Þ þ p1 xð Þ

and z x; tð Þ ¼ �x r2 tð Þ � r1 tð Þð Þ � r1 tð Þ þ tp1 xð Þ þ q1 xð Þ. Equation (4.15) becomes:
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@au x; tð Þ
@ta

¼ a xð ÞHt xð ÞCH tð Þ � b xð ÞHt xð ÞĜt
2CH tð Þ þ d xð ÞHt xð ÞĜt

1CH tð Þ þ s x; tð Þ:
(4.16)

Now, applying Ia
t on both sides of equation (4.16), we have an alternative term for the

function u(x, t). Here it is difficult to calculate the fractional integral Ia
t s x; tð Þ or even hard to

calculate instantly. To overcome this difficulty, we approximate the function s(x, t) by two-

dimensional Haar wavelets form, as s x; tð Þ ¼ Ht xð ÞŜ t
H tð Þ and then apply the fractional

integral, we get:

u x; tð Þ ¼ a xð ÞHt xð Þ � b xð ÞHt xð ÞĜt
2 þ d xð ÞHt xð ÞĜt

1

h i
C þ Ht xð ÞŜ t

n o
Ia
t H

t tð Þ þ tf 1 xð Þ
þ f 2 xð Þ:

(4.17)

By using the initial conditions equation (4.2[i]), from equation (4.17), we have f 2(x) = p1(x) and

f 1 xð Þ ¼ � a xð ÞHt xð Þ � b xð ÞHt xð ÞĜt
2 þ d xð ÞHt xð ÞĜt

1

h i
C þ Ht xð ÞŜ t

n o ð1
0

1� tð Þa�1

C að Þ Ht tð Þdt þ p2

xð Þ �p1 xð Þ:Therefore, equation (4.17) becomes:

u x; tð Þ ¼ a xð ÞHt xð Þ � b xð ÞHt xð ÞĜt
2 þ d xð ÞHt xð ÞĜt

1

h i
C þ Ht xð ÞŜ t

n o ð1
0
G3 t; tð ÞH tð Þdt

þ t p2 xð Þ � p1 xð Þð Þ þ p1 xð Þ;
(4.18)

where

G3 t; tð Þ ¼
1

C að Þ t � tð Þa�1 � t 1� tð Þa�1
� �

; if 0# t < t;

� t
C að Þ 1� tð Þa�1

; if t# t # 1;

8>>><
>>>:

and

G3 t; tð Þ ¼ Ht tð ÞĜt
3H tð Þ ¼ Ht tð ÞĜt

3H tð Þ: (4.19)

Equation (4.18) implies:

u x; tð Þ ¼ a xð ÞHt xð Þ � b xð ÞHt xð ÞĜt
2 þ d xð ÞHt xð ÞĜt

1

h i
C þ Ht xð ÞŜ t

n o
Ĝ

t
3H tð Þ

þ t p2 xð Þ � p1 xð Þð Þ þ p1 xð Þ:
(4.20)

Now, by using initial conditions equation (4.2[ii]), we obtained f 2(x) = p1(x), f 1(x) = q1(x).
Therefore, equation (4.17) becomes:
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u x; tð Þ ¼ a xð ÞHt xð Þ � b xð ÞHt xð ÞĜt
2 þ d xð ÞHt xð ÞĜt

1

h i
C þ Ht xð ÞŜ t

n o
Pa þ tq1 xð Þ

þ p1 xð Þ:
(4.21)

LetA, B andD be the diagonal matrices, which are defined as follow:

A ¼

a x1ð Þ 0 � � � 0

0 a x2ð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � a xmð Þ

2
6666664

3
7777775
; B ¼

b x1ð Þ 0 � � � 0

0 b x2ð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � b xmð Þ

2
6666664

3
7777775
;

D ¼

d x1ð Þ 0 � � � 0
0 d x2ð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � d xmð Þ

2
66664

3
77775;

where xi ¼ 2i�1
2m for i= 1, 2, . . .,m.

From equations (4.10) and (4.20), we will have the following matrix form:

Ĝ
t
1C � Ht½ ��1

AHt � BHtĜ
t
2 þ DHtĜ

t
1

h i
C

n o
Ĝ

t
3 ¼ StĜ

t
3 þ Ht½ ��1

Yt H½ ��1
; (4.22)

where Y is the approximation of the function y(x, y) = �x(r2(t) � r1(t)) � r1(t) þ t(p2(x) �
p1(x))þ p1(x). The equation (4.22) is called Sylvester equation. To find the value of Cwe have
to solve the algebraic system equation (4.22), and putting the value of C into equation (4.10)
or in equation (4.21) to get the approximate solution at the collocation points. Also, from
equations (4.10) and (4.21), we have the following algebraic system:

Ĝ
t
1C � Ht½ ��1

AHt � BHtĜ
t
2 þ DHtĜ

t
1

h i
C

n o
Pa ¼ StPa þ Ht½ ��1

Zt H½ ��1
: (4.23)

5. Convergence analysis
In this part, we derive inequality in the context of upper bound, which shows the convergence
of Green-Haar technique for fractional partial differential equations. The convergence of Haar
wavelet for partial differential equations is discussed in Wang et al. (2014). Proceeding in the
same way, we extend the analysis for the present proposed technique. Here we use the
notationDa

x instead of
@a

@xa.
Theorem 5.1. Suppose that the function @ukþ1 x;tð Þ

@x is continuous and bounded on (0, 1)� (0, 1)
that is there exist M> 0, such that j @ukþ1 x;tð Þ

@x j#M8x; t 2 0; 1ð Þ � 0; 1ð Þ, and also assume that
umkþ1 x; tð Þ is an approximation of ukþ 1 (x, t), thenwe have:
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jumkþ1 x; tð Þ � ukþ1 x; tð Þj# Mffiffiffi
3

p
C aþ 1ð Þ

1
m3 :

Proof. Consider:

@au x; tð Þ
@xa

¼ u x; tð Þ þ f u x; tð Þ; x; tð Þ; x; t 2 0; 1½ �; (5.1)

with boundary conditions u(0, t) = u0(t), u(1, t) = u1(t). Now, applying the Picard technique to
equation (5.1), we have:

@aukþ1 x; tð Þ
@xa

¼ ukþ1 x; tð Þ þ f uk x; tð Þ; x; tð Þ; x; t 2 0; 1½ �; (5.2)

with boundary conditions uk þ 1(0, t) = u0(t), uk þ 1(1, t) = u1(t). The integral representation of
equation (5.2) after using boundary conditions can be written as:

ukþ1 x; tð Þ ¼
ð1
0
G x; jð Þukþ1 j ; tð Þdj þ h x; tð Þ; (5.3)

where h x; tð Þ ¼ Ia
x f uk x; tð Þ; x; tð Þ � xIa

x f uk 1; tð Þ; 1; tð Þ þ u1 tð Þ � u0 tð Þð Þxþ u0 tð Þ. The
functions h(x, t) and uk(x, t) are known and can be used to obtain uk þ 1 (x, t). Let umkþ1 x; tð Þ is
the approximation of uk þ 1 (x, t), then we have:

jumkþ1 x; tð Þ � ukþ1 x; tð Þj#
ð1
0
G x; jð Þjumkþ1 j ; tð Þ � ukþ1 j ; tð Þjdj : (5.4)

Therefore, from Lemma 2.5, we have:

jumkþ1 x; tð Þ � ukþ1 x; tð Þj# Mffiffiffi
3

p 1
m3

ð1
0
G x; jð Þdj : (5.5)

We evaluate the integral
ð1
0
G x; jð Þdj as:

ð1
0
G x; jð Þdj ¼ 1

C að Þ
ðx
0

x� jð Þa�1 � x 1� jð Þa�1
h i

dj � x
ð1
x
1� jð Þa�1dj

( )
;

¼ 1
C a þ 1ð Þ xa � xð Þ:

As�x# 0 because x [ [0, 1], therefore:

ð1
0
G x; jð Þdj #

xa

C aþ 1ð Þ #
1

C a þ 1ð Þ : (5.6)

Using equation (5.6) into equation (5.5), we obtain:
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jumkþ1 x; tð Þ � ukþ1 x; tð Þj# Mffiffiffi
3

p
C aþ 1ð Þ

1
m3 : (5.7)

6. Applications
We apply Green-Haar method to obtain the numerical solution of the fractional partial
differential equations subject to the initial and boundary conditions. We also compare the
outcome of the tested problemwith previous studies.

Example 6.1. Consider:

@u x; tð Þ
@ta

¼ x2

2
@2u x; tð Þ

@x2
; x 2 0; 1½ � and t 2 R; (6.1)

with the initial and boundary conditions:

u x; 0ð Þ ¼ x;
@u x; tð Þ

@t
jt¼0 ¼ x2; (6.2)

u 0; tð Þ ¼ 0; u 1; tð Þ ¼ 1þ tEa;2 tað Þ; (6.3)

where 1 < a# 2. The series solution of the equation (6.1) is u x; tð Þ ¼ xþ x2
X1
k¼0

tkaþ1

C ka þ 2ð Þ.
The numerical solutions can be obtained by the method discussed in Section 4.2. The
absolute error for a = 1.75 and at different values of j are shown in Table I. We also compare
the proposed method with Haar wavelet method discussed in Rehman and Khan (2013) by
using L1 and L2 norms. The absolute error obtained for proposed method is slightly better
than the Haar wavelet method. We observe that the maximum absolute error decrease by
increasing value of j.

Example 6.2. Consider the fractional convection-diffusion equation (6.4):

@au x; tð Þ
@ta

¼ p xð Þ @
b u x; tð Þ
@xb

� q xð Þ @
gu x; tð Þ
@xg

þ f x; tð Þ; 1 < a# 2; 1 < b # 2; and 0

< g # 1;

(6.4)

subject to the initial and boundary conditions u(x, 0) = u(x, 1) = 0, u(x, t) = u(1, t) = 0,

Table I.
Maximum absolute
error for a = 1.75, t =
0.2 and for different
values of j

Haar wavelet method
Rehman and Khan (2013) Green-Haar Method

j L1 L2 L1 L2

03 3.78034� 10�4 6.23867� 10�4 6.50728� 10�5 1.21168� 10�4

04 9.55847� 10�5 2.22552� 10�4 2.03649� 10�5 4.68900� 10�5

05 2.45589� 10�5 7.92660� 10�5 5.14014� 10�6 1.62794� 10�5

06 6.13517� 10�6 2.81917� 10�5 1.29440� 10�6 5.73428� 10�6

07 1.78149� 10�6 9.93583� 10�6 3.24483� 10�7 2.02171� 10�6
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where p(x) =C(ab � a þ 2)C(b� 2a þ 1)xa, q(x) =C(ab þ 2� b )C(b� a � b þ 1)xb and

f x; tð Þ ¼ � xab � xb�að Þ dpð Þ3t3�aE2;4�a � dp tð Þ2
� �

þ C ab þ 2ð Þ C b� a� b þ 1ð Þ�½	
C b� 2aþ 1ð Þ�xabþ1 þ C bþ a þ 1ð Þ C ab � a þ 2ð Þ½ �C ab þ 2� bð Þ�xb�agsin dp tð Þ.
Therefore, it can be conventionally verified that the exact solution to equation (6.4) is u(x, t) =
(xab þ 1� xb � a)sin(dp t). Numerical solutions are obtain for a= 2, b= d= 4,a = 2, g = 0.75,
b = 2 and different values of j are shown in the tabular form in the Table II. The numerical
and exact solutions for j = 6, a = 2, b = 2 and g = 0.35 are plotted in the Figure 4. Also, the
numerical and exact solution and their absolute error are plotted in the graphical form in the
Figures 2 and 3, respectively, for fixed values of j= 6,a = 1.85, b = 2 and g = 0.75.

6.1 Nonlinear case
The nonlinear partial differential equations are transformed into linear form by using Picard
technique and then solved numerically. We applying the Picard method for the nonlinear
fractional partial differential equation to get discretized form. Consequently, Green-Haar
technique is used for discretized form to get the numerical solutions. Consider:

Table II.
Exact and numerical

solution for a = 2,
g = 0.75, b = 2, a =
2, b = d = 4 and for
different values of j

t x j = 5 j = 6 j = 7 Exact solution for j = 7

0.2 0.25 �0.0184739 �0.0183575 �0.0183750 �0.0183611
0.50 �0.0432248 �0.0430080 �0.0430584 �0.0430186
0.75 �0.0444660 �0.0443182 �0.0442666 �0.0442718

0.4 0.25 0.0296512 0.0297685 0.0296136 0.0296912
0.50 0.0693773 0.0697418 0.0696283 0.0695640
0.75 0.0713694 0.0717829 0.0716655 0.0715904

0.6 0.25 �0.0297712 �0.0297685 �0.0297136 �0.0296912
0.50 �0.0693773 �0.0697418 �0.0696283 �0.0695640
0.75 �0.0713694 �0.0717829 �0.0716655 �0.0715904

Figure 2.
Exact and numerical

solution for j= 6,
a = 1.85, b = 2 and

g = 0.750 0.2 0.4 0.6 0.8 1
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@au x; tð Þ
@ta

¼ p xð Þ @
b u x; tð Þ
@xb

þ q xð Þu x; tð Þ @
gu x; tð Þ
@gxg

þ r xð Þun x; tð Þ þ g x; tð Þ; (6.5)

where 1< a# 2, 1< b # 2, 0< g # 1, n> 1, also with the initial and boundary conditions
in equations (4.2) and (4.3).

Using the Picard iteration (Bellman and Kalaba, 1965) to equation (6.5), we obtain:

@aukþ1 x; tð Þ
@ta

� p xð Þ @
b ukþ1 x; tð Þ

@xb
¼ y x; t; uk x; tð Þ; @

guk x; tð Þ
@xg


 �
; (6.6)

Figure 3.
Absolute error for
j= 6, a = 1.85, b = 2
and g = 0.75 0 0.2 0.4 0.6 0.8 1
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x 10
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tx

Error

Figure 4.
Exact and numerical
solutions for the fixed
values of j= 6,a = 2,
b = 2 and g = 0.35 0 0.2 0.4 0.6 0.8 1
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Numerical
Exact
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subject to the initial and boundary conditions:

ið Þ ukþ1 x; 0ð Þ ¼ a xð Þ; ukþ1 x; 1ð Þ ¼ b xð Þ or iið Þ ukþ1 x; 0ð Þ

¼ c xð Þ; @ukþ1 x; tð Þ
@t

jt¼0 ¼ d xð Þ; (6.7)

ukþ1 0; tð Þ ¼ f tð Þ; ukþ1 1; tð Þ ¼ h tð Þ: (6.8)

where y x; t; uk x; tð Þ; @g uk x;tð Þ
@xg

� �
¼ q xð Þuk x; tð Þ @guk x;tð Þ

@xg þ r xð Þunk x; tð Þ þ g x; tð Þ: Applying the
Green-Haar method, which is discussed in Section 4 to get the numerical solutions.

Example 6.3. Consider the following Burger’s equation with initial and boundary
conditions:

@au x; tð Þ
@ta

þ u x; tð Þ @u x; tð Þ
@x

¼ @b u x; tð Þ
@xb

0 < a# 1; 1 < b # 2; (6.9)

u x; 0ð Þ ¼ 2x;

u 0; tð Þ ¼ 0; u 1; tð Þ ¼ 2
1þ 2t

;

where 0# x# 1 and t� 0. When a = 1 and b = 2, the exact solution of the equation (6.9) is
u x; tð Þ ¼ 2x

1þ2t. Consider u0(x, t) = 2x and @u0 x;tð Þ
@x ¼ 2 as an initial approximation and apply

the Picard iteration technique to equation (6.9) to convert into discretized from. Then, Green-
Haar method is applied for the numerical solutions. We plot the exact and numerical
solution and the absolute error between exact and numerical solution by fixing the values of
a = 1, b = 2 and j= 5 in Figure 5.

Figure 5.
Exact and numerical
solutions and their

absolute error for the
fixed values of j= 5,

a = 2 and b = 1
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7. Conclusion
In this paper, Green-Haar technique is extended for the numerical solutions of linear and
nonlinear fractional partial differential equations subject to the initial and boundary
conditions. Picard technique is applied to transform nonlinear equations into the
corresponding linear equation and then Green-Haar method is applied. The convergence of
the suggested technique has also been documented in the context of error analysis. Some
numerical examples are tested to check the effectiveness of the suggested technique. The
outcomes of numerical examples are documented in the graphical and tabular form.
According to Table I, Green-Haar method gives slightly more accurate results in comparison
with the Haar wavelet technique. It shows that results obtained from Green-Haar method are
in good agreement with exact solution when applied to the linear and nonlinear fractional
partial differential equations.
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